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NARIYA KAWAZUMI*

Abstract. Let C* be a once punctured compact Riemann surface and
L(C¥*) the Lie algebra consisting of all complex analytic vectors on
C*. We determine the g-th cohomology group of L(C*) with values in
the complex analytic quadratic differentials on the p-fold product space
(CX)? for the case p > ¢q. The cohomology group vanishes for p > g,
and, for p = g, it forms a trivial constant sheaf on the dressed moduli
M, , of compact Riemann surfaces of genus g. (Furthermore the stalk
does not depend on the genus g.) This induces a natural map of the
cohomology group for p = ¢ into the (p,p) cohomology of the moduli
M, ,. We prove the map is a stable isomorphism onto the subalgebra
generated by the Morita Mumford classes en = Kn’s, which gives an
affirmative evidence for the conjecture: the stable cohomology algebra
of the moduli of compact Riemann surfaces would be generated by the
Morita Mumford classes.

INTRODUCTION.

Let M, denote the moduli space of compact Riemann surfaces of
genus g. In [H] Harer proved that the g-th rational cohomology group
H9(M,; Q) does not depend upon the genus g if ¢ < g/3. This enables
us to consider the stable cohomology group of the moduli of Riemann
surfaces

glLIEOH (Mg; Q).

As was established by Miller [Mi] and Morita [Mo] independently, a
polynomial algebra in countable many generators e,’s (n € N>.) is
imbedded in the stable cohomology group

(0.1) Qlen;n > 1] C glingoH‘(Mg;Q).

Here e, € H?"(M,;Q) is the n-th Morita Mumford characteristic class
defined as follows [Mo] [Mu]. Let Cy — M, denote the universal family
of compact Riemann surfaces of genus g and let e € H 2(C,) be the
Euler class (the first Chern class) of the relative tangent bundle Te, /M,
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The n-th Morita Mumford class e, is defined as the fiber integral of the
(n + 1)-th power of the class e:

(0.2) en 1= / et € H*"(My; Q).
fiber

It is natural to conjecture the injection (0.1) would be isomorphic [H1]
[H2]. The purpose of the present paper is to give an affirmative evidence
for the conjecture.

Let L(U) denote the topological Lie algebra consisting of all complex
analytic vector fields on an open Riemann surface U with the Fréchet
topology of uniform convergence on compact sets. Fix an integer ¢ 2> 0
and a positive real number p > 0. We denote by M, , the dressed
moduli of compact Riemann surfaces of genus g. Namely M, , is the
space consisting of all triples (C,p, z), where C is a compact Riemann
surface of genus g, p is a point of C, and z is a complex coordinate of a
neighbourhood U of p satisfying the conditions

#(p) =0 and 2z(U)D{z€C;lz| <p}-

In view of the Harer stability [H] the rational cohomology group of My ,
is isomorphic to that of M, in degree < g/3. As is observed in [BMS],
the Lie algebra 9, defined by

v, := lim L({z € ;0 < |zl < p1})
ple

acts on the space M, , infinitesimally and transitively (§1).

Fix an arbitrary point 2 = (C,p,2) € M, , for the moment. In §1
it is proved that the isotropy algebra (9,), is equal to the Lie alge-
bra L(C — {p}) and the cotangent space Ty M, , is canonically isomor-
phic to the (9,); module consisting of all complex analytic quadratic
differentials on C — {|z| < p}. In view of the nuclear theorem the p-
fold alternating tensor product AP T M, , is equal to the (?,); module
of complex analytic quadratic differentials on the p-fold product space
(C — {]z| € p})?. Our first main result states as follows (Theorem 2.1):

THEOREM 0.3. For any z = (C, p, 2) E.Mg,,, we have

(1) HI((0,).; \'T2M,,) =0 ifp>g,
(2) D P ((%,)2; \ Tz My p) = Clinin 2 1),
p20




where k, € H*((3,)2; \" T M,,,) is defined for n > 1.

A similar result for the universal family

Copi= | C-{lzl<h}
(C,P,Z)GMg,p

is obtained (Theorem 2.1(2)(4)). In that theorem we have to add one
class € € H*((9,)z;T2Cy,p) to the generators kn's. The class € cor-
responds to the Euler class e = ¢(T¢, ,/M,,) under our framhework
(Theorem 8.2). In §2, utilizing a general theory of the cohomology of
the Lie algebra L(U), i.e., the complex analytic Gel'fand Fuks cohomol-
ogy for open Riemann surfaces U [Ka], Theorem 0.3 is reduced to the
case ¢ = 0. In §3 and §4 the theorem for g = 0 (modulo the algebraic
independency of the classes k,’s) is established.

When the point z = (C,p,2) € M, , runs over the whole M, ,, the
cohomology group HP((3,)z; A? T2 M, ,) forms a trivial constant sheaf
over the moduli M, ,, and the class «, extends to a nowhere zero global
section of the sheaf. From Theorem 0.3(1) we can define a natural map

r *
D : H(My 5 H'((3,)s; /\ T; M,,,)) = HP?(M,,,).

As is proved in §10, the class &, corresponds to the n-th Morita Mum-
ford class e, under the map D. It follows from the result of Miller and
Morita quoted above there exist no algebraic relations among the classes
kn’s. Consequently the map D is a stable isomorphism onto the subalge-
bra of @5, H?P(M,,,) generated by the Morita Mumford classes. Our
cohomology group H?((9,).; AT Tz C,,,) and especially the n-th power
of the class € are related to “the infinite dimensional Chern Weil the-
‘ory” of Feigin and Tsygan [FT| through the fundamental exact sequence
[Kal]. Our present work, however, has no dependence on their theory.

What is mentioned above can be interpreted by an equivariant coho-
mology theory for Lie algebras as follows. Since the Lie algebra 9, acts
on the moduli M, , complex analytically, the sheaf Q3 | of germs of
n-forms on M, , is a sheaf of 9, modules (n € No). We denote by
H {,';*(M 4.0) the hypercohomology of the cochain complex of sheaves

pe

C*(3,; Rl,,,):Mg,p D 0= C* (0 '1:/!,,,,(0))

and call it the D, equivariant (n,*) cohomology (§11). Here, for a 0,
module N, C*(0,; N) means the standard cochain complex of the Lie
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algebra 9, with values in the module N. There exist two spectral se-
quences converging to the equivariant cohomology

‘B = HP(HY(My,p;C"(0,;Q3,,))) and

0.4
O wppa = B, HI(C" (0 R, ),
where H9(2,; 2}, ) is the sheaf over M,,, defined as the cohomology of
the cochain complex of sheaves C*(9,; 3‘4”). The map D is concerned
with the second spectral sequence “E;.

Taking into consideration the finite dimensional case studied by Bott
[B] (although dim M, , = oo in the present case), we may regard the
v, module (23, ). as the (co-)induced module of the (9,); module

AN T:M, , (z € M,,,). Hence we put a general hypothesis

n
(0.5) H*(0,,Q, ,)s & H*((ap)z3/\ T; My,p)

for all z € M, ,. The hypothesis (0.5) seems to be true. In fact it could
be regarded as a certain kind of the Frobenius reciprocity laws, i.e., the
Shapiro isomorphisms. But at present the author has no proof of the
assertion (0.5). _

Under the hypothesis (0.5), Theorem 0.3(1) implies that the term
“E?? (0.4) vanishes for ¢ < n, so that

(0.6) Hy'" (M) = HO (M, H((3,)z; /\ T My,))-

The map D is the composite of the isomorphism (0.6) and the natural
map Hy)"(My,,) — H™"(M,,,). Thus we have (Theorem 11.8)

COROLLARY 0.7. If the hypothesis (0.5) holds good,

P H (M) = Clea;n 2 1],
P29

This suggests that it is reasonable to conjecture that the stable coho-
mology algebra of the moduli of compact Riemann surfaces is generated
by the Morita Mumford classes e,’s.

The author would like to thank all those who gave him help and advice,
including Professors A. Hattori, K. Saito, S. Morita, T. Yoshida, T. Oda,
K. Iwasaki, Doctors K. Ohba and K. Ahara. Especially he would like
to express his gratitude to his supervisor Prof. Yukio Matsumoto for his
constant encouragement and patience. This paper is dedicated to the
memory of the author’s loving mother Chieko Kawazumi.
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1. Homogeneity of the dressed moduli of Riemann surfaces.

We review the infinitesimal homogeneity of the dressed moduli M, of
Riemann surfaces [BMS] following [ADKP}, and represent the cotangent
space of M, , as a space of quadratic differentials through a generalized
Kothe duality [Koe].

First we fix our notations. Let L(U) denote the topological Lie algebra
consisting of all complex analytic vector fields on an open Riemann
surface U with the Fréchet topology of uniform convergence on compact
sets. The closed subalgebra consisting of all vector fields which have a
zero at a (fixed) point p; € U is denoted by L(U,p1). Let p > 0 be a
non-negative real number. Set

D,:={z€C;|z| < p}, D,:={z€Cslz| < p},
DX :={z€C;0<|z|<p} and D} :={z€C;0< |z <p)
The topological Lie algebra 0, is defined by

0, = &n L(D:,(1 )s
pile

which is endowed with the inductive limit locally convex topology [G,
TVS] [Ko] [Kol].

Fix an integer g > 0. We denote by M, , the dressed moduli of com-
pact Riemann surfaces of genus g. Namely M, , is the space consisting
of all triples (C,p, z), where C is a compact Riemann surface of genus
g, p is a point of C, and z is a complex coordinate of a neighbourhood
U of p satisfying the conditions

(1.1) z(p)=0 and 2z(U)DD,.
For a point (C,p, z) € M, ,, we denote
C*:=C—-{p} and C,:=C-z"Y(D,)

Furthermore we denote

Cyp = U Co
(C\p,z)EM,,,
X
ngp = U Cx
(C,p.z)EM,,,
D;(-P:= U D;<=M9sPXDI>’<CCgX,p‘
(C.p,2)EM, ,



We have inclusions Cy,, C C)X, and Dy, C C;, and a natural projection

Tgp t Cotp = My, (C,p,2,p1) — (C,p,z). Each of these spaces has a

natural fiber structure over M, , through the projection m, ,.

Now we introduce the infinitesimal action of the topological Lie alge-
bra 9, on the space M, ,. (see [ADKP](3.19)).

Fix X € v, and (C,p, z) € My, ,. For some p; > p > p, 2(U) includes
D,,, and the integral expeX : DY, — D of the vector field X exists
. for sufficient small complex number e. A complex analytic path

e — (C(e),p(e), 2(¢)) € My,
is defined by |

C(e) := (C* LU Dp, )/ ~e
z ~¢ (expeX)(2), z€ D,,
p(€) := the image of 0 € D,, on C(¢)
z(€) := the coordinate of C(€) induced by the identity D,, — D,,.

Differentiating the path (C(¢), p(¢), z(€)), we obtain the map

d
P = P(C,p,z) : Dp - T(C,p,z)Mg,p-; X - (_izle—_-o(c(e)ip(e)? Z(E))-

P defines the desired infinitesimal action of 3, on M, ,.

Similarly the algebra 9, acts on the space Cj,. In fact, for X € 0,
and (C,p,z,p1) € C),, (ie., (C,p,2) € My, and py € C* =C — {r},)
we can define a complex analytic path

e = (C(e), p(e), z(€), p1(€)) € Cy,,
by the same formulae for (C(¢), p(e), 2(¢)) and
p1(€) := the image of p; € C* on C(e).
Differentiating the path (C(€), p(€), z(€), p1(€)), we obtain the map
P =Pcpep) i 0% = Ticp00Ca0

X o 2] o(CLe), le), e pa(6))

P defines the desired action of 0, on C’g", ,- These actions are compatible
to the fiber structure on the space Cg, over M, ,.
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LEMMA 1.2.([ADKP] PROPOSITION 3.19). The sequences

(1) 0 L(C*) = 0, 5 TG,p,5) My,p =

(2) 0— L(C*,p1) = 9, 5 Ticp,2p)Co0 = 0

are exact. Here the algebras L(C*) and L(C*, pl) are regarded as
subalgebras of 0, through the coordinate z.

PROOF: Denote by M, the moduli space of compact Riemann surfaces
of genus g and O¢ the sheaf of germs of complex analytic vector fields
on C € M,. Then we have the following morphism of exact sequences:

0 - L(C¥eLD, - [ — HY(C;06¢c) — O
{ l
0 - L(D,) = TcpaMgpr — TcM, - 0

where L(D,) = h_r’n . L(D,,). The exactness of the upstairs sequennce
(4R Y4

follows from the facts {C*, D,, } is a Stein covering of C and H %(C;0¢)
= 0. The left vertical is the second projection, the central is the map P,
and the right is the Kodaira Spencer isomorphism. Chasing the diagram,
we reach (1). (2) follows from (1) immediately.

Consequently we obtain a representation of the cotangent spaces

TiopyMa a0d Tig . 5\ Carpr

COROLLARY 1.3.

n%,p,z)Mg.p = (Op/L(Cx))*
T(*C’spyz’Pl)Cg'p = (aP/L(Cx ? pl ))*
Here and throughout this paper the asterisque * means the strong dual.
To identify the dual spaces (3,/L(C*))* and (?,/L(C*,p1))* we in-
troduce a generalized Kothe duality [Koe] [Ko2]. Fix a point (C,p,2) €
M, ,. The disk D, is regarded as a subset of C' through the coordinate

2. Let E be a complex analytic line bundle over C. For an open set U
in C, we denote by E(U) the space of complex analytic sections of E on
U:

E(U) = H(U; Oc(E)).
E(U) is a Fréchet space with respect to the topology of uniform conver-

gence on compact sets. For a closed set F in C, we denote by E(F) the
inductive limit locally convex space

E(F) = lim E(U),
FcU
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where U runs over all the open neighbourhoods of F in C. Similarly we
define the locally convex space E(D;) by

E(DY) = lim E(D},)-
ple

The canonical bundle of C, namely, the cotangent bundle of C is denoted
by K. We have (K~!)(D;) = 0,.

THEOREM 1.4. (A GENERALIZED KOTHE DUALITY). ‘The map
n: (E7' @ K)(C,) — (E(DF)/E(C™))"

g 7

is a topological isomorphism. Here f - s intends a 1-form defined on an
annulus {p < |z| < p+€}(0 < € < 1), and the line integral § is carried
out on the circle {|z| = p + €/2}.

Denote by Q(U) the Fréchet space of complex analytic quadratic dif-
ferentials on a Riemann surface U:

Q(U) = H*(U; Oy((T*C)®*)) = H°(U; Oy(K®?)).

Let A € Z and p; € U. We denote by Q*(U,p;) the Fréchet space of
meromorphic quadratic differentials on U with a pole only at p; of order
<A

QNU,p1) = H(U; Ouy(K®* ® [m]®%)).

COROLLARY 1.5. We have topological isomorphisms
T(%;P»Z)Mg’p = Q(Cp) and T(*C,p,z,pl)cg,p = Ql(cp’pl)'

By Stokes’ Theorem these isomorphisms are (0,)(c,p,) = L(C*) and
(85)(C,p,2,1) = L(C*, p1) equivariant, respectively.
PROOF OF THEOREM 1.4: The given map is well defined because of

Stokes’ Theorem. From a general theory of locally convex spaces [Kol]
Theorem 12, p.377, we have topological isomorphisms

(1.6) E(D,)" = lim(E(Dj,)")
pilp
(1.7) (E7' ® K)(Cp,)* = lim (E™" @ K)(Cp,)")
p2T,m
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It suffices to prove the theorem for a line bundle E @ [p]®" (n < —1),
where [p] is the line bundle induced by the divisor p. Hence we may
assume H°(E) = H°(C;O¢(E)) = 0. Consider an exact sequence of
Fréchet spaces

0 - E(C*)® B(D,,) —» B(D}) - H'(E) = 0

for py > p satisfying (C,p,z) € ‘Mg,,,l. We have a closed lift H C
E(D}), since H'(E) = H'(C;O¢(E)) is finite dimensional (see [G,
TVS] I, §12). A topological isomorphism

E(D})=E(C*)®E(D,)0H

* follows from Open Mapping Theorem. Passing to the limit p; — p and
using (1.6), we obtain

(1.8) lm(E(D})/E(C*))" = E(D,)" @ H* = (E(D;)/E(C™))".
plp
Since H}(E~! @ K) = H'(E)* =0, we have an exact sequence

(1.9) 0 HYE'®K)— (E'Q®K)(C,,) —

(BT @ K){p <l <pm)) _|
(B ® K)(D,,)

0.

The right space is topologically isomorphic to E(D,,)* because of the
original Kothe duality ([Koe] or [Ko2] Theorem 3.1, p.115). E(D,,) is
reflexive ([Kol] Theorem 6, p.372). From Open Mapping Theorem the
sequence (1.9) is topologically exact. Therefore its dual

0~ E(D,;) = (B @ K)(Cp,)* — HYE™ ® K)* — 0

is exact as linear spaces by Hahn-Banach Theorem. From Mittag-LefHler
Lemma ([P] or [Ko] III Lemma 10.1, p.314)

lim 'E(D,,) = lim "E(D,,) =0
,21p1 P21,

follows. Hence we obtain an exact sequence of linear spaces

0— E(D,,) - (E7'® K)(C,,)" - H"(ET' @ K)* -0,
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where we utilize (1.7). Assembling it with the sequence associated to
H*(E), we have a commutative diagram

0 — E(D,) — EDX)/EC*) - HY(E) - 0
0 — E(lg,,l) - (E‘1®}{)(C_,,1)* — H°(E‘%®I{)* — 0.
The right vertical arrow is the Serre duality. Therefore
(1.10) 0 :E(DX)/E(C*) = (E™' @ K)(Cyr)*

is a continuous bijection between Fréchet spaces, namely, a topological
isomorphism. Dualizing 7, passing to the limit (p; — p) and utilizing
(1.8), we have

(E~! @ K)(C,) = im(E(D},)/E(C*))* = (E(D})/E(C™))",

, lp

which completes the proof of Theorem 1.3.

2. Complex analytic Gel’fand Fuks cohomology.
In the following 3 sections, we fix arbitraty pomts z = (C,p,z) € My,
and z = (C,p,2,p1) € Cy,,, and prove

THEOREM 2.1.

1) HY(E)m N\ TeM,,) =0 ifp>aq,
2  H(@)s N TrCo) =0 ifp>q,
(3) @ HP((0,)z /\PT;‘Mg,p) = C[kn;n 2 1]/relations,

p>0

(4) @ HP((0,)s; /\ T;Cy,p) =Cle, knyn 2 1]/relat1ons,

p>0

where &, € H"((3,)z N"T2M, ,) is defined in §4 and ¢ € H'((3,);
TyCy,,) is defined in §3.

Here and throughout this paper we mean by A" the completed n-fold
alternating tensor product.

From Lemma 1.2 we have to discuss the cohomology theory of the
Lie algebra of complex analytic vector fields on open Riemann surfaces,
i.e., the complex analytic Gel'fand Fuks cohomology theory for open
Riemann surfaces.
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We fix our notation relating to the cohomology theory of Lie algebras.
Let g be a complex topological Lie algebra. We mean by a g module
a complex topological vector space which g acts on continuously. The
standard continuous cochain complex of the topological Lie algebra g
with coefficients in a g module N is denoted by

(g N) = P C?(s: V),

p20

where CP(g; N) is the linear space of continuous alternating multilinear
mappings ¢ : g§®? — N. The cohomology group of the complex C*(g; N)
is called the (continuous) cohomology group of g with coefficients in
N and denoted by H*(g; N). When N is the trivial g module C, we
abbreviate them to C*(g) and H*(g) respectively. (For details, see for
example [HS].)

Let U be a connected open Riemann surface satisfying b; (U) < oo. As
in §1 let L(U) denote the topological Lie algebra consisting of all complex
analytic vector fields on an open Riemann surface U, L(U,p1), p1 € U,
the subalgebra L(U,p1) := {X € L(U); X(p1) = 0} of L(U), Q(U) the
L(U) module consisting of all complex analytic quadratic differentials
on U, and Q*(U,p;) the L(U, p;) module consisting of all meromorphic
quadratic differentials on U with a pole only at p; of order < A. In the
case U = C and p; = 0 € C, we abbreviate |

Wi := L(C), Lo:=L(C,0), Q:=Q(C) and Q*:=Q*(C,0).

Fix an integer n € N. In this section we prove

ProPOSITION 2.2. HY(L(U); A" Q(U)) = 0, if ¢ < n, and there exists
a natural isomorphism

HLOK N\ QW) = B" (Wi \' Q).
We define a sheaf Q, over U™ by

(2.3) Qn = Oy (Q pr:"(T°V)®?),
=1

where pr; : U™ — U is the i-th projection (1 < ¢ < n). The symmetric
group G, acts on the sheaf @, by the permutation of the i-th compo-
nents (1 < ¢ < n) twisted by the sign. In view of the nuclear theorem,
we have

Qu(U™) = Q)P and Qu(UM)® = \"Q(U).

12



Taking the &,, invariant part of the ReSetnikov spectral sequence (Ex-
ample (11.4), [Ka]§9) converging to H*(L(U); Q(U)®"), we obtain a
spectral sequence

(24) EPY = HP(U™ HY(L(U); Q.))%" = H(LU); \"Q)),

Here HI(L(U); @,) is a sheaf over U™ whose stalk at z € U™ is the g-th
cohomology of L(U) with values in the stalk (@,), of the sheaf Q,. Let
(S,), denote the isotropy group of &, at the point z € U™. If HY(L(U);
Q,)®" is the subsheaf of HI(L(U); Qn) whose stalk at z € U™ is

HY(L(U); @n)%", = HY(L(U);(Qn):)! S,
then the E, term (2.4) is given by
Ep® = HY(U™ HY(L(U); @a)®")°"
(see [Kal]§4).
We introduce a natural stratification on U™. For an increasing se-
quence of integers
(2.5) t:0=rg<ry < --- < =m,
we denote by A, the locally closed subset of U™

A {z =(21,...,2n) EUMzi = 2, if 141 <2 < 7y, and}
i Zr, # 2;,if K # .

Clearly each subset A, is connected and

(2.6) Ut = |J |o(4).

oG, t

If r, = n, A, is the diagonal set A = A(U) C U™.
The stalk at z € A, of the sheaf H*(L(U); Q,)%n is given by

H*(L(U); Qn)®",

! —Tk-1
=N CHU =, =)0 QE Wi AT Q)
k=1

from [Ka] Theorem 5.3 (see also [Kal] Lemmata 2.3 and 4.6). Here
A" 2 H, is the free graded commutative algebra generated by the graded
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vector space T3 H; concentrated to degree 2 and isomorphic to the first
complex valued singular homology of the pair (U, {z1,...,2x}) as a com-
plex vector space. If ¢ < p, HI(W1; A” @) = 0 from [Kal] Theorem 4.7.
Consequently HI(L(U); @,)%" =0, if ¢ < n, and

Te—Tk-1

!
(2.7) H™(L(U); Qu)®", = Q H*(Wi; \ Q)
k=1 !

for z € Ay. We abbreviate F := H*(L(U); Qn)®". Substituting them
to the spectral sequence (2.4), we obtain the first half of Proposition 2.2
and a natural isomorphism

H(LW) \ QW) = HY(U™; F)®.
Fix a base point p; € U and consider the evaluation map

(28) ev: H™(L(U); \ QU)) = BY(U™ F)®
= Flpyypr) = H (W /\nQ)-

It must be proved that the map ev is isomorphic. From (2.7) the topo-
logical structure of the sheaf F depends only on the topology of U and
the stratification A.’s. Therefore we may assume that U admits an
complex analytic immersion into the complex line ¢ : U % C. Then
Q(U) is a W; = L(C) module through the immersion ¢, We remark
H(Wi; A" QU)) = HO(U™; F)®=. It follows from [Kal] Lemma 2.3

the composite
H Wi \"Q) 5 H Wi; \"@) S B" (Wi \"Q)

is the identity map. Thus it suffices to show the injectivity of the map
ev (2.8).

Let 7" denote the sheaf given by.extending F|A to the whole U™ with
zero outside the dialgonal A. If F' is the kernel of the natural projection
F — F', we have

HO(U™ F')® =0.

In fact, any section s € H O(U™; F')®» satisfies s|a = 0 by definition.
Hence s vanishes on a neighbourhood of the diagonal A. Take any
sequence t (2.5). The closure of the subset A, includes the diagonal A.
Since A, is connected and the restriction F'|4, = F|4, is a (locally)
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constant sheaf, s vanishes on A;. From (2.6) s vanishes on the whole
un.
Consequently the map

HO(U™ F)® = HO(U™ F")®" = (Fipy,p)) ™) C Fipyyam)
is injective, which is equal to the map ev (2.8). This completes the proof

of Proposition 2.2. ‘
Using the Resetnikov spectral sequence and [Ka] Theorem 5.3 again,

‘we obtain the following from Corollaries 1.3 and 1.5.

COROLLARY 2.9. For z = (C,p,z) € M, ,, we have

0, ifg<n,

Hq(bp;;/\ T;M,,) = { H"(Wl’/\nQ) if ¢ =n.

One deduces the following from [Kal] Theorem 4.9 in a similar way
to My, ,.

PROPOSITION 2.10. Let U be a connected open Riemann surface satis-
fying bj(U) < o0 and p, € U. If g < n,

HY(LU,p); \ Q' (U,p1)) = 0,
and the evaluation map at the point p; induces an isomorphism
H(L(U,p); \" Q' (U,p1)) = H™(Los \" Q).
COROLLARY 2.11. Forz = (C,p,z2,p1) € Cy,,, we have

0 ifqg<mn,

q . " e = ’
7 (DPz’/\ T:Cq) {H"(Lo;/\an), if g =n.
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3. Some properties of the algebra @, H(Lo; A" Q") -

By Corollaries 2.9 and 2.11 the proof of Theorem 2.1 is reduced to the
calculation of the cohomology groups of the Lie algebras W; = L(C)
and Ly = L(C, 0) with values in the quadratm differentials A" @ and
A" @'. The main purpose of this section is to prove

THEOREM 3.1. The algebra @,,5, H"(Lo; A" Q') is isomorphic to the
polynomial algebra over the algebra @, 5, H"(Wy; A" Q) with a single

generator ¢, 1.e.,

P HE Lo \" Q) = (@ E (Wi \"Q))lel

n>0 n>0

Here € € H'(Lo; Q') is given by € = d(%d2?).
It is an analogue of [H2] Theorem 7.1:

gli,n;lo H*(Cy,p) = (gli_{{.lo H*(My,,))le]

in our algebraic model. Here e € H?(Cy,,) is the Euler class of the
relative tangent bundle T¢, ,/um, ,- As is proved in §8, the class € corre-
sponds to the class e under our framework. '
First we introduce typical examples of Ly and W, modules. Let v € Z.
(1). The 1 dimensional complex vector space 1, = Cl, with the
preferred base 1, is acted on by the Lie algebra Lg in the following way.

(€)1, = vEOL ()5 € L)

The Lo module 1, is naturally 1somorphic to the u-cotangent space
(Tg C)®¥ of the complex line C at the origin 0.

(2). Through the Lie derivative the Fréchet space T, consisting of all
complex analytic v-covariant tensor fields on C forms a W; module:

T, := H°(C; Oc((T*C)®*)).

By definition Q = T. If v = 0 and 1, we denote F := Ty and K :=Tj.

There exist some algebraic variants of Wy, Ly and T,:

w .= C[z]% (the polynomial vector fields),

L} :={X e W) X(0)=0}, and
T} .= C[[z]]dz* (the formal tensor fields).
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Similarly we denote F? := T}, K := T} and Q := T}. Clearly we have
Wln C W, Lf, C Lo and T, C T}. These inclusions induce isomorphisms

H*(Lo;1s, ® Q) To:) = H*(LE;1,, © Q) T2)
(3.2) . i=1 . I"'—'=1
Wi QT.) = H'WH QT

i=1 i=1

for any integers vg,v1,...,v, (see [Kal] Lemma 2.3. In [Kal], wi =
Wi, L} = Lo™® and so on.) Hence we have no essential difference
between these algebraic variants and the originals.

We shall give some consideration about the Schapiro isomorphism for
the pair of Lie algebras (W3, L}). If N is an L} module, let I(N) denote
the co-induced W; module derived from N: '

I(N) := Homy g1y (U(W]), N).

Here U(:) means the universal enveloping algebra. Then there exists a
natural isomorphism

H* (W} I(N)) = H*(L; N)

called the Schapiro isomorphism. Easily one deduces an WI” isomorphism
I(1,) = T} for any integer v. Hence, if N is a Wf module, we have a
natural isomorphism I(1, ® N) = T!* ® N and the Schapiro isomorphism

(3.3) H*(WY, TP @ N) =~ H*(L};1, @ N).
It should be remarked that the evaluation map
ev:T! = C[[t]]dt* — 1,, f(t)dt’ — f(0)1,
is an Lg homomorphism. So we have the composite map
HY(WHT @ N) S H*(LL; T o N) 8" H*(L;1, @ N),

which coincides with the Schapiro isomorphism (3.3). The Hochschild
Serre spectral sequence of the pair (Wlu,Lg), with coefficients in a Wf
module N implies a cohomology exact sequence

(34) oo — HY(WYN)S HYLLGN) D HI(LE 1, @ N) — -
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LEMMA 3.5. fN isa WI” module, the diagram

d®N

H*WYFl@N) —— H*(WHKYQN)
—d

HYI:N) —— H*(I)H1,®N)

commutes, where the vertical arrows are the Schapiro isomorphisms (3.3)
and d: F? - K% is a W} homomorphism given by f(2) — f'(z)dz.

PROOF: A q cocycle ¢ € Z9(W}; F* ® N) has an expansion

c= Zz"c,-, ¢ € Cq(WI’;N).

1=0

Taking the constant term of the cocycle condition dW:" ¢ = 0, we have

dWIICo +6_1Uc =0,
where 6_; € CY(W?) is given by 6_1(£(2)£&) = £(0). Hence

d
dio(ev®@ N)(c) =1, ®int(gz')(dW,"c°)|Lg
. d |
=-1; ®mt(£)(6_1 u CI)ILE) =-11® cl'L}‘, = —((evod) ® N)(c),

as was to be shown.

As a corollary of this observation, we have

LEMMA 3.6. The sequence (3.4) for the W} module A\" @* is resolved
into the split exact sequences

0 HWHE N @) S HIE N Q) B H b e \" Q) —o.
ProoOF: The inclusion
1®:/\nQ“ <—>F®/\nQ”, u—1Qu

has a W} left inverse given by f(2) ® u — 1(3%, f(2i))u. This means
the short exact sequence

0-N\N@oFeoNQS Ko \'Q -0
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splits over W,” and so the induced cohomology exact sequence of W} is
resolved into the split exact sequences

0— H(WH N\ Q) —» H(WhFr e \" QY
- H(WEK @ \" Q") — 0.

Hence the lemma follows from Lemma 3.5.
From the lemma above together with the isomorphisms (3.2) follows

COROLLARY 3.7. The Hochshild Serre spectral sequence of the pair
(W1, Lo) with values in the W, module \" Q induces a split exact se-
quence

0 H(Wi '@ S H(Lo; \ Q) 2 H'(Lo L ® \"Q) = 0.

Since the E; term of the Hochschild Serre spectral sequence of the pair
(%0, Lo) is given by EP'? = H9(Lo; A” Q'), we have the transgression
map

P : p+i:
dy: HY(Lo; \ Q") — HY(Lo; \ Q")
From the definition of the transgression one deduces the commutative

diagram

HY(Ly;1; @ A\” Q) ——— HI(Lo; AP Q)

le . d‘T
Hi(Ls N Q) —— HY(LA"Q),
where the upper arrow is derived from the quotient map A?*' Q' —
AP Q) AP Q = 1, ® A\? Q and the lower from the inclusion A® Q —
NP Q.

Consequently the Ly exact sequence

O—)/\nQC—-)/\nQ1 —)11®/\n_1Q—->0

induces a split exact sequence

n n n—1
(3.8) 0 — HY(Lo; \ Q) = H'(Lo; \ Q") » H(Lo; 1, ® /\ @) = 0.
It follows from Corollary 3.7
n . n n n—1
HY(L; \Q") = H(Wi; A\ Q@H (Lo; Lo \ Q)9H (L;; 11i® /\ Q).
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As was proved in [Kal] §4, if ¢ < n,
(3.9) H Wy \"Q) =0 and H'(Lo;\"Q')=0.
Hence we obtain
n .
(3.10) HY(L;L1® \ Q) =0 ifg<n,
and

H" (Wla/\ Q)a 1fq—n,
if ¢ <n.

H(Lou \"Q) = {
Let Q* denote the W; module

X 1= Q(C*) = Q(C - {0}).

1

The key to proving the theorem (3.1) is

LEMMA 3.11.

m \'e) =1 |

Especially we have H9(Lo; A"Q) = H9(Lo; \"Q?) for ¢ < n.
PRrRoOOF: From [Kal] Theorem 3.4 follows |

HY Wi \"Q), ifg=n,
ifqg<n.

’

H*(Lo; \"@%) = H*(Lo; \" Q).

If we define u € H%(Lo; S™F) by

g = 2 [ (8 E3) e

for £1(2)4 and &(2)£ € Lo, and & € H'(Lg) by 6o(&(2)£) = €(0),

then we have
H*(Loi \"@) = N\ (Go,u) @ H*(Wi; \" Q™).

In fact the E; terms of the ReSetnikov spectral sequences of both sides
are isomorphic to each other by the decomposition theorem [Ka] Theo-
rem 5.3.
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As was proved in §2 (U = C*, cf. (2.8)f.), we have

H*Wi;\"Q), ifg=n,
0, if ¢ < n.

Hq(Wﬁ/\an) = {

This completes the proof of Lemma 3.11.
PROOF OF THEOREM 3.1: Lemma 3.11 implies the exact diagram

0
!
H"-‘(/\l"“ Q)
0 H'(A"Q) — HA"Q) — H" (LA Q) -0,
N !
HY (A" Q)
!
0

where H*(-) = H*(Lo; "), the horizontal is the exact sequence (3.8), the
vertical is derived from the Ly exact sequence

0 N'Q = A" = A@/A" @ =\ @ o,

and the slanted arrow is isomorphic from Lemma 3.11. By definition the
second vertical arrow is given by the cup product eU. Consequently we
have a decomposition

(Lo \"QY) = (Wi " Q) @ e UE™ (Lo \" Q")
=g W N Q@ B (Lo \" @),

which derives the theorem (3.1) inductively.

Now we recall the fundamental exact sequence ([Kal] §4) for the Lo
module 1; @ A" Q

(312) 0— H'(Lo;1 ® S™(Q*/Q)) —» H™'(Ls;i® \ Q)

T HEH(C - {0) L @ Q) -
where @Q,, is the sheaf over C™ introduced in (2.3) (U = C), §"(-) means
the completed n-fold symmetric tensor product, and Hg(:,-) denotes

the g equivariant cohomology (§11, [Kal] §1). We denote by €€ the
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image of the (n + 1)th power €"*! under the projection homomorphism
H™ Y (Lo; A™M Q1) = H™(Lo;1; ® A™ Q). Substituting (3.1) to the
sequence (3.8), we have a decomposition

(3.13)
H™(Los 1 ®/\nQ) _ @elen_iﬂi(Wl;/\'Q) o @H-’(Wl;/\’Q).

=0 =0 ‘
Hence we obtain

COROLLARY 3.14. The kernel of the map in41 in the sequence (3.12) is
a 1 dimensional complex vector space spanned by the class €;€".

This corollary plays an important role in studying the algebra @@ n>0
H*(Wi; A" Q) in §5.
REMARK 3.15: The following assertions are equivalent to each other:

(1.n)
H'(Lo; \"@) 5 H*(Lo; \'Q?) forany p<nm.

(2.n) |
H*(Lo;/\sz//\pQ) =0 forp<n.
(3.n)
H*(Lo; SP(Q*/Q)) =0 for p < n.
(4.n) '

P _ |
H(Los; \"QY) = D E " (Lo N 7@ forp<n.

1=0

By a straight computation we can prove the assertion (3.n) for n < 6.
But I do not know whether the above holds for all integers n. It is an
analogue of the Harer stability of the mapping class group [H] in our
algebraic model.

REMARK 3.16: In [FT] Feigin and Tsygan constructed a natural map
@ : H3(W;,Ceo; S"W1*) — H*™(M,)

as an analogue of the Weil homomorphism. Here eq = zdi'z € W,. Now
we look at the domain of the map ¢, HZ(W;,Ceo; S"W;*). First we
remark there exists a natural W, isomorphism @*/Q = W;". Hence, by
Corollary 3.14, the cohomology group H!(L¢;1; ® S"W;*) is spanned
by the single element ¢; € corresponding to the (n + 1)-th power, of the

22



Euler class e. The Hochschild Serre spectral sequence (3.4) for the W,
module S"W;"* induces a map

Hl(Lo;ll ® S"Wl*') — H2(W1; S’"Wl"),

which is isomorphic under the assertion stated in Remark 3.15. From the
isomorphism H2(W;,Ceo; S"W;*) = H%(W,;S"W;*) we conclude that
the domain of the map ¢ is spanned by the single element €;€™ under
the assertion (3.15). Our construction given in the sequal, however, has
no dependence on that of the map ¢ in [FT).

4. Algebraic fiber integrals.

As in the previous section let Q> denote the W; module Q(C*) =
Q(C — {0}). Now we shall introduce a map called the algebraic fiber

integral

/ sker(H™ (Lo; 1 ® /\ @) = H™'(Lo;1, ® /\" Q%))
fiber
- H'(Wi; \"Q),

and prove that the algebra @, 5, H"(Wi; \" Q) is generated by the
classes kK, € H*(Wi; A" @), n € N>1,(Theorem 4.11):

@H"(Wl; /\nQ) = C[kn;n > 1]/relations.

n>0

The class &, is defined through this integral (4.3), and corresponds to
the n-th Morita Mumford class e, € H*"(M,, ,) under our framework
(§10). It follows from a theorem of Miller [Mi] and Morita [Mo] there
exist no algebraic relations among the «,,’s (Corollary 10.3).

First we fix our notations. As in §2 we denote @, := Ocn(®5, pr;*(
T*C)®?), where pr; : C" — C is the i-th projection (1 < ¢ < n) (U = C).
In view of the nuclear theorem, we have

Q®" = Q.(C")
= {f(21,...,2n)dz1% - - -d2z,%; f is complex analytic on C".}

The symmetric group &,, acts on the sheaf @, by the permutation of
the variables z; twisted by the sign. Furthermore we set

Op = {(t,21,-..,20) EC™" 5t #£ 2; (1< Vi< n)}
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and introduce the sheaf XQ, over the space C x C" = crtl given by

KQn i= Ocnts (pro*T*C ® Q) pr;*(TC)®?),

i=1

where pr, : C**! — C is the 0-th projection (¢, 2) — t and pr; : C**! —
C is the i-th projection (t,z) — z; (1 < i < n). We have

K®Q® =KQ.(C" :
={f(t,z1,... ,z,,)dtdzl2 .-~ dz,2; f is complex analytic on crt}
The symmetric group &, acts on the sheaf KQ, by the permutation of

the variables z; twisted by the sign. We have K@\" Q = KQn(C*1)8n,
A W, module (K ® A" Q)* is defined by

(K ® N\ Q) = (KQn(0n))®".
LEMMA 4.1. The restriction to {t = 0} induces an isomorphism
b H (Wi (KO N\ Q" /(KO N\"@) S B (Lo h@(\"Q*/\" Q).

PROOF: It suffices to show that the restriction to {¢ = 0} induces iso-
morphisms ‘

H'Wi Ko \'Q 3 H'(LsL e \'Q)
H' Wi (K @ \'@)) S H*(Los 11 © Q%)
The former is the Schapiro isomorphism (3.3). Over the identification
On Cx(C)" (tyz1,...y2n)— (tyz1 — b0 0y 20 — 1)
there exists a natural isomorphism of sheaves
H*(W1;KQ,) = C x H*(Lo; 11 ® €n)-
Hence the E, term of the ReSetnikov spectral sequence of the latter

resi=o : HP(C x (C*)C x H(Lo;1; ® Qn))®"
— HP((C*)™ HY(Lg; 1; ® Qn))®"

is isomorphic and so is the latter itself.
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The map §, defined by

}éz EKeN\N'Q* - \"@

w= f(t,zl,...,z,,)dtdzl2 coodzg? fw
t

1
= I
f;w R_I‘I'{'loo( 27"‘\} -1 |z]=R

is a W, homomorphism. Clearly §w = 0 for any w € K ® A"Q. Thus
a W; homomorphism

f Ko\ /KN - N\"Q

is obtained. We denote by [, _ the composite map

f(t,z1,..., z,,)dt)dzl2 oo dzy?

]ﬁ = f o ()1 s H(Loi 1 ® (N @*/N\"Q) — H* Wi \ Q)

t

" and call it the algebraic fiber integral.

Since H™(Lo; 1 QA" Q%) = 0 by (3.9) and the decomposition theorem
[Ka] Theorem 5.3, there exists an isomorphism

(4.2) H™Losi11®(A"Q*/\ Q)
= ker(H“"'l(Lo; 1, ® /\nQ) — H" Y (Le; 1, ® /\an))
In the sequal we regard H"(Lo;1; ® (A"Q*/A"Q)) as a subspace of

H™*(Ly;1; @ \"Q) through this isomorphism. We have €,€™ € H"(Lo;
1, ® (A"Q@*/A\"Q)) and so define

(4.3) iy = /ﬁ e BNy A"Q).

As is proved in §10, the class &, corresponds to the n-th Morita Mumford
class e, € H™"(M,, ,) under our framework.

To treat with the case n = 1 we define two 1 cocycles V, € Z 1w, K)
and V, € Z}(W1;Q) by

Vi(X) = Vi(X) 1= 2@ (2)dz
(4.4) ]
Va(X) = Vi(X) := a§<3>(z)dzz
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for X = £(2)4 € W;. By the Schapiro isomorphism (3.3) we have

HY (Wi K) 2 H'(Lo;1,) = C, and H'(Wy;Q) = H'(Loj12) = C.
As is easily proved, the LHS’s are generated by V; and V; respectively.
Ifn=1,

(4.5) %m = V; € H'(W; Q).

In fact, v, (2Vid( zzi_’—:j,-)) = €€, and so, from the Cauchy integral for-
mula,

n 2 |
srE) ) = ¢ FI5T = SV = V) )

for f(z)% € W.
Especially we obtain

(4.6) Hl(Wl,Q) = CK] = C.
From (3.13) follows
LEMMA 4.7.
H"(Lop;1, ® (/\ Qx//\ Q) = @#lelfiHn‘i(Wl; /\ Q).
PRrooF: It suffices to show 7
n n n

(48) H'Lo;Li® A\ Q%) =eaH (Wi \ Q) = H (Wi /\ Q).
By the decomposition theorem [Ka] Theorem 5.3, the LHS is isomorphic
to H*(Wy; A"Q*) through the cup product by €;. As was proved in §2
(2.8)ff., we have H*(W; A"Q@*) & H™(W1; A\"Q). This implies (4.8)
and (4.7).
REMARK 4.9: From (4.8) we have

H Y (Lo; 1, @ (N @*/\" Q)

= ker(H™*(Lo; 1, ® \"Q) = H™*(Lo; 1, ® \"@)).

Hence we can define the algebraic fiber integral

/ :ker(Hn+l(L0;11 ®/\nQ)—-’H”+1(L0;1] ®/\an))
fiber

— H"H (Wi \"Q).
Define a 1 cocycle n, € Z'(Lg;1; ® S™F) by

ln 1
o i= —d (;Z —) € Z'(Lo;1; @ S"F).

=1 2;

Then we have
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LEMMA 4.10. Under the identification (4.2), for any u € H*(W1; A"Q),
we have nau € H*(Lo;1; ® (A"Q@*/A\"Q)) and

/ ey = u € H*(Wy; /\nQ).
fiber
PROOF: The first half is clear. Since

_Z:—t—z =__11®Z ——el,@S"F

it follows from the Cauchy integral theorem

1 n dt
/f;bernnu - yg; (Z"=1 t— Zi) =

THEOREM 4.11. The algebra @, 5, H*(W1; \" Q) is generated by the
classes k, € H*(Wi; A" Q), n € N»1, as a commutative C-algebra:

@H"(Wl;/\nQ) = C[kn;n 2> 1]/relations,

n>0

PRrOOF: By induction on n we prove that H®(W;; A" Q) consists of
polynomials of the «;’s.

The assertion for n = 1 is already proved in (4.6).

Suppose n > 2. By Lemmas 4.10 a,nd 4.7, for an arbitrary u € H™(Wy;

A" Q), we have
n . , n—i
Nalt = Z‘hlele'u,‘, u; € H*Y(W;; /\ Q).

Since ¢ > 1, each u; is a polynomial of the k;’s from the inductive
assumption. It follows from Lemma 4.10

n . .
u = / Mt = Z kiu; € Clkj;1 < j < n]/relations,
fiber =1

which completes the induction.

COROLLARY 4.12. The algebra ®n20 H™(Lo; \" Q') is generated by
the classes ¢ € H'(Lo; Q") and k, € H*(W; A" Q), n € N>y, as a

commutative C-algebra:

@H"(Lo; /\nQ‘) = Cle, kn;n > 1]/relations.

n>0

These together with Corollaries 2.9 and 2.11 complete the proof of
- Theorem 2.1.
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5. Non-triviality of the class «,.

Now we shall investigate the class «, in detail. The purpose of this
section is to prove

THEOREM 5.1. Ifn > 1,

(1) Kk #0€ H' (Wi \ Q)
(2) €1€" = Nnkn € H'(Lo31; @ /\ Q).

This is a key lemma for establishing that the class , corresponds to
the n-th Morita Mumford class e, € H™"(M, ,).

First we prove it for the case n = 1 (Theorem 10.1).
Recall (4.5): k1 = 6V2 # 0. Easily we have

d(1;, ® z73d2) - 61, ® 2 2d2? — 36,1, ® 27 'dz2 € C'(Lp; 1, ® Q)
1: ® V2 — 621, ® z71dz? € CY(Lo; 1, ® Q).

Here §; € C'(Ly) is defined by 6i(2'*!-£) = bk, (Kronecker’s delta).
Hence in H?(Lo;1; ® Q) we have

€1€E= —2d(6111 ® z"zdzz) = 6d(5211 ® z"ldzz)
=6d(1; ® z7'V3) = MK,
as was to be shown.
Let n > 2. As in §2 we abbreviate @, := Oc~ (@, pr;*(T*C)®?),

where pr; : C" — C is the i-th projection (1 < ¢ < n). The diagonal set
of the product space C" is denoted by

A= {(21,22,...,Zn)€(:n;21 =29 = ¢ =Zn}.

In a similar way to [Kal] §4 we construct the fundamental ezact sequence
for the W; module A" @

0 = H (Wi H™2(C" - 8;,€.))% — H"(Wi; \"Q)
o Hip (€ = 8;Q0)% = -+

Since HY(Wy; A" Q) = 0 for ¢ < n (3.9), we may regard H'(W,; H"~?
(C™ — A;Q,))®" as a subspace of H*(W1; A" Q).
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LEMMA 5.2, Ifn > 2, we have
HY Wy H*3(C" — A;Q0))°" # 0.

The latter half of this section is devoted to the proof of this lemma.

To begin the proof of Theorem 5.1, we introduce the notion of sup-
port for cohomology classes in H*(Wi; A" @), H"'(Lo; 11 ® A" Q) and
H'(Lo;1; ® S™F). From (3.9) one deduces an isomorphism

H*(Wi; \"Q) = Hiy, (C™; @n) S = H(C™ H"(Wh; Q) %") .

A cohomology class u € H™*(W;; A" Q) is identified with a section of
the sheaf H™(W;Q,) over C" through this isomorphism. We define
the support of the class u by that of the corresponding section of the
sheaf H™(Wy; @,). Since H¥(Lo;1; ® A" Q) = 0 for ¢ < n (3.10) and
H°(Lo;1; ® S"F) = 0, we can define the support of the cohomology
classes in H™*'(Lo;1; ® A" Q) and H'(Lo; 11 ® S"F) in a similar way.
From the definition the support of the class n, € H'(Lo;1: ® S™F) is
(included in) the subset | Ji_,{zi = 0} C C".

Lemma, 5.2 asserts that there exists a non-zero cohomology class u €
H™(Wy; A" Q) whose support is included in the diagonal set A C C”.
The cup product n,u € H"t!(Lo;1; ® A" Q) has its support in the
subset

An | J{z =0} = {0}.
i=1

It follows from Corollary 3.14 that n,u = aee® for some a € C. Apply-
‘ing the algebraic fiber integral we obtain

u = ak, € H*(Wy; /\nQ)

Since u is non-zero, we have a # 0 and k, # 0. The first half of Theorem

5.1 is proved. :
Especially we obtain x, = a~'u € H'(Wy; H"72(C" - 4 Qn))°"
and

(5.3) HY(W;; H*2(C™ — A; Qn))%" =Ck, = C.
Substituting u = &, to the above discussion, we have fNnkn = ac1€™ and
Kn = aKn. From a # 0 and &, # 0, we obtain a = 1, i.e., €1€" = NnKn.

This completes the proof of Theorem 5.1 modulo that of Lemma 5.2.
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For the rest of this section we prove Lemma 5.2. Consider two Stein

coverings 4 = {U;}, and U = {V1} U {V;}].; defined by

Ui = {,(2’1,22,... azn) € Cn;zl # Zi}
Uj:= {(z1,22,...,2n) € C"; 22 # zj}.

Using the 1 cocycles V; and V; (4.4), we define two 1 cochains Op;; €
CH(W1; C™*(8k; @n)) and Onyz € C'(W1;C"~%(T; Qn)) by

T dz?
Op; 1= \% -
1 tzy ! E (t -2 )2
— 3vz1 H 2v21(z le )H dzz
ol (zl—z)2 e R (21 — 2:)?
T dz?
O, Vi :
* t;z2 ' E (t—z)?

Here we denote by §,. ;, the line integral along a small loop about the
point t = z;5:

1
v{;;zl T 2my/—-1 |t—zll=6<<l,

which is also W; equivariant. Since dim 4 = dim U = n — 2, we may
regard Op;; (resp. On;2) as an element of C1(W;; H*"%(4; Q,)) (resp.
CH(Wh; H**(B; Q,)))-

LEMMA 5.4.

dOn; =0€ C*(Wy; HM3(U; Q,))
dOn;2 =0 € C*(Wy; H* (D; Q).

PrOOF: We prove only the first half dO,,; = 0. First we remark

(55) vid (( dzt)"’) (gl(z) ~&a(2) )e C[t, z]dtdz>
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