THE LOGARITHMS OF DEHN TWISTS

NARIYA KAWAZUMI

This is a joint work with Yusuke Kuno (Hiroshima) [6].

Let Σ be an oriented connected compact surface of genus $g \geq 1$ with 1 boundary component. Choose a basepoint $* \in \partial \Sigma$. We denote $\pi := \pi_1(\Sigma, *)$ and $H := H_1(\Sigma; \mathbb{Q})$. The simple loop going around the boundary in the opposite direction defines an element $\zeta \in \pi$.

Any simple closed curve $C \subset \Sigma$ defines the right handed Dehn twist t_C along C as an element of the mapping class group of the surface Σ relative to the boundary $\partial \Sigma$. The classical formula says the action $|t_C|$ of the Dehn twist t_C on the homology group H is given by

$$|t_C| = 1_H - [C] \otimes [C] \in \operatorname{Hom}(H, H),$$

where $[C] \in H$ is the homology class of C with a fixed orientation, and we identify $H \otimes H = \text{Hom}(H, H)$, $Y \otimes Z \mapsto (X \mapsto (X \cdot Y)Z)$, by the Poincaré duality. Our result generalizes this formula to the action of t_C on the completed group ring $\widehat{\mathbb{Q}\pi}$, where the completion is induced by the augmentation ideal $I\pi \subset \mathbb{Q}\pi$.

Massuyeau [10] introduced the notion of a symplectic expansion of the group π , which provides an isomorphism of pairs of complete Hopf algebras

$$\theta: (\widehat{\mathbb{Q}\pi}, \widehat{\mathbb{Q}\langle\zeta\rangle}) \cong (\widehat{T}, \mathbb{Q}[[\omega]]).$$

Here $\widehat{T} := \prod_{m=0}^{\infty} H^{\otimes m}$ is the completed tensor algebra generated by H, and $\omega \in H^{\otimes 2}$ is the symplectic form. Explicit symplectic expansions have been constructed by Kawazumi [5] (over \mathbb{R}), Massuyeau [10], Kuno [9] and Bene-Kawazumi-Kuno-Penner [1].

Any mapping class φ on the surface Σ relative to the boundary $\partial \Sigma$ defines an automorphism of the complete Hopf algebra $\widehat{\mathbb{Q}\pi}$. By using the isomorphism θ , we may regard it as an automorphism $T^{\theta}(\varphi)$ of the complete Hopf algebra \widehat{T} , which we call the total Johnson map [4]. Our result describes the map $T^{\theta}(t_C)$ in an explicit way.

We introduce a linear map $N: \widehat{T} \to H \otimes \widehat{T} \subset \widehat{T}$ by $N|_{H^{\otimes 0}} = 0$ and $N(X_1X_2\cdots X_m) = \sum_{i=1}^m X_i\cdots X_mX_1\cdots X_{i-1}, X_j \in H$. Here and for the rest of this report, we often drop the symbol \otimes . Take the logarithm

of the symplectic expansion θ , $\ell^{\theta} := \log \theta : \pi \to H \otimes \widehat{T}$. Then we define a map $L^{\theta} : \pi \to \operatorname{Hom}(H, \widehat{T})$ by

$$L^{\theta}(x) := \frac{1}{2} N(\ell^{\theta}(x)\ell^{\theta}(x)) = N\theta(\frac{1}{2}(\log x)^2) \in H \otimes \widehat{T} = \operatorname{Hom}(H,\widehat{T})$$

for $x \in \pi$. It is easy to show $L^{\theta}(x)$ is an invariant of unoriented loops on the surface Σ . Here we identify $H \otimes \widehat{T} = \operatorname{Hom}(H, \widehat{T})$ by the Poincaré duality. Further the space $\operatorname{Hom}(H, \widehat{T})$ is naturally identified with $\operatorname{Der}(\widehat{T})$, the Lie algebra of derivations of the algebra \widehat{T} . In particular, $L^{\theta}(x)$ is regarded as a derivation of \widehat{T} , so that we may define an algebra automorphism of \widehat{T} by taking the exponential $e^{-L^{\theta}(x)}$.

Theorem 0.1. For any symplectic expansion θ and a simple closed curve $C \subset \Sigma$, we have

$$T^{\theta}(t_C) = e^{-L^{\theta}(C)}$$

as algebra automorphisms of the algebra \widehat{T} . In other words, the invariant $-L^{\theta}(C)$ is the logarithm of the Dehn twist t_{C} .

The degree 0 part of this formula is exactly the classical formula stated above. As a corollary of the theorem, the action of the Dehn twist t_C on N_k , the k-th nilpotent quotient of π , depends only on the conjugacy class of a based loop representing C in N_k . Moreover, using the exponential $e^{-L^{\theta}(C)}$, we can define the *Dehn twist along a* not-necessarily-simple closed curve C as an automorphism of the completed group ring $\widehat{\mathbb{Q}\pi}$. It would be intersting if one could realize this automorphism in a geometric context.

The key to the proof of the theorem is a geometric interpretation of symplectic derivations of the algebra \hat{T} . Under the identification $\hat{T}_1 = \operatorname{Der}(\hat{T})$, the subspace $N(\hat{T}_1)$ is exactly equal to the Lie algebra of symplectic derivations, $\operatorname{Der}_{\omega}(\hat{T}) = \{D \in \operatorname{Der}(\hat{T}); D\omega = 0\}$. Kontsevich's "associative" Lie algebra [8] is a Lie subalgebra of $\operatorname{Der}_{\omega}(\hat{T})$. Let $\mathbb{Q}\hat{\pi}$ be the Goldman Lie algebra of the surface Σ [2]. We have a natural homomorphism of Lie algebras

$$\sigma: \mathbb{Q}\hat{\pi} \to \operatorname{Der}(\mathbb{Q}\pi).$$

In general, let M be a d-dimensional oriented C^{∞} manifold, and *a basepoint on M. Then we can construct a natural map $H_i(L(M \setminus \{*\})) \otimes H_j(\Omega(M,*)) \to H_{i+j+2-d}(\Omega(M,*))$ in a similar way to [3], where $\Omega(M,*) = \operatorname{Map}((S^1,0),(M,*))$ and $L(M \setminus \{*\}) = \operatorname{Map}(S^1, M \setminus \{*\})$. For any symplectic expansion θ , we define a map

$$-\lambda_{\theta}: \mathbb{Q}\hat{\pi} \to N(\widehat{T}_1) = \operatorname{Der}_{\omega}(\widehat{T}), \quad x \mapsto -N\theta(x).$$

2

Theorem 0.2. The diagram

where the bottom horizontal arrow means the derivation, commutes.

Let $\{\alpha_i, \beta_i\} \subset \pi$ be a symplectic generating system. The Dehn twist along α_1 satisfies $t_{\alpha_1}(\alpha_1) = \alpha_1$ and $t_{\alpha_1}(\beta_1) = \beta_1\alpha_1$. Hence the "logarithm" $\log(t_{\alpha_1})$ should satisfy $\log(t_{\alpha_1})(\beta_1) = \beta_1 \log \alpha_1$. On the other hand, we have $\sigma(\alpha_1^n)(\beta_1) = n\beta_1\alpha_1^n$ for any $n \ge 0$, so that $\sigma(f(\alpha_1))(\beta_1) = \beta_1\alpha_1f'(\alpha_1)$ for any formal power series f(x) in x - 1. If f(x) satisfies $xf'(x) = \log(x)$ and f(1) = 0, then it must be $\frac{1}{2}(\log x)^2$. This is the reason why the logarithm of $T^{\theta}(t_C)$ equals $-L^{\theta}(C) = -N\theta(\frac{1}{2}(\log x)^2)$, where C is represented by $x \in \pi$.

The map $-\lambda_{\theta} : \mathbb{Q}\hat{\pi} \to \text{Der}_{\omega}(\widehat{T})$ is a Lie algebra homomorphism. Using this homomorphism, we can compute the center of the Goldman Lie algebra of an oriented surface of infinite genus [7].

References

- 1. A. J. Bene, N. Kawazumi, Y. Kuno and R. C. Penner, in preparation.
- W. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface groups representations, Invent. math. 85 (1986) 263–302.
- 3. M. Chas and D. Sullivan, String topology, preprint, arXiv: math.GT/9911159.
- N. Kawazumi, Cohomological aspects of Magnus expansions, preprint, arXiv: math.GT/0505497.
- <u>Harmonic Magnus Expansion on the Universal Family of Riemann</u> Surfaces, preprint, arXiv: math.GT/0603158.
- N. Kawazumi and Y. Kuno, *The logarithms of Dehn twists*, preprint, arXiv: 1008.5017.
- 7. _____, The Chas-Sullivan conjecture for a surface of infinite genus, preprint, arXiv: 1009.4985.
- M. Kontsevich, Formal (non)-commutative symplectic geometry, in: The Gel'fand Mathematical Seminars, 1990-1992, Birkhäuser, Boston, 1993, 173– 187.
- Y. Kuno, A combinatorial construction of symplectic expansions, preprint, arXiv: 1009.2219.
- 10. G. Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, preprint, arXiv: 0809.4629.

Department of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan

E-mail address: kawazumi@ms.u-tokyo.ac.jp