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Introduction

This article grew out of an attempt to understand analytic aspect of
Fefferman’s invariant theory [F3] of the Bergman kernel on the diagonal of
Ω×Ω for strictly pseudoconvex domains Ω in Cn with smooth (C∞ or real
analytic) boundary. The framework of his invariant theory applies equally
to the Szegö kernel if the surface element on ∂Ω is appropriately chosen,
while the Szegö kernel is regarded as the reproducing kernel of a Hilbert
space of holomorphic functions in Ω which belong to the L2 Sobolev space
of order 1/2. This fact is our starting point. For each s ∈ R, we first
globally define the Sobolev-Bergman kernel Ks of order s/2 to be the
reproducing kernel of the Hilbert space Hs/2(Ω) of holomorphic functions
which belong to the L2 Sobolev space of order s/2, where the inner product
is specified arbitrarily.

In order to put the Sobolev-Bergman kernel Ks in the invariant theory,
it is necessary to assume that Ks has two crucial properties which are
satisfied by the Bergman kernel KB = KB

Ω and the (invariantly defined)
Szegö kernel KS = KS

Ω. The first one is the transformation law of weight
w ∈ Z under biholomorphic mappings Φ: Ω1 → Ω2

KΩ1 = (KΩ2 ◦ Φ) | det Φ′|2w/(n+1) (0.1)

for a kernel (or a domain functional) K = KΩ, where det Φ′ denotes the
holomorphic Jacobian of Φ. If we write w = wTL(K) for w in (0.1), then
wTL(KB) = n + 1 and wTL(KS) = n. We require the inner product of
Hs/2(Ω) to satisfy

wTL(Ks) = w(s) with w(s) = n + 1− s ∈ Z,

and say that such Ks is weakly invariant. However, we don’t know how
to define such an inner product for s > 0, except for the Szegö kernel case
s = 1. So far, we could have defined weakly invariant Sobolev-Bergman
kernels Ks = Ks

Ω only for s = 1 and s ≤ 0 real (see Section 1). This is
a motivation to abandon the global definition via the inner product and
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consider the local kernels regarded as singularities (i.e. kernels modulo
smooth error) near a boundary point of reference.

The second crucial property satisfied by the Bergman kernel and the
Szegö kernel is that the singularity is simple holonomic, that is,

K =
ϕ

rw
+ ψ log r (w > 0), K = ϕ r−w log r (w ≤ 0) (0.2)

with w ∈ Z, where r is a (smooth) defining function of ∂Ω such that
r > 0 in Ω, and ϕ, ψ are smooth functions on Ω (near ∂Ω) such that ϕ
does not vanish on ∂Ω. We have w = wTL(K) for w in (0.2) if K = KB,
KS. Furthermore, the singularities of KB and KS are localizable to a
neighborhood of a reference boundary point. In fact, these are obtained
by patching locally defined singularities along the boundary ∂Ω. We thus
require w = w(s) in defining local Sobolev-Bergman kernels Ks = Ks

loc

with simple holonomic singularity. If in addition Ks is weakly invariant, we
say that Ks is strongly invariant. This property is necessary in discussing
the invariant theory of Ks.

In order to define local Sobolev-Bergman kernels, we first assume for
simplicity that the (local) defining function r of ∂Ω is real analytic, so
that we may write r = r(z, z). We then use Kashiwara’s characteriza-
tion of the local Bergman kernel KB = KB

loc(z, z). Kashiwara [Kas] wrote
down a system of microdifferential equations characterizing KB up to a
constant multiple by using another system satisfied by log r. According to
Boutet de Monvel [BM1]–[BM3], one can in fact define a transformation
log r 7→ KB, where the singularity log r represents the domain Ω locally.
In other words, KB is a local domain functional via log r. On the other
hand, Sato’s hyperfunction theory asserts that any simple holonomic sin-
gularity K̂, with respect to r which is fixed, is written as K̂ = A log r,
where A = A[K̂] is a specific linear transformation (a microdifferential
operator of finite order) which is holomorphic in z. Then K = A∗−1KB

is again a simple holonomic singularity, where A∗ denotes the formal ad-
joint of A defined formally by integration by parts without taking the
complex conjugate. The mapping K̂ 7→ K is consistent with Kashiwara’s
transformation log r 7→ KB, and the Szegö kernel K = KS is obtained by
choosing K̂ to be a constant multiple of 1/r with an appropriate choice of
r which defines ∂Ω locally. Taking account of this fact, we first define in
Subsection 2.1 the local Sobolev-Bergman kernels Ks = Ks

loc with respect
to any (local) defining function r by taking

K̂s = r−s (s > 0), K̂s = r−s log r (s ≤ 0)

for s ∈ Z, where normalization constants are ignored. We then define in
Subsection 2.3 the (invariant) local Sobolev-Bergman kernel Ks

loc = Ks
Ω
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for each s ∈ Z as a local domain functional by requiring that the defining
functions r = rΩ are so chosen that Ks

loc is strongly invariant. Here, the
word “strongly” can be omitted, because the strong invariance of Ks

loc is
reduced to the weak one, the (local) transformation law. In case ∂Ω is not
real analytic but C∞, the local Sobolev-Bergman kernels are regarded as
formal singularities (see Section 3).

As we prove in Subsection 2.2, the invariance of Ks = Ks
loc is equiv-

alent to that of K̂s, which obviously comes from the transformation law
for the defining function r = rΩ as a local domain functional. However,
the situation is somewhat complicated because the transformation law for
r holds only approximately. In [F2], Fefferman constructed r such that
wTL(r) = −1 modulo O(rn+2). This error estimate is optimal (Theorem
2). Consequently, the local Sobolev-Bergman kernel Ks

loc which by defini-
tion is invariant exists if and only if 0 ≤ s ≤ n+1 (Theorem 1). These two
theorems are the main results of this paper stated in Subsection 2.3. The-
orem 1 suggests that, for 0 > s ∈ Z, weakly invariant Sobolev-Bergman
kernels Ks which are globally defined do not have simple holonomic sin-
gularities, though we don’t know anything about the singularities in this
case.

We emphasize that the invariance of Ks
loc for 0 ≤ s ≤ n + 1 holds

without error, though that of the best possible r is approximate with
error of O(rn+2). More precisely, the invariance of Ks

loc follows from that
of r modulo O(rs+1) for 0 ≤ s ≤ n + 1.

For the local Sobolev-Bergman kernel Ks with 0 ≤ s ≤ n + 1, we
can apply Fefferman’s invariant theory to get an approximately invariant
asymptotic expansion similar to those for KB and KS. Though there are
some technical difficulties to be examined such as the polynomial depen-
dence on Moser’s normal form coefficients A = (A`

αβ
), we can verify these

by inspecting the construction (see Section 4). In fact, the polynomial
dependence on A = (A`

αβ
) is taken into account in the definition of Ks

loc.

All abstract results as in Fefferman [F3] and Bailey-Eastwood-Graham
[BEG] for KB are evidently valid as well for Ks, whereas explicit results
for Ks such as the determination of universal constants in Graham [G1]
and [HKN1], [HKN2] for KB and KS are obtained by computer-aided
calculation. These results are stated in Sections 4 with the method of
computation explained in Appendix B.

The first author has recently obtained in [Hi] an invariant asymptotic
expansion of the Bergman kernel without error via a special family of
defining functions r of ∂Ω, where the family is parametrized formally by
C∞(∂Ω) and the transformation law is made to hold within the family.
The method applies in getting similar expansions of the Szegö kernel and
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the local Sobolev-Bergman kernels in the present paper as well. Though
the present paper discusses Fefferman’s approach so that the best possible
defining functions r has the ambiguity O(rn+2), the proof of the optimality
of this error estimate (i.e. Theorem 2) is done here by using the theory in
[Hi] (see Section 5).

1. Globally defined Sobolev-Bergman kernels

Let Ω be a bounded strictly pseudoconvex domain in Cn with smooth
boundary. For s ∈ R, we denote by H

s/2
top (Ω) the topological vector space

consisting of holomorphic functions in Ω which are contained in the L2

Sobolev space of order s/2. When an inner product ( · , · )s/2 is specified,

we write H
s/2
top (Ω) as Hs/2(Ω). Then Hs/2(Ω) is a Hilbert space which

admits the reproducing kernel Ks(z, w) for z, w ∈ Ω defined by

Ks(z, w) =
∑

j

hj(z) hj(w),

where {hj}j is an arbitrary complete orthonormal system of Hs/2(Ω). We
set Ks(z) = Ks(z, z).

Definition 1.1. The reproducing kernel Ks(z, w), or rather Ks(z), is called
the Sobolev-Bergman kernel associated with Hs/2(Ω).

The simplest case is s = 0. If ( · , · )0 is the standard L2 inner product

(h1, h2)0 =
∫

Ω
h1(z) h2(z) dV (z), dV =

n∧

j=1

dzj ∧ dzj

−2i
,

then K0 = KB, where KB denotes the Bergman kernel. When we wish to
emphasize the dependence on the domain Ω, we write KB = KB

Ω . In fact,
the Bergman kernel is a domain functional, and it is elementary that if
Φ: Ω1 → Ω2 is biholomorphic then

KB
Ω1

(z) = KB
Ω2

(Φ(z)) | det Φ′(z)|2,

where Φ′ = ∂Φ/∂z and thus det Φ′ is the holomorphic Jacobian of Φ. More
generally, we follow Fefferman and make the following:

Definition 1.2. If a domain functional K = KΩ satisfies

KΩ1(z) = KΩ2(Φ(z)) | det Φ′(z)|2w/(n+1) (1.1)

whenever Φ: Ω1 → Ω2 is biholomorphic, then we say that K satisfies the
transformation law of weight w, and write wTL(K) = w.
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Another well-known example is the Szegö kernel K1. Here, we may
choose an inner product on H1/2(Ω) to be given by

(h1, h2)1/2 =
∫

∂Ω
h1(z) h2(z) σ(z),

where σ is a surface element on ∂Ω. Thus H1/2(Ω) depends on σ. It is
possible to choose σ in such a way that K1 satisfies the transformation
law, as follows.

Let us take a smooth positive defining function ρ ∈ C∞(Ω), and thus

Ω = {z ∈ Cn; ρ(z) > 0}, dρ(z) 6= 0 for z ∈ ∂Ω.

Let J [ · ] denote the Levi determinant or the (complex) Monge-Ampère
operator defined by

J [ρ] = (−1)n det

(
ρ ∂ρ/∂zk

∂ρ/∂zj ∂2ρ/∂zj∂zk

)
(j, k = 1, . . . , n). (1.2)

We then have wTL(K1) = n, provided the surface element σ is subject to
the normalization

σ ∧ dρ = J [ρ]1/(n+1) dV on ∂Ω.

In this case, we write K1 as KS and call it the invariant Szegö kernel or
just the Szegö kernel. Thus

wTL(KB) = n + 1, wTL(KS) = n.

These numbers coincide with the magnitude of the singularities. In fact,
according to a celebrated theorem of Fefferman [F1] (see also Boutet de
Monvel and Sjöstrand [BS]), there exist functions ϕB = ϕB[ρ] and ψB =
ψB[ρ] in C∞(Ω) such that

πn

n!
KB =

ϕB

ρn+1
+ ψB log ρ,

(
ϕB − J [ρ]

)∣∣∣
∂Ω

= 0. (1.3)

Similarly, there exist ϕS = ϕS[ρ] and ψS = ψS[ρ] in C∞(Ω) such that

πn

(n− 1)!
KS =

ϕS

ρn
+ ψS log ρ,

(
ϕS − J [ρ]n/(n+1)

)∣∣∣∣
∂Ω

= 0. (1.4)

(Note that J [ρ] > 0 on ∂Ω by the strict pseudoconvexity.)
We are interested in the Sobolev-Bergman kernel Ks satisfying

wTL(Ks) = w(s), where w(s) = n + 1− s ∈ Z. (1.5)
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It will be also natural to require the existence of ϕs, ψs ∈ C∞(Ω) such
that

cSB
s,n Ks =





ϕs ρ−w(s) + ψs log ρ for w(s) > 0,

ϕs ρ−w(s) log ρ for w(s) ≤ 0,
(1.6)

where cSB
s,n 6= 0 are normalization constants so chosen that

(
ϕs − J [ρ]w(s)/(n+1)

)∣∣∣∣
∂Ω

= 0.

Definition 1.3. A Sobolev-Bergman kernel Ks is said to be weakly invari-
ant if the condition (1.5) holds. If in addition the condition (1.6) holds,
then Ks is said to be invariant.

If the conditions (1.5) and (1.6) are not taken into account, it is easy to
give examples of Sobolev-Bergman kernels Ks for any s ∈ R, by specifying
an inner product ( · , · )s/2. For instance, if s/2 > 0 is an integer, then we
may take, with the usual (commutative) multi-index notation,

(h1, h2)s/2 =
∫

Ω

∑

|α|+|β|≤s/2

(
∂α

z ∂β
z h1

)(
∂α

z ∂β
z h2

)
dV, (1.7)

though the condition (1.5) breaks down.

Remark 1. In case Ω is a ball in Cn and Hs/2(Ω) is specified by the inner
product (1.7) with s/2 ∈ N0, Boas [Bo] showed that the reproducing kernel
Ks takes the form (1.6), where the logarithmic terms appear even for
0 < s < n. It is easy to define an inner product of Hs(Ω), for each domain
Ω which is biholomorphic to a ball, in such a way that the transformation
law (1.1) with w = w(s) holds for the reproducing kernels K = Ks of such
domains. However, such reproducing kernels are not defined for domains
which are not biholomorphic to a ball. In other words, a domain functional
Ks = Ks

Ω is not determined as a weakly invariant Sobolev-Bergman kernel.

In case s < 0 is a real number, we can define a weakly invariant
Sobolev-Bergman kernel as follows. An inner product on H

s/2
top (Ω) is given

by

(h1, h2)s/2 =
∫

Ω
h1(z) h2(z) ρ(z)−s dV (z)

for any smooth defining function ρ > 0 of Ω. Moreover, we may replace ρ
by any continuous function u > 0 of the same magnitude as ρ to have

(h1, h2)s/2 =
∫

Ω
h1(z) h2(z) u(z)−s dV (z). (1.8)
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We have:

Proposition 1.1. Let 0 > s ∈ R. If u = uΩ satisfies

wTL(u) = −1, 0 < inf u/ρ ≤ sup u/ρ < +∞, (1.9)

then the Sobolev-Bergman kernel Ks defined by (1.8) is weakly invariant.

Proof. If Φ: Ω1 → Ω2 is biholomorphic, then

u1 = (u2 ◦ Φ) | det Φ′|−2/(n+1), u` = uΩ`
(` = 1, 2).

It then follows that an isometry Φ∗ : Hs/2(Ω2) → Hs/2(Ω1) is given by

Φ∗h̃ = (h̃ ◦ Φ)(det Φ′)w(s)/(n+1).

If {h̃j} is a complete orthonormal system of Hs/2(Ω2), then a complete

orthonormal system {hj} of Hs/2(Ω1) is defined by hj = Φ∗h̃j. Thus, the
transformation law (1.1) for Ks = Ks

Ω follows from

∑

j

|hj|2 =
∑

j

|h̃j ◦ Φ|2 | det Φ′|2w(s)/(n+1).

¤

Examples of u = uΩ satisfying (1.9) are given by

uB =
(
cSB
n,n KB

)−1/(n+1)

or uS =
(
cSB
n−1,n KS

)−1/n

.

Another important example is given by the solution u = uMA of the bound-
ary value problem

J [u] = 1 and u > 0 in Ω; u = 0 on ∂Ω, (1.10)

The unique existence of a solution of (1.10) in C∞(Ω) ∩ Cn+3/2−ε(Ω) was
proved by Cheng and Yau [CY]. Thus the first relation in (1.9) follows
from the fact (see [F2]) that if Φ: Ω1 → Ω2 is biholomorphic then

J [u1] = J [u2] ◦ Φ, where u1 = (u2 ◦ Φ) · | det Φ′|−2/(n+1).

The second relation in (1.9) follows from the asymptotic expansion due to
Lee and Melrose [LM]:

uMA ∼ ρ
∞∑

k=0

ηk · (ρn+1 log ρ)k, ηk ∈ C∞(Ω)
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where η0|∂Ω > 0. Thus u = uMA satisfies (1.9).
If Ω is the unit ball Ωball, then

uB
Ωball

(z) = KS
Ωball

(z) = uMA
Ωball

= 1− |z|2.

In contrast to Boas’ result in Remark 1, we have:

Proposition 1.2. Let Ks = Ks
Ω be a weakly invariant Sobolev-Bergman

kernel of order s/2, 0 > s ∈ R, defined by the inner product (1.8) with
either one of u = uB, uS or uMA. Then

Ks
Ωball

(z) =
Γ(w(s))

πn Γ(1− s)

1

(1− |z|2)w(s)
.

Proof. For n = 1, the result follows by using the fact that monomials form
a complete orthogonal system of Hs/2(Ωball). For n ≥ 2, we consider

Ks
aux(z) =

∑

α∈Nn
0

|hα(z)|2, hα(z) :=
zα

‖zα‖s/2

,

where ‖ · ‖s/2 is the norm corresponding to the inner product ( · , · )s/2. It
suffices to show that

Ks
aux(z) =

Γ(w(s))

πn Γ(1− s)

1

(1− |z|2)w(s)
, Ks

aux(z) = Ks
Ωball

(z).

The first equality is obtained by direct computation using the result for
n = 1. The second one is equivalent to the completeness of the orthonor-
mal system {hα}, and the proof of this fact is done by noting that

Ks
Ωball

(z) = sup
{
|h(z)|2

/
‖h‖2

s/2; 0 6= h ∈ Hs/2(Ωball)
}

,

just as in the proof for s = 0 given by Hörmander [Hö]. ¤

2. Definition of local Sobolev-Bergman kernels

In this section, we consider the local Sobolev-Bergman kernel of order
s/2 for s ∈ Z and the invariance in the sense of (1.5). We begin with the
motivation because the definition is somewhat technical.

An important fact is that the singularities of the Bergman kernel KB(z)
and the (invariant) Szegö kernel KS(z) as in (1.3) and (1.4) can be localized
to any boundary point, say p ∈ ∂Ω. That is, if Ω1 ∩ U = Ω2 ∩ U for a
neighborhood U ⊂ Cn of p, then KΩ1 −KΩ2 for K = KB or KS is smooth
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near p ∈ ∂Ω, where smooth means C∞ or Cω (real analytic) in accordance
with the regularity of ∂Ω near p. Furthermore, one can define local kernels
Kloc = KB

loc and KS
loc by requiring the following three conditions:

(i) Kloc(z, w) is holomorphic in z and anti-holomorphic in w for z, w ∈
Ω ∩ U . Two local kernels Kloc and K̃loc are identified when the difference
is smooth in Cn near p. Thus U can be shrunk arbitrarily.

(ii) Kloc = KB
loc and KS

loc have singularities of the form (1.3) and (1.4),
respectively, where ϕ = ϕB, ϕS and ψ = ψB, ψS are smooth in Ω ∩ U .

(iii) Reproducing properties modulo smooth errors hold, that is,
∫

Ω∩U
KB

loc(z, w) f1(w) dV (w)− f1(z) ∼ 0,

∫

∂Ω∩U
KS

loc(z, w) f2(w) σ(w)− f2(z) ∼ 0,

for holomorphic functions f1 and f2 in U0, where U0 ⊂ Cn is an open set
satisfying p ∈ U b U0, and each f2 is regarded as the boundary value. In
case ∂Ω is C∞ near p, f1(z) and f2(z) are required to be of polynomial
growth in 1/dist (z, ∂Ω). (If ∂Ω is Cω near p, then no restriction on f1

and f2 is necessary, provided the pairings are interpreted in the sense of
hyperfunctions, cf. Kaneko [Kan].)

The local kernels KB
loc and KS

loc are uniquely determined by the require-
ments (i)–(iii). We wish to define the local Sobolev-Bergman kernel Ks

loc

for s ∈ N in a similar way. Our main concern is the invariance in the sense
of (1.5) under local biholomorphic mappings. However, the condition (iii)
uses the inner products, and we don’t know how to define ( · , · )s for s ∈ N
such that the Sobolev-Bergman kernel Ks is invariant. We thus abandon
(iii) and instead adopt Kashiwara’s characterization of the local Bergman
kernel KB

loc, a method which applies equally to the local Szegö kernel KS
loc.

In this section, we assume that ∂Ω is Cω near p. We are only concerned
with local kernels Kloc(z, w) defined near (z, w) = (p, p), and thus the
subscript loc will be omitted.

2.1. Kashiwara’s transformation. We fix a local defining function r
of Ω near p ∈ ∂Ω and assume for a moment that r is real analytic. Then
r has a holomorphic extension to a neighborhood of M ×M in Cn × Cn,
where M ⊂ ∂Ω is a neighborhood of p (or more precisely, a germ of ∂Ω
at p). Denoting it again by r, we set, for m ∈ Z,

K̂m[r] =





1

m!
rm log r for m ≥ 0,

(−1)m+1(−m− 1)!
1

r−m
for m < 0,
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and consider singularities of the form

K =





ϕK̂−w[r] + ψK̂0[r] if w > 0,

ϕK̂−w[r] if w ≤ 0,

where ϕ an ψ are holomorphic in (z, z) near M×M for some M . We denote
by C×p the totality of K such that ϕ 6= 0 near M×M . By [SKK], if K̂ ∈ C×p
then, for any holomorphic microdifferential operator P = P (z, ∂z), there
exists an antiholomorphic microdifferential operator Q = Q(z, ∂z) such
that PK̂ = QK̂. Furthermore, if Pj = Pj(z, ∂z) for j = 1, . . . , 2n are

chosen independently then K̂ is determined up to a multiplicative constant
by

Pj(z, ∂z)K̂(z, z) = Qj(z, ∂z)K̂(z, z) for j = 1, . . . , 2n. (2.1)

(A more rigorous description of [SKK] will be given in Appendix A.) Let
us consider another system of microdifferential equations for K ∈ C×p

P ∗
j (z, ∂z)K(z, z) = Q∗

j(z, ∂z)K(z, z) for j = 1, . . . , 2n, (2.2)

where P ∗
j , Q∗

j are formal adjoints of Pj, Qj, respectively. The independence
of Pj implies that of P ∗

j , so that the solution of (2.2), if it exists, is unique
up to a multiplicative constant. Now

Kashiwara’s theorem ([Kas]). If K̂ = K̂0[r] = log r in (2.1) then (2.2)
is satisfied by the local Bergman kernel K = KB.

By [SKK], if K̂ ∈ C×p then there exists a unique invertible holomorphic

microdifferential operator A[K̂] such that

K̂(z, z) = A(z, ∂z)K̂0(z, z) with A = A[K̂], K̂0 = K̂0[r]. (2.3)

Thus, Kashiwara’s theorem yields

Lemma 2.1. If (2.1) and (2.3) hold for K̂ ∈ C×p , then (2.2) is satisfied by

K(z, z) = A∗(z, ∂z)
−1KB(z, z).

Proof. Since A is a holomorphic operator and thus QjA = AQj, it follows

that PjAK̂0 = QjAK̂0 = AQjK̂0, that is, A−1PjAK̂0 = QjK̂0, so that
Kashiwara’s theorem yields Q∗

jK
B = A∗P ∗

j A∗−1KB = A∗P ∗
j K. Using

A∗−1Q∗
j = Q∗

jA
∗−1, we get P ∗

j K = A∗−1Q∗
jK

B = Q∗
jK. ¤
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Since A[KB]∗ = A[KB], it follows that

C×p 3 K̂ 7→ K ∈ C×p (2.4)

given by Lemma 2.1 is an involution. We refer to it as Kashiwara’s trans-
formation.

Definition 2.1. Let r be a real analytic local defining function of Ω near
p ∈ ∂Ω. For s ∈ Z, we define Ks[r] = K by K̂ = K̂−s[r] in (2.4) and call
Ks[r] the local Sobolev-Bergman kernel of order s/2 with respect to r.

By the definition via Kashiwara’s theorem, we have K0[r] =
(const.) KB independently of the choice of r. We also have K1[r] =
(const.) KS if J [r] = 1 on ∂Ω.

2.2. Biholomorphic transformation law. We wish to define a local
Sobolev-Bergman kernel of Sobolev order s/2 for s ∈ Z as a local domain
functional Ks = (Ks

Ω)Ω near the reference points pΩ ∈ ∂Ω, say pΩ = 0 ∈
Cn, where we continue to assume that ∂Ω is real analytic near 0. In the
definition, we require three conditions of which the first two are:

Condition SB1. Each Ks
Ω is of the form Ks

Ω = Ks[rΩ], where rΩ is a
local defining function of Ω near 0 ∈ Cn. That is, Ks

Ω is the local Sobolev-
Bergman kernel with respect to rΩ.

Condition SB2. The family r = rΩ is so chosen that Ks = Ks
Ω satisfies

the transformation law of weight w(s)

Ks
Ω = (Ks

Ω̃
◦ Φ)| det Φ′|2w(s)/(n+1) with w(s) = n + 1− s. (2.5)

under local biholomorphic mappings Φ: Ω → Ω̃ defined near the origin
such that Φ(0) = 0.

The third condition is somewhat complicated, and the precise state-
ment is postponed to the next subsection. That condition is motivated by
the result of this subsection.

Assume Condition SB1. Then the validity of Condition SB2 depends
on the approximate transformation law of weight −1 for the family r =
(rΩ)Ω:

rΩ = (r
Ω̃
◦ Φ)| det Φ′|−2/(n+1) mod O(rN

Ω ), (2.6)

where O(rN
Ω ) stands for terms which are smoothly divisible by rN

Ω . In fact,
we have:

Proposition 2.1. Assume there exists N0 ∈ N such that r = rΩ satisfies
the transformation law (2.6) for N = N0 but not for N = N0 + 1. Then
the transformation law (2.5) is valid if and only if 0 ≤ s ≤ N0 − 1.
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This is consistent with the independence of KB and the dependence of
KS on r = (rΩ).

In the proof of Proposition 2.1, we need the following property of
Kashiwara’s transformation.

Lemma 2.2. Assume Condition SB1. Then KΩ = Ks
Ω satisfies (2.5) if

and only if K̂Ω satisfies

K̂Ω = (K̂
Ω̃
◦ Φ)| det Φ′|2s/(n+1). (2.7)

Proof. We shall show that (2.7) implies (2.5). The proof of the converse
is similar. What we have to show is that

K̂Ω = |f |2sΦ∗K̂
Ω̃

implies KΩ = |f |2w(s)Φ∗K
Ω̃
,

where f = (det Φ′)1/(n+1) and Φ∗ stands for the pull-back by Φ. Let us
abbreviate by writing AΩ = A[K̂Ω], and similarly for Ω̃ in place of Ω.
Then the assumption (2.7) is further written as

AΩ log rΩ = |f |2sΦ∗A
Ω̃
(Φ−1)∗Φ∗ log r

Ω̃
.

The right side is simplified by setting Ã = Φ∗A
Ω̃
(Φ−1)∗, using Φ∗ log r

Ω̃
=

log rΩ, and choosing a holomorphic microdifferential operator P = P (z, ∂z)
such that P log rΩ = f

s
log rΩ. Since Ã is a holomorphic operator, it

follows that

AΩ log rΩ = f sÃP log rΩ, so that AΩ = f sÃP

(see Appendix A). Using Φ∗A∗
Ω̃
(Φ−1)∗ = f−n−1Ã∗fn+1, we get

(A∗
Ω)−1 = fw(s)Φ∗(A∗

Ω̃
)−1(Φ−1)∗f−n−1(P ∗)−1,

where f−n−1 acts as a multiplication operator. We apply both sides to
KB

Ω . Noting that P ∗KB
Ω = f

s
KB

Ω , we have

(P ∗)−1KB
Ω = f

−s
KB

Ω = fn+1f
w(s)

Φ∗KB
Ω̃
.

Since f
w(s)

commutes with a holomorphic operator, it follows that

KΩ = |f |2w(s)Φ∗(A∗
Ω̃
)−1KB

Ω̃
= |f |2w(s)Φ∗K

Ω̃
,

which is the desired conclusion (2.5). ¤
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Proof of Proposition 2.1. Let us abbreviate by writing r̃ = r
Ω̃
◦ Φ and

f = (det Φ′)1/(n+1). In case s ≤ 0, (2.7) is written as

r−s
Ω log rΩ = r̃−s|f |2s/(n+1) log r̃.

For s = 0, this is always the case. For s < 0, this is valid if and only if
(2.6) holds for any positive integer m. In case s > 0, (2.7) is written as

r−s
Ω = r̃−s|f |2s/(n+1).

This is valid if and only if (2.6) holds for N ≥ s + 1. Thus the desired
result follows from Lemma 2.2. ¤

2.3. Definition of local Sobolev-Bergman kernel. We are in a
position to state a condition on the family r = (rΩ)Ω to be called Condition
SB3. This consists of the approximate transformation law (2.6) for m =
s+1 and the polynomial dependence on Moser’s normal form coefficients.

Recall that Moser’s normal form is a real hypersurface of the form

N(A) : ρA = 2u− |z′|2 −
∞∑

`=0

∑

|α|,|β|≥2

A`
αβ

z′α z′β v` = 0,

with normal coordinates z = (z′, zn) ∈ Cn−1 × C, u = Re zn, v = Im zn,
such that A = (A`

αβ
) is subject to the following conditions:

(N1) Each A`
pq = (A`

αβ
)|α|=p,|β|=q is a bisymmetric tensor of type (p, q)

on Cn−1. That is, α, β are ordered multi-indices such as α = α1 . . . αp,
1 ≤ αj ≤ n − 1, and A`

αβ
is unchanged under permutation of α and that

of β.

(N2) A`
αβ

is Hermitian symmetric, that is A`
αβ

= A`
βα.

(N3) trA`
22

= 0, (tr)2A`
23

= 0, (tr)3A`
33

= 0, where tr stands for the usual

tensorial trace taken with respect to δjk.

Some notation is in order. By N , we denote the totality of A = (A`
αβ

)

satisfying the conditions (N1)–(N3). We define N ω to be the set of A ∈ N
such that N(A) is real analytic. (In general, N(A) is a formal surface.)
The strictly pseudoconvex side ρA > 0 of N(A) is denoted by Ω(A), which
makes sense near the origin. We use the coordinates (z′, z′, ρA, v) for
functions on Ω ∪N(A).

We have assumed that each ∂Ω is real analytic near the origin, so
that we can place it locally in Moser’s normal form N(A) with A ∈ N ω.
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More precisely, there exists a local biholomorphic mapping ΦA such that
ΦA(Ω) = Ω(A) and ΦA(∂Ω) = N(A) locally. For rΩ, we set

rA = (rΩ ◦ Φ−1
A )| det Φ′

A|2/(n+1),

and consider the Taylor expansion about the origin

rA =
N−1∑

k=1

ck

(
z′, z′, v

)
ρk

A + O(ρN
A ). (2.8)

More precisely, we require that the family (rA)r∈Nω is well-defined in the
sense of (2.8). Now we pose:

Condition SB3. In case s > 0, the family r = (rΩ)Ω satisfies (2.6) for
N = s + 1. Furthermore, in (2.8) for N = s + 1, any coefficient of the
Taylor expansion of ck(z

′, z′, v) about the origin is a universal polynomial
in A ∈ N ω. In case s < 0, the requirements above hold for any N ∈ N.
In case s = 0, no requirement is imposed.

Definition 2.2. By a local Sobolev-Bergman kernel of order s/2, s ∈ Z, we
mean a local domain functional Ks = (Ks

Ω) satisfying Conditions SB1–3.

By virtue of Proposition 2.1, the existence of a local Sobolev-Bergman
kernel is reduced to that of a family of defining functions r = (rΩ)Ω satis-
fying Condition SB3. Our main result of this paper is:

Theorem 1. A local Sobolev-Bergman kernel of order s/2 (s ∈ Z) exists
if and only if 0 ≤ s ≤ n + 1.

The non-existence part of Theorem 1 is a consequence of:

Theorem 2. There does not exist a family of C∞ local defining functions
r = (rΩ) satisfying the requirements in Condition SB3 with N = n + 3.

The proof of Theorem 2 is given in Section 5. Let us observe that
Theorem 1 follows from Theorem 2. It suffices to show the existence of
r = (rΩ) satisfying Condition SB3 with N = n + 2 in place of N = s + 1.
But this has been done by Fefferman [F2]. He constructed rΩ satisfying
J [rΩ] = 1 + O(rn+1

Ω ) and (2.6) for N = n + 2. Specifically, one starts
from an arbitrary smooth local defining function ρ of Ω, and defines ρs for
s = 1, . . . , n + 1 successively by

ρ1 = J [ρ]−1/(n+1)ρ,
ρs

ρs−1

= 1 +
1− J [ρs−1]

cs

, cs = s(n + 2− s). (2.9)

Then J [ρs] = 1 + O(ρs), and ρs satisfies the approximate transformation
law (2.6) for N = s + 1. Thus, we may set rΩ = ρn+1. It is clear that rΩ
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is real analytic dependence on A ∈ N as in Condition SB3 is examined
if we locally place ∂Ω in normal form N(A) and start from ρ = ρA. In
fact, the universality of the polynomials in Condition SB3 follows from
the transformation law (2.6) for N = n + 2.

3. Local Sobolev-Bergman kernels (the C∞ case)

3.1. Polynomial dependence in the real analytic case. In order
to define local Sobolev-Bergman kernels in the C∞ category, we rewrite
Condition SB3 under Conditions SB1 and SB2. That is, we need to state
the polynomial dependence on Moser’s normal form coefficients A = (A`

αβ
)

more explicitly.
Let us first recall the notion of biweight on A`

αβ
for A = (A`

αβ
) ∈ N

defined by
w2(A

`
αβ

) = (|α|+ `− 1, |β|+ `− 1).

This comes from the transformation law under dilations

φλ(z
′, zn) = (λz′, |λ|2zn) for λ ∈ C∗.

The notion for polynomials in A to be of (homogeneous) biweight is defined
by

w2(P1(A)P2(A)) = w2(P1(A)) + w2(P2(A))

for monomials P1(A) and P2(A). If P (A) is a polynomial of biweight
(w′, w′′), we write

w2(P (A)) = (w′, w′′), wdil(P (A)) =
1

2
(w′ + w′′),

and call wdil(P (A)) the weight of P (A) with respect to dilations. Then,
a polynomial in A is of weight w with respect to dilations if and only if
it is a linear combination of polynomials of biweight (w′, w′′) such that
w′ + w′′ = 2w. We have no essential change if we replace N by N ω.

Let Ks = (Ks
Ω) be the local Sobolev-Bergman kernel of order s/2 in

Definition 2.2, so that each ∂Ω is real analytic near the reference point
assumed to be the origin 0 ∈ Cn. As in the previous section, we locally
place ∂Ω in normal form N(A), and write Ks = (Ks

A)A∈Nω , where each
Ks

A corresponds to Ω(A). In fact, (Ks
A) is a subfamily of (Ks

Ω), but there
is no loss of information via the transformation law

Ks
A = (Ks

Ω ◦ Φ−1
A )| det Φ′

A|−2w(s)/(n+1) (3.1)

for ΦA in Subsection 2.3. Note that (3.1) is consistent with (2.5). As in
(2.8), we have

Ks
A =

∞∑

m=0

∑

α,β,`

P `m
αβ

(A) z′α z′β v` K̂m−w(s)[ρA], (3.2)
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where P `m
αβ

(A) are universal polynomials in A ∈ N determined by Ks =

(Ks
A). Furthermore,

wdil(P `m
αβ

(A)) =
1

2
(|α|+ |β|) + ` + m. (3.3)

As before, we refer to the universality of the polynomials P `m
αβ

(A) in (3.2)

as the polynomial dependence of Ks = (Ks
Ω) on A. This follows from

Condition SB3 and the construction in Subsection 2.1. Here, a crucial
fact is the polynomial dependence of the local Bergman kernel K0 = KB

on A, a fact which has been examined in [HKN1].
Let us restrict ourselves to the half line z = γt for t > 0 small defined

by γt = (0, t/2) ∈ Cn−1 × C. Then (3.2) implies

Ks
A(γt) =

∞∑

m=0

Pm(A) K̂m−w(s)[t], (3.4)

where Pm(A) = P 0m
00

(A). Thus (3.3) yields

wdil(Pm(A)) = m. (3.5)

Since wdil(A`
αβ

) > 0, it follows from (3.5) that:

Lemma 3.1. Each polynomial Pm(A) in (3.4) depends only on A`
αβ

such

that wdil(A`
αβ

) ≤ m.

A crucial fact is the following.

Proposition 3.1. The expansion (3.4) determines Ks = (Ks
A).

Proof. We first take a small neighborhood M ⊂ ∂Ω of the origin. For
any q ∈ M fixed, we then place M about q in normal form N(A) with
some A ∈ N ω. By [CM], we may take the local biholomorphic mappings
Φq,A : M → N(A) with Φq,A(q) = 0 to depend on q ∈ M real analytically.
Setting

Ks
q,A = (Ks

Ω ◦ Φ−1
q,A)| det Φ′

q,A|−2w(s)/(n+1),

we have, as in (3.4),

Ks
q,A(γt) =

∞∑

m=0

Pm(A) K̂m−w(s)[t]. (3.6)

The point is that Pm(A) in (3.6) are independent of q ∈ M . This fact
follows from the universality of P `m

αβ
(A) in (3.2). The expansion (3.2)

about the origin is recovered from (3.6) by varying q ∈ M . Thus (3.4)
determines (3.2). ¤
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3.2. Definition of local Sobolev-Bergman kernels in the C∞ cat-
egory. Let us define local Sobolev-Bergman kernels Ks = (Ks

Ω) near
0 ∈ ∂Ω in case each ∂Ω is merely C∞. We regard each Ks

Ω as a formal
singularity. In other words, we ignore the difference by flat functions. As
before, it suffices to specify Ks = (Ks

A)A∈N given by the transformation
law (3.1). This is done by real analytic approximation. More precisely, we
first truncate A = (A`

αβ
) ∈ N by neglecting A`

αβ
such that wdil(A`

αβ
) > N

for N ∈ N large, and denote the results by AN . Then N(AN) are alge-
braic real hypersurfaces, for which we can consider an expansion of the
form (3.2). By Proposition 3.1, this expansion is determined by an ex-
pansion of the form (3.4). In this new expansion, the coefficients Pm(A)
for m ≤ N are determined by AN , a fact which follows from Lemma 3.1.
In other words, these Pm(A) are unchanged if AN are replaced by AN+1.
Consequently, we have the expansions (3.4) and (3.2) for any A ∈ N even
when A 6∈ N ω. Therefore, Ks = (Ks

Ω) for ∂Ω ∈ C∞ near 0 ∈ Cn is
well-defined.

Remark 2. Let s ∈ Z and s 6∈ [0, n + 1]. Then by Theorem 2, there does
not exist a local Sobolev-Bergman kernel of order s/2. Nevertheless, we
can define a similar local domain functional Ks = (Ks

Ω) with ambiguity.
We require Ks = (Ks

Ω) to satisfy Conditions SB1–3, but the exact trans-
formation law (2.5) in Condition SB2 is replaced by an approximate one.
The existence of Ks = (Ks

Ω) in the real analytic category is proved as in
the exact kernels case s ∈ [0, n + 1], though we have to be more careful in
inspecting the construction in Subsection 2.1. The ambiguity of K comes
from that of K̂ via that of A(z, ∂z). The definition of Ks = (Ks

Ω) in the
C∞ category is also similar to that in the exact kernels case s ∈ [0, n + 1]
in the previous subsection. We have (3.1) if each Ks

Ω is regarded as an
equivalence class with respect to the ambiguity. For the approximate ker-
nels as above, one can develop Fefferman’s invariant theory as in the next
section.

4. Invariant expansions of local Sobolev-Bergman kernels

4.1. Ambient metric construction. Let Ks = (Ks
Ω) be the local

Sobolev-Bergman kernel of order s/2 in the C∞ category, so that s ∈ Z
satisfies 0 ≤ s ≤ n + 1. As before, we set w(s) = n + 1− s. Let r = (rΩ)
be a family of C∞ local defining functions satisfying Condition SB3 with
N = n+2 in place of N = s+1. It has been known for s = 0, 1 (that is, for
the Bergman kernel and the Szegö kernel) that Ks admits an expansion
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of the form

Ks
Ω =

n∑

m=0

W s
m[rΩ] K̂m−w(s)[rΩ] mod O(K̂s[rΩ]), (4.1)

where W s
m = W s

m[rΩ] are Weyl functionals of weight m given by the ambi-
ent metric construction (cf. [F3], [BEG], [HKN1], [Hi]). Terminology will
be reviewed below in this subsection (Definitions 4.1 and 4.2). If n = 2
and s = 0, 1 then (4.1) is refined as follows (cf. [G2], [HKN1], [HKN2]):

Ks
Ω =

5∑

m=0

W s
m[rΩ] K̂m−w(s)[rΩ] mod O(K̂s+3[rΩ]), (4.2)

where W s
m = W s

m[rΩ] (m 6= 3) are Weyl-Fefferman functionals of weight
m. Here, the case m = 3 is exceptional and we explain it at the end of
this subsection. The proof of these facts yields the following:

Proposition 4.1. An expansion of the form (4.1) holds in general for
0 ≤ s ≤ n + 1.

Proposition 4.2. An expansion of the form (4.2) for n = 2 holds in
general for 0 ≤ s ≤ 3.

In fact, we have defined the local Sobolev-Bergman kernel in such a
way that Propositions 4.1 and 4.2 are obvious. In order to explain it,
we begin by recalling the ambient metric construction. For simplicity of
notation, we drop the subscript Ω in rΩ and write Ks[r] for Ks

Ω. Though
our description below looks global near ∂Ω, it is obvious as before how to
localize or formalize to a neighborhood of a boundary point of reference.

The ambient metric g = g[r] is defined by the potential r#(z0, z) =
|z0|2r(z) on C∗ × Ω, where z0 ∈ C∗ = C \ {0} is an extra variable. That
is, g is a Lorentz-Kähler metric in a neighborhood of C∗ × ∂Ω, inside Ω.
Specifically,

g =
n∑

j,k=0

gjk dzjdzk =
n∑

j,k=0

∂2r#

∂zj∂zk

dzjdzk.

Denoting by R = R[r] the curvature tensor of g, we consider successive co-
variant derivatives R(p,q) = ∇q−2∇p−2R. Regarding components of R(p,q)

as independent variables, we manufacture complete contractions, with re-
spect to g, of the form

W# = contr
(
R(p1,q1) ⊗ · · · ⊗ R(pm,qm)

)
, (4.3)



Local Sobolev-Bergman kernels 19

where
∑

p` =
∑

q` = 2(m+w), the definition of w called the weight of W#.
By a Weyl polynomial W# of weight w, we mean a linear combination of
complete contractions of the form (4.3) of weight w. Here, W# is regarded
as a polynomial in components of R(p,q) for all p, q ≥ 2.

Given a Weyl polynomial W# of weight w, we now regard it as a
functional of r and write W# = W#[r]. Setting W [r] = W#[r]|z0=1, we
have

W#[r](z0, z) = |z0|2wW [r](z).

Using the terminology in [HKN2], we pose:

Definition 4.1. W = W [r] is called a Weyl functional of weight w.

If W = W [r] is a Weyl functional of weight w, then the following
transformation law holds under biholomorphic mappings Φ : Ω1 → Ω2

W [r1] = (W [r2] ◦ Φ)| det Φ′|2w/(n+1), (4.4)

provided rj are defining functions of Ωj, subject to the restriction at the
beginning of this section, such that r1 = (r2 ◦ Φ)| det Φ′|−2/(n+1). Fur-
thermore, (4.4) holds modulo O(rn+1−w), without assuming the relation
between r1 and r2. Consequently, it follows from the construction that if
w ≤ n then the boundary value of W [r] is a CR invariant of weight w.
This is a consequence of the polynomial dependence of W [r] on A ∈ N in
the sense as before.

Definition 4.2 (cf. [HKN2]). Let n = 2. We say that a Weyl functional
W = W [r] of weight w is a Weyl-Fefferman functional if W [r] modulo
O(r6−w) is independent of the choice of r.

If n = 2 and W = W [r] is a Weyl-Fefferman functional of weight w,
then (4.4) holds modulo O(r6−w). Hence, if w ≤ 5 then the boundary
value of W [r] is a CR invariant of weight w.

By a CR invariant of weight w, we mean a polynomial P (A) in A ∈ N
satisfying the transformation law

P (A) = P (Ã)| det Φ′(0)|2w/(n+1)

under any local biholomorphic mapping Φ: N(A) → N(Ã) such that
Φ(0) = 0. We denote the totality of these P (A) by ICR

w . Any CR in-
variant can be regarded as a smooth function on ∂Ω. Propositions 4.1
and 4.2 are consequences of the following fact, except for W s

3 [rΩ] in (4.2).

Proposition 4.3. If n ≥ 3 and w ≤ n, then any CR invariant of weight
w is realized by the boundary value of a Weyl functional of weight w. If
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n = 2, w ≤ 5 and w 6= 3, then any CR invariant of weight w is realized
by the boundary value of a Weyl-Fefferman functional of weight w.

For the proof, see [BEG] and [HKN2].

Remark 3. Let us say that a Weyl functional is linear (resp. nonlinear) if
the corresponding Weyl polynomial is linear (resp. nonlinear).

(1◦) Let n = 2 and w ≤ 5. Then, any nonlinear Weyl functional of
weight w is a Weyl-Fefferman functional and any linear Weyl-Fefferman
functional of weight w is trivial. Now let W 6= 0 be a linear Weyl functional
of weight w. If w ≤ 2 then the boundary value of W is zero, whereas if w =
3 then the boundary value of W is nonzero and gives rise to a CR invariant.
The vector space of CR invariants of weight 3 is one dimensional, and thus
a base is realized by the boundary value of a linear Weyl functional, though
the ambiguity estimate is too rough. (Cf. [HKN2] for the detail.)

(2◦) Let n ≥ 3 and w ≤ n+1. It is plausible that any Weyl functional of
weight w has the ambiguity modulo O(rn+2−w) and that any CR invariant
of weight w is realized by the boundary value of a Weyl functional of
weight w. If w ≤ n then any linear Weyl functional of weight w is trivial
(cf. [F3]). It is desirable to define the notion of Weyl-Fefferman functionals
as in the case of n = 2 by the optimal ambiguity estimate for nonlinear
Weyl functionals.

(3◦) According to the theory developed in [Hi] and roughly explained
in the next section, the Weyl functionals Ww = Ww[r] of arbitrary weight
w make sense as functionals of a special family of defining functions r,
where the ambiguity of r is measured by a parameter and its effect on
Ww = Ww[r] is taken into account. In this sense, Propositions 4.1 and 4.2
can be refined in such a way that (4.1) and (4.2) are infinite asymptotic
series. Here, we don’t need a refinement of Proposition 4.3, which is stated
in Subsection 5.3.

We conclude this subsection by explaining what is W s
3 [r] in (4.3), where

the subscript Ω in rΩ is dropped. For each s, this is a constant multiple of
ηG

1 = ηG
1 [r] which appears in Graham’s asymptotic solution of J [u] = 1:

uG = r
∞∑

k=0

ηG
k · (rn+1 log r)k, ηG

k ∈ C∞(Ω)

in the general case of dimension n ≥ 2. This is a formal series, and the
difference of flat functions along ∂Ω is ignored in determining ηG

k . We
have

ηG
0 = 1 + arn+1 + O(rn+2) with a ∈ C∞(∂Ω),

and uG is uniquely constructed by specifying a. We have approximate
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transformation laws

ηG
k,Ω1

= (ηG
k,Ω2

◦ Φ)| det Φ′|2k mod O(rn+1)

under (local) biholomorphic mappings Φ: Ω1 → Ω2. In particular, each
ηG

k modulo O(rn+1) is independent of a and r, as far as r is subject to
the condition at the beginning of this subsection. By construction, the
polynomial dependence on A ∈ N is valid as before. Thus, ηG

1 for n = 2
behaves like a Weyl-Fefferman functional of weight 3.

4.2. Explicit result in dimension ≥ 3. Let n ≥ 3. It is proved in [G2]
that ICR

0 = C, ICR
1 = {0} and that ICR

2 is generated by

‖A0
22‖2 =

∑

|α|=|β|=2

|A0
αβ
|2.

Consequently, we have for W s
m = W s

m[rΩ] in the expansion (4.1),

W s
0 = 1, W s

1 = 0, W s
2 [rΩ]

∣∣∣
∂Ω

= cs(n)‖A0
22‖2, (4.5)

where cs(n) are universal constants. By [HKN1],

c0(n) =
2

3(n− 1)n
, c1(n) =

2

3(n− 2)(n− 1)
.

By a similar proof, we have:

Proposition 4.4. The constants cs(n) in (4.5) are given by

cs(n) =
2

3(n− s− 1)(n− s)
for s 6= n− 1, n,

and cn−1(n) = −2/3, cn(n) = 2/3.

4.3. Explicit results in dimension two. Let n = 2. We first note by
[G2] that ICR

0 = C and that ICR
1 and ICR

2 are trivial. Consequently, we
have for W s

m = W s
m[rΩ] in the expansion (4.2),

W s
0 = 1, W s

1 = 0, W s
2 = 0.

It remains to determine ψs = W s
3 + W s

4 r + W s
5 r2, where we abbreviated

by writing r and W s
j in place of rΩ and W s

j [rΩ], respectively. By [G2] and
[HKN2], we have

dim ICR
3 = dim ICR

4 = 1, dim ICR
5 = 2.
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More precisely, ICR
3 and ICR

4 are generated by A0
44

and |A2
24
|2, respectively;

ICR
5 is spanned by FCR

5 (1, 0) and FCR
5 (0, 1), where

FCR
5 (a, b) = F (a, b,−2a + (10/9)b,−a + b/3)

with F (a, b, c, d) = a|A0
52
|2 +b|A0

43
|2 +Re{(cA0

35
− idA1

24
)A0

42
}. By Graham

[G2], the boundary value of ηG
1 is 4A0

44
. It is proved in [HKN2] that if

p + q − 2 = 4, 5 then ‖R(p,q)‖2 is a Weyl-Fefferman functional of weight
w = p + q − 2, where ‖R(p,q)‖2 stands for the squared norm of the tensor
R(p,q) with respect to the ambient metric g restricted to z0 = 1. (The
squared norm need not be non-negative because g is a Lorentz metric.)
Furthermore, the boundary values of ‖R(5,2)‖2 and ‖R(4,3)‖2 are linearly
independent as CR invariants. Consequently, we may set

ψs = cs
0η

G
1 + cs

1‖R(4,2)‖2r +
(
cs
2‖R(5,2)‖2 + cs

3‖R(4,3)‖2
)
r2 + O(r3), (4.6)

where cs
j for j = 0, . . . , 3 are universal constants.

Proposition 4.5. The constants cs
j in (4.6) are given by

c0
0 = −3, c0

1 = 3/1120, c0
2 = 61/141120, c0

3 = 3/7840,
c1
0 = −2, c1

1 = 1/3360, c1
2 = 1/23520, c1

3 = 1/13230,
c2
0 = −1, c2

1 = −1/10080, c2
2 = −1/70560, c2

3 = −1/169344,
c3
0 = 1, c3

1 = 1/4480, c3
2 = 1/33075, c3

3 = 1/31360.

The proof of Proposition 4.5 is done by locally placing ∂Ω in normal
form N(A) and restricting both sides of (4.6) to the half line γt = (0, t/2),
t > 0. By [HKN2], we have

‖R(4,2)‖2(γt) = 28 q1(7, 0) + 28 q2(117, 435, 936, 0, 50, 0) t + O(t2),

‖R(5,2)‖2(γt) = 4 · (5!)2q2(5/2, 9, 18, 0, 1, 0) + O(t),

‖R(4,3)‖2(γt) = 4 · (5!)2q2(37/30, 5, 57/5, 0, 4/3, 0) + O(t),

(4.7)

where

q1(d1, d2) = d1|A0
24|2 + d2A

0
55,

q2(d1, d2, d3, d4, d5, d6) = Re
(
2d1iA

1
24A

0
42 + 2d2A

0
35A

0
42 + d3|A0

34|2

+ d4A
2
44 + d5|A0

25|2 + d6A
0
66

)
.

Though [HKN2] does not give the expansion of ηG
1 (γt) for general N(A), an

algorithm of computation is provided. Computer-aided calculation yields
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Lemma 4.1.

ηG
1 (γt) = 4 A0

44 + q1(368/5,−20) t

+ q2(226/15,−312,−1956/5, 2,−680/3, 60) t2 + O(t3).

A method of computation of ψs(γt) is given in Appendix B. Again,
computer-aided calculation yields

Lemma 4.2. With q1 and q2 as in Lemma 4.1,

ψ0(γt) = −12A0
44 + q1(−216, 60) t

+ q2(−36, 900, 1116,−6, 660,−180) t2 + O(t3),

ψ1(γt) = −8A0
44 + q1(−440/3, 40) t

+ q2(−248/9, 1840/3, 760,−4, 4040/9,−120) t2 + O(t3),

ψ2(γt) = −4A0
44 + q1(−664/9, 20) t

+ q2(−131/9, 310, 386,−2, 680/3,−60) t2 + O(t3)

ψ3(γt) = 4A0
44 + q1(74,−20) t

+ q2(15,−312,−390, 2,−228, 60) t2 + O(t3).

Proposition 4.5 is proved by using Lemmas 4.1 and 4.2, together with
(4.7) and the result for s = 0 or s = 1 given in [HKN2].

4.4. A construction of CR invariants of weight five in dimension
two. As an implication of Lemmas 4.1 and 4.2, we now give a linear
relation satisfied by ηG

1 and local Sobolev-Bergman kernels of order s/2
for s = 0, 1, 2, 3. Let us first normalize by setting

ηI =
ηG

1

4
, ψ0

I =
ψ0

4
, ψ1

I = −ψ1

4
, ψ2

I = −ψ2

8
, ψ3

I = −ψ3

12
.

so that the evaluation at z = 0 gives rise to ηI = ψs
I = A0

44
for s = 0, 1, 2, 3.

To get a CR invariant of weight four, we next set

ηII =
5

2

ηI − ψ3
I

r
, ψ0

II = 2
ψ0

I − ψ3
I

r
, ψ1

II =
9

4

ψ1
I − ψ3

I

r
, ψ2

II = 3
ψ2

I − ψ3
I

r
.

Then ηII = ψs
II = |A0

24
|2 at z = 0 for s = 0, 1, 2. We thus set

ηIII =
ηII − ψ2

II

r
, ψ0

III = 6
ψ0

II − ψ2
II

r
, ψ1

III =
48

5

ψ1
II − ψ2

II

r
.
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Then
ηIII|z=0 = q2(7/12,−5/2,−6, 0,−5/6, 0),

ψ0
III|z=0 = ψ1

III|z=0 = q2(1,−6,−18, 0,−4, 0).

The right sides are CR invariants of weight five which are linearly inde-
pendent. In particular, we see that dim ICR

5 ≥ 2. This observation was
indeed used as a motivation of getting results in [HKN2] about ICR

5 .

5. Proof of Theorem 2.

5.1. Non-existence of exactly invariant defining functions. We
prove Theorem 2 stated in Subsection 2.3. This is done by using the
non-existence of a local defining function r = rΩ satisfying exact transfor-
mation law of weight −1. To state it more precisely, we introduce spaces
Fm

def of local defining functions for m ≥ 3 (m ∈ Z) as follows. Recall first
that C∞

def(Ω) is the totality of functions r ∈ C∞(Ω) such that r > 0 in Ω
and dr 6= 0 on ∂Ω. Localizing it, we have a sheaf of (smooth) local defin-
ing functions C∞

def,∂Ω(Ω) = (C∞
def,p(Ω))p∈∂Ω. If ∂Ω = N(A) with A ∈ N , we

write C∞
def,A = C∞

def,0(Ω), where we disregard the difference by flat func-
tions at the origin. Then, C∞

def = (C∞
def,A)A∈N is a space of local domain

functionals which represent local defining functions. We denote by

Fm
def = (Fm

def,A)A∈N for m ≥ 3 (m ∈ Z),

the totality of r = (rA)A∈N ∈ C∞
def such that r satisfies the transformation

law of weight −1 modulo O(rm) and that if

rA(γt) =
m−1∑

j=1

Pj(A)tj + O(tm)

in Moser’s normal coordinates then Pj(A) ∈ ICR
j . Then,

Proposition 5.1. Fn+3
def = ∅.

Postponing the proof for a moment, we first observe that Theorem 2
follows from this.

Proof of Theorem 2. We may assume w ≤ −1 by considering Kashiwara’s
transformation. Assume there exists a local Sobolev-Bergman kernel of
weight w, K = ϕr−w log r, where r ∈ C∞

def and ϕ ∈ C∞ with ϕ(0) 6= 0.
Setting ρ = ϕ−1/wr, we have K = ρ−w log ρ and ρ ∈ C∞

def. Furthermore,
ρ ∈ ∩Fm

def, but this contradicts with Proposition 5.1. ¤
The proof of Proposition 5.1 requires some results in [Hi]. In [Hi], a

subclass F of Fn+2
def is defined so that

F = (FA)A∈N 6⊂ Fn+3
def , (5.1)
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and that the ambient metric construction gives rise to Weyl functionals
W = W [r] of arbitrary weight w ∈ N0 on the class F . We have the
following two lemmas.

Lemma 5.1. If ρ ∈ Fm
def with m ≥ 3, then

ρ = cr +
m−2∑

j=1

Wj[r]r
j+1 + O(rm) for r ∈ F ,

where c > 0 is a universal constant and Wj = Wj[r] are Weyl functionals
of weight j on F .

Lemma 5.2. If W = W [r] is a Weyl functional of weight w ∈ N0 on F ,
then rwW [r] modulo O(rn+3) is independent of r ∈ F .

In the proof of Proposition 5.1, only these lemmas and (5.1) are used.
Even the definition of F is not necessary.

Proof of Proposition 5.1. Assuming Fn+3
def 6= ∅, we pick ρ ∈ Fn+3

def . It then
follows from Lemma 5.1 that

ρ = cr +
n+1∑

j=1

Wj[r]r
j+1 + O(rn+3) for r ∈ F . (5.2)

We set φ[r] =
∑

Wj[r]r
j. It then follows from Lemma 5.2 that φ[r] modulo

O(rn+3) is independent of r ∈ F . This also holds for rφ[r], because
F ⊂ Fn+2

def and φ[r] = O(r). Thus, (5.2) with ρ ∈ Fn+3
def implies r ∈ Fn+3

def ,
but this contradicts with (5.1). ¤

5.2. Definition of the class F and a review of [Hi]. Before proving
Lemmas 5.1 and 5.2 with (5.1), let us give the definition of F . It suffices
to fix Ω and define a subclass F∂Ω of C∞

def(Ω) so that the localization of
F∂Ω gives rise to F . We begin by considering the boundary value problem

J#[U ] = |z0|2n and U > 0 in C∗ × Ω, U = 0 on C∗ × ∂Ω (5.3)

for functions U = U(z0, z), where

J#[U ] = (−1)n det(Ujk)0≤j,k≤n, Ujk̄ = ∂2U/∂zj∂zk.

This is a lift of the Monge-Ampère operator in the sense that if U(z0, z) =
|z0|2u(z) then J#[U ] = |z0|2nJ [u]. But we are concerned with asymptotic
solutions of (5.3) of the form

U = r# + r#

∞∑

k=1

ηk · (rn+1 log r#)n+1 with ηk ∈ C∞(Ω), (5.4)
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where r#(z0, z) = |z0|2nr(z) with r ∈ C∞
def(Ω). Note that r is not pre-

scribed but determined together with U . We call r the smooth part of U
and denote the totality of these r by F∂Ω. The fact F∂Ω 6= ∅ is proved
by solving a formal initial value problem for (5.3) near ∂Ω with an extra
initial condition

Xn+2r|∂Ω = a ∈ C∞(∂Ω),

where X is a real vector field which is transversal to ∂Ω. The unique exis-
tence of the asymptotic solution U for each data a ∈ C∞(∂Ω) is valid and
the operation of taking the smooth part U 7→ r is injective, provided we
ignore the difference by flat functions along ∂Ω. Thus a 7→ r is essentially
a bijection C∞(∂Ω) → F∂Ω. The construction is local near a boundary
point, or even formal, as we explain at the end of this subsection.

An important fact is that one can formulate an exact transformation
law

r = (r̃ ◦ Φ)| det Φ′|−2/(n+1) (5.5)

under biholomorphic mappings Φ: Ω → Ω̃. Specifically, if r̃ ∈ F
∂Ω̃

and
if r is defined by (5.5) then r ∈ F∂Ω. In this sense, Weyl functionals,
W = W [r] for r ∈ F∂Ω, of weight w satisfies the exact transformation law

W [r] = (W [r̃] ◦ Φ)| det Φ′|2w/(n+1). (5.6)

A main result of [Hi] states that if ψB is regarded as a functional of r ∈ F∂Ω

then

ψB[r] =
m−1∑

k=0

Wk+n+1[r]r
k + O(rm) for any m ∈ N,

where Wj = Wj[r] are Weyl functionals of weight j. The proof of this
fact applies without change to Lemma 5.1. We thus regard Lemma 5.1 as
proved, where the localization is taken into account as follows.

In the definition of the local space F = (FA)A∈N , we may set X = ∂/∂ρ
for Moser’s normal coordinates. Then each FA is parametrized by a space
of formal power series as follows:

(∂n+2r/∂ρn+2)
∣∣∣
ρ=0

=
∑

α,β,`

C`
αβ

z′α z′β v` for r ∈ FA.

We thus have a bijection C 3 C 7→ r = rA,C ∈ FA for each A ∈ N , where
C denotes the totality of C = (C`

αβ
). This bijection is the localization of

the composition operator C∞(∂Ω) → F∂Ω given by a 7→ U and U 7→ r.
Consequently, we have a bijection

N × C 3 (A,C) 7→ rA,C ∈ FA, (5.7)
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where C parametrizes the ambiguity of rA,C . Setting rC = (rA,C)A∈N , we
denote by F the totality of rC for C ∈ C. Then F ⊂ C∞

def. It is easy
to see that F ⊂ Fn+2

def (see [Hi]), and (5.1) is clear from the definition.
Abusing notation, we write r in place of rC , so that selecting r ∈ F is
equivalent to specifying C ∈ C. The point of introducing the class F is
the exact transformation laws (5.5) and (5.6), where C ∈ C must vary.
It is therefore necessary to regard the space F itself as a family of local
domain functionals parametrized by C ∈ C.

5.3. Reduction to the boundary. We have justified (5.1) and Lemma
5.1. To prove Lemma 5.2, we need to consider the boundary value of
each Weyl functional on F , say W = W [r], where r = (rA,C)A∈N with
rA,C in (5.7). More precisely, we take the restriction of W [r] to the origin
0 ∈ N(A). Denoting it by PW = PW (A,C), we see by inspecting the
construction that PW is a polynomial in (A,C) ∈ N × C. Let IW

w (N × C)
denote the totality of such polynomials which come from Weyl functionals
of weight w on F . We define a subspace IW

w (N ) of IW
w (N × C) to be the

totality of PW (A,C) which are independent of C ∈ C. Then, another main
result of [Hi] states that

IW
w (N ) = ICR

w for w ∈ N0 (5.8)

and that if n ≥ 3 (resp. n = 2) then

IW
w (N × C) = IW

w (N ) for w ≤ n + 2 (resp. w ≤ 5), (5.9)

where the weight restriction in (5.9) is optimal. In the following, Lemma
5.2 is proved by using (5.8), while (5.9) shows that the error estimate in
Lemma 5.2 is optimal.

Proof of Lemma 5.2. This is a refinement of Fefferman’s Ambiguity
Lemma in [F3]. As in [F3], the problem is reduced to the case ∂Ω = N(A)
with A ∈ N , via the transformation law for r and W = W [r]. In Moser’s
normal coordinates, we investigate the behavior of rwW [r] along the half
line γt = (0, t) ∈ Cn−1 × C, t > 0. We have

(rwW [r])(γt) =
n+2∑

j=m

Pj(A,C)tj + O(tn+3),

where Pj(A,C) are polynomials in (A,C) ∈ N×C. Furthermore, Pj(A,C)
is of weight j. It suffices to show that Pj(A,C) are independent of C ∈ C.
Assume that Pj(A,C) depends on C. Since

w(A`
αβ

) ≥ 2, w(C`
αβ

) ≥ n + 1
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for A = (A`
αβ

) ∈ N and C = (C`
αβ

) ∈ C, it follows that Pj(A,C) is linear

homogeneous. Consequently, the Weyl polynomial W# must be linear, so
that we may assume W# = tr(∇(p,p)R). By the linearity of Pj(A,C), the
assumption implies that Pj(0, C) 6= 0, so that we are reduces to the case
A = 0 ∈ N . In this case, N(A) is the boundary of a Siegel domain, and
any asymptotic solution of (5.3) of the form (5.4) is (formally) smooth.
Consequently, any ambient metric is Ricci-flat, so that W# must vanish.
We thus have Pj(0, C) = 0, a contradiction. ¤

Appendix

Appendix A. Holomorphic microfunctions. Proofs of the facts
stated below are found for instance in a textbook by Schapira [S].

Let X be a complex manifold and Y a complex hypersurface. Then
Y is locally given by the zeros of a holomorphic function f(z) such that
df 6= 0. A germ of holomorphic microfunction at p ∈ Y is, by definition,
an equivalence class modulo OX,p of a germ of (multi-valued) holomorphic
function in X \ Y of the form

ϕf−m + ψ log f with m ∈ Z, ϕ, ψ ∈ OX,p.

Let CY |X,p denote the vector space of those equivalence classes. Then a
sheaf of holomorphic microfunctions is defined by CX|Y = (CY |X,p)p∈Y . For
L ∈ CY |X,p, the singular support of L is contained in

N = T ∗
Y X \ 0 = {(p, ξ) ∈ T ∗X; p ∈ Y, ξ = c df |z=p, c ∈ C∗} ,

the conormal bundle of Y ⊂ X. (In [SKK], CY |X is defined to be a sheaf
on the projective conormal bundle N/C∗, which can be identified with Y .)
The sheaf EX of microdifferential operators is defined in such a way that
a germ P (z, ∂z) ∈ EX,p̂ acts on CY |X,p, where p̂ = (p, ξ) ∈ N . Specifically,
EX,p̂ is a ring generated by

z1, . . . , zn, ∂z1 , . . . , ∂zn and ∂−1
zn

,

where z = (z1, . . . , zn) is a local coordinate system of X such that zn = f .
The action of ∂−1

zn
on L ∈ CY |X,p is given by a curvilinear integral

∂−1
zn

L(z) =
∫ z

p′
L(z) dzn,

where p′ ∈ X \Y is chosen so close to p that the right side (modulo OX,p)
is independent of the choice of p′.

We say that L ∈ CY |X,p is nondegenerate if L is represented by a
function of the form

ϕf−m + ψ log f for m > 0, or ϕ r−m log f for m ≤ 0, (A.1)
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where ϕ is non-vanishing. If L ∈ CY |X,p is of the form L = P log f with
P = P (z, ∂z) ∈ EX,p̂, then L is nondegenerate if and only if P is elliptic
(i.e. invertible).

In what follows, we consider the case X = Cn × Cn, the complexifica-
tion of the diagonal {(z, w) ∈ X; w = z} = Cn ∼= R2n. Let Ω be a domain
in Cn such that the boundary is locally given by a real-analytic defining
function ρ(z, z) near a boundary point of reference. Then the complexifica-
tion of the boundary ∂Ω is locally given by Y = {(z, w) ∈ X; ρ(z, w) = 0}.
Lemma A.1. If Ω is strictly pseudoconvex locally, then every holomorphic
microfunction L ∈ CY |X,(z0,w0) is written as

L(z, w) = P (z, ∂z) log ρ(z, w) = Q(w, ∂w) log ρ(z, w), (A.2)

where P ∈ ECn,(z0,dzρ) and Q ∈ ECn,(w0,dwρ) are microdifferential operators
determined uniquely by L.

In this lemma, we may replace log ρ by any nondegenerate holomorphic
microfunction K with support Y . It then follows that for any P (z, ∂z) ∈
ECn,(z0,dzρ) there exits a unique Q(w, ∂w) ∈ ECn,(w0,dwρ) such that

P (z, ∂z)K = Q(w, ∂w)K.

Let Q∗ denote the formal adjoint of Q. Then the correspondence P 7→ Q∗

gives rise to an isomorphism of rings ECn,(z0,dzρ) → ECn,(w0,−dwρ), which is
called the quantized contact transformation with kernel K. It is clear from
Lemma A.1 that

Lemma A.2. If two kernels K, K̃ ∈ CY |X,(z0,w0) give the same quantized

contact transformation, then K = c K̃ with some constant c ∈ C∗.

If K 7→ K̂ is Kashiwara’s transformation, then

P (z, ∂z)K = Q(w, ∂w)K if and only if P ∗(z, ∂z)K̂ = Q∗(w, ∂w)K̂.

In particular, the quantized contact transformation P (z, ∂z) 7→ Q∗(w, ∂w)
with kernel K is given by the inverse of the quantized contact transfor-
mation Q(w, ∂w) 7→ P ∗(z, ∂z) with kernel K̂.

The proof of Lemma A.1 (e.g., in Shapira [S]) simply yields the follow-
ing lemma, which was used in the proof of Lemma 3.2.

Lemma A.3. If L in (A.2) is of the form (A.1) with ρ in place of f and
with ϕ non-vanishing, then P and Q are operators of order ≤ m.

Appendix B. Method of computing the asymptotic expansion.
We here explain the method of computing the expansion of Ks.



30 K. Hirachi and G. Komatsu

Let us first recall the procedure for computing the Bergman kernel K0

due to Boutet de Monvel. We take a C-valued defining function of the
complexification of ∂Ω of the form U(z, z) = zn + zn − z′ · z′ − H(z, z′),
where

H(z, z′) =
∑

|α|,|β|≥2,`≥0

B`
αβ

z′α z′β z`
n.

Then each B`
αβ

is a polynomial in A = (A`
αβ

) ∈ N . Let A0 = A0(z, ∂z)

be a microdifferential operator of infinite order given by the total symbol

A0(z, ζ) = exp (−H(z,−ζ ′/ζn)ζn) .

We define weight by

w(zj) = −w(∂zj
) = −1/2 (j < n), w(zn) = −w(∂zn) = −1.

(For more about the notion of weight, cf. Section 3 of [HKN2].) Then
A0 can be regarded as an asymptotic series as weight tends to −∞. We
can verify log U = A0(z, ∂z) log ρ0 by using ∂zj

∂−1
zn

log ρ0 = −zj log ρ0.
Therefore the Bergman kernel K0[r] for Ω (up to a constant multiple
(−π)n) is given by

K0[r] = A∗
0
−1(z, ∂z) K̂−n−1[ρ0]. (B.1)

Here the inverse of A∗
0 is defined by A∗

0
−1 =

∑∞
k=0(1 −A∗

0)
k, which is an

asymptotic series as weight tends to −∞ because each term of 1−A∗
0 has

negative weight.
We generalize (B.1) to Ks for s > 0. First, write

K̂s[r] =
s∑

`=1

a`(z, z′) K̂`[U ]

and define a microdifferential operator of infinite order by the total symbol

As(z, ζ) = A0(z, ζ)
s∑

`=1

a`(z,−ζ ′/ζn)ζ`
n.

Then we get K̂s[r] = As(z, ∂z) log ρ0 by using A0(z, ∂z)∂
`
zn

log ρ0 = K̂`[U ].
Thus we have

Ks[r] = A∗
s
−1(z, ∂z) K0[ρ0].

Here A∗
s
−1 is defined by the series

A∗
s
−1 = ∂−s

zn

∞∑

k=0

(1−A∗
s∂
−s
zn

)k,
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in which each term in 1−A∗
s∂
−s
zn

has negative weight.

Method of proving Lemma 4.2. We only need to know the first five terms
in

A∗
s
−1(z, ζ)

∣∣∣
z1=ζ1=0

=
∞∑

k=−s

ck ζ−k
2 ,

that is, the terms of weight ≥ −s− 5 in the right-hand side. Such terms
can be computed from the the terms of As that have weight ≥ s − 5.
Details of this computation are discussed in [HKN2]. ¤

Proof of Proposition 4.4. We only need to compute Ks(γt) for a surface
in normal form for which ‖R(2,2)‖2(0) = ‖A0

22
‖2 6= 0. We here take the

surface ρ = ρ0 − F = 0, where F = z2
1z

2
2 + z2

2z
2
1, for which ‖A0

22
‖2 = 2.

Starting from this ρ, we set ρ1, ρ2 and ρ3 as in Subsection 2.3. Then we
have r = ρ3 + O(ρ3). Since each term in ρ3 has weight less than −3, we
see that r = r3 + (terms of weight < −3). Thus we have

r = ρ +

(
16|z1z2|2ρ0

n + 1
− 8(|z1|2 + |z2|2)ρ2

0

(n + 1)n
+

16ρ3
0

3(n + 1)n(n− 1)

)

+ (terms of weight < −3).

(B.2)

In particular, we get

r(γt) = t + 2c′ t3 + O(t4) with c′ =
8

3(n + 1)n(n− 1)
. (B.3)

Next we write K̂s[r] = As(z, ∂z) log ρ0. Then from (B.2) we get

As(z,ζ) = ζs
n − F̃ ζs−1

n −
(
− F̃ 2

2
+

16s

n + 1
z1z2ζ1ζ2

+
8s(s− 1)

(n + 1)n
(z1ζ1 + z2ζ2) +

16s(s− 1)(s− 2)

3(n + 1)n(n− 1)

)
ζs−2
n

+ (terms of weight < s− 3),

where F̃ = z2
1ζ

2
2 + z2

2ζ
2
1 . Thus we have

A∗
s
−1(z, ζ)

∣∣∣
z′=ζ′=0

= ζ−s
n + c̃sζ−s−2

n + (terms of weight < −s− 3),

where

c̃s = −4 +
16s

n + 1
+

16s(s− 1)

(n + 1)n
+

16s(s− 1)(s− 2)

3(n + 1)n(n− 1)
.

Therefore we get, for s = 0, 1, . . . , n− 2,

Ks(γt) = ts−n−1

(
1 +

c̃st2

(n− s)(n− s− 1)
+ O(t3)

)
, (B.4)
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and
Kn−1(γt) = t−2 +

(
−c̃n−1 + O(t)

)
log t,

Kn(γt) = t−1 +
(
c̃nt + O(t2)

)
log t,

Kn+1(γt) =
(
1 + c̃n+1t2/2 + O(t3)

)
log t.

(B.5)

Using (B.3) and (B.4), we have ϕs(γt) = 1+2((n− s+1)c′+ c̃s)t2 +O(t3)
for m = 0, 1, . . . , n− 2. Thus we get

cs = (n− s + 1)c′ + c̃s =
2

3(s− n + 1)(s− n)
.

The constants cs for s ≥ n− 1 are determined by using (B.5) in the same
manner. ¤
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