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A link between the asymptotic expansions of the
Bergman kernel and the Szego kernel

Kengo Hirachi

Introduction

Let Q be a strictly pseudoconvex domain in C". Then the Bergman
kernel KB and the Szegd kernel K of Q have singularities at the bound-
ary diagonal. These singularities admit asymptotic expansions in powers
and log of the defining function of © ([3], [2]) and, moreover, the coeffi-
cients of which can be expressed in terms of local invariants of the CR
structure of the boundary 92 as an application of the parabolic invariant
theory developed in [4], [5], [1], [8], [6] and others. While these works
provide a geometric algorithm of expressing the expansion of each ker-
nel, it is not easy to read relations between them from this construction
— for example, we can say very little about the relation between the log
term coefficients of KB and K5, cf. §2.

In this note we present a method of relating these asymptotic ex-
pansions. Our strategy is to construct a meromorphic family of kernel
functions K, s € C, such that KB and K are realized as special values
of K. In the case of the unit ball, {|z| < 1}, such a family is given by

Ky(z) =n7"T(n—s) (1 —|2[*)*™",

where T'(a) is the gamma function, and K_1, Ky give KB, K5, respec-
tively. Note that, for s < 0, K is characterized as the Bergman kernel
for the weighted L? norm defined by the measure (1—|z|?)~~1/I'(—s)dV,
see §1. For general strictly pseudoconvex domains, we begin by defin-
ing K for s < 0 as the weighted Bergman kernel, and then extend to
s € C by analytic continuation. Here we only consider the asymptotic
expansion of K and define the analytic continuation as a meromorphic
family of formal series, see §2. We then apply the invariant theory to ex-
press K in terms of geometric invariants of the boundary (Theorem 2).
In these expansions, all K, contain the same invariants up to universal

Partially supported by Grants-in-Aid for Scientific Research, JSPS.
2000 MSC. Primary 32A25; Secondary 32V15, 53A55.



A link between the asymptotic expansions 1

constants depending polynomially on s. These formulae, in particular,
give a relation between K® = K_; and K° = K.

Note that the kernel functions K for s € Z have been introduced in
Hirachi-Komatsu [7] and the present note is a continuation of that work.
In [7], K, are defined as the solutions of simple holonomic systems, which
naturally arise from Kashiwara’s microlocal analysis of the Bergman
kernel [9]. While this point of view is not given explicitly in this note,
this is also the main tool of the proofs of Theorems 1 and 2; the details
will be given in my forthcoming paper.

§1. Weighted Bergman kernels

Let 2 C C" be a domain with C* smooth boundary. Then there is
a function r € C°(Q), called a defining function, such that Q = {r > 0}
and dr # 0 on 95). Fixing such an r, we define for s < 0 a weighted L?

norm on §2 by

m 1912 = [ £GP " av o),

where dV'(z) is the standard Lebesgue measure on C™. Let
Hy(Q,r) :={f € OQ) : |f]ls < oo},

the Hilbert space of weighted L? holomorphic functions on €. If we take
a complete orthonormal system {h;}22, of Hy(Q2,7), then the series

Ks[r](z,w) == Z hj(2) hj(w)

converges for (z,w) € Q x Q and define a function, which is shown to be
independent of the choice of {h;}. We call K,[r] the weighted Bergman
kernel. Note that the Bergman kernel K® is given by K_1[r], which is
clearly independent of the choice of r.

In case s = 0, the right-hand side of (1) does not make sense because
I'(—s) has simple poles at s € Ny = {0,1,2,...}. However, we may
define || - ||o by taking the limit

tim 1712 = [ IfPdotz), e CO@,
s a0
where do is the volume element on 92 normalized by the condition

do ANdr =dV  on 0.
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Thus it is natural to define Hy(£2,7) := ker 9, C L?(99, do), where 9, is
the tangential Cauchy—Riemann operator of 9€2. Since each f € Hy(£,7)
admits an extension to f € O(£2), we may also regard Hy(2,7) C O(Q).
The Szegd kernel is then defined by K5[r](z,w) := > hi(2) hj(w),
where {h;}; is a complete orthonormal system of Hy(€2,r).

Model case. In the case of the unit ball Qg, we may take r(z) =
1 — |22, Then the monomials of z form a complete orthogonal system
of Hy(Qp,7) (cf. [7]) and thus
z2w®  T(n-—s)

K[r)(zw) =) = 1—z-w) ™.

[ "

The right-hand side is a meromorphic function of s € C (with parameters
z,w € Q) and, thus K[r] (s < 0) can be analytically continued to a
meromorphic function of s € C, which we also denote by K[r]. Then,
in particular, Ko[r] gives the Szegd kernel K>[r].

§2. Asymptotic expansions of the weighted Bergman kernels

In what follows, we assume that ) is strictly pseudoconvex, and
mainly consider the restriction to the diagonal of the kernel functions
K[r](z) = K4[r](z,Z).

It is known from the work of Fefferman [3] that the boundary sin-
gularity of the Bergman kernel KB(z) takes the form @r="=! + 1+ logr,
where p,1 € C*°(Q). Based on his analysis, G. Komatsu has shown
that the weighted Bergman kernels K;[r] admit similar expansions.

Theorem ([10]). For s < 0, the weighted Bergman kernel K|r]
admits the following asymptotic expansion at the boundary:
OO [r]rs=m 4 [r]logr if s € Z,
P [r]rer ifs¢Z,
where ) [r], ) [r] € C®(Q).
If we introduce the functions

B, I(—s)r® if s € C\ N,
s[r] = s
(G log r if s € N,

(2) Klr] = {

s!

then we may rewrite the expansions (2) in a unified form:

(3) Kl =Y e %enil](=), 97l € C7@).
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Here the coeflicients g0§s)
z are not independent.
Our basic result that enables us to define the meromorphic family

K,[r], s € C, is the following

[r] are not uniquely determined because r and

Theorem 1. The coefficients w;s) [r] of (3) can be chosen so that
@58) [r] = S22 ajklr] 8% holds for functions ajilr] € C>(Q) that are
independent of s.

(s)

Taking ¢;”[r] as in the theorem above and then using the relation
sPspi[r] = =1 Py j_1[r] — 7 Ps1;[r], we may rewrite (3) in the form
(4) Kl = Y a;[r®enslr],

j=—o00

where a;[r] € C*°(Q) are independent of s and satisfies a;[r] = O(r=%/)
for j < 0 (hence the boundary singularity of a;[r]|®s_n4;[r] gets weaker
as |j| — o00). Note that a;[r] modulo O(r>°) is now uniquely determined
by r, and moreover it is shown that map r — a;[r] is given by a partial
differential operator.

Now we define K[r] for s € C\ (—o0,0) by the formula (4), which
is regarded as formal series. Then we can show, in particular, that Ko[r]
gives the asymptotic expansion of the Szegd kernel K5[r].

§3. Transformation law and an invariant expansion of K;[r]|

We next examine the transformation law of a;[r] under biholomor-

phic maps F':  — €. Recall [3] that F can be extended to a diffeomor-
phism up to the boundary. So, for a defining function r of €2, we may
give a defining function of 2 by

(5) 7= |det F'|~2/ (o F,

where det F” is the holomorphic Jacobian of F'. Now from the definition
of the norm || - ||s, we see that the weighted Bergman kernel transforms
according to

(6) K, [f] = |det F'[2=9)/(FD K 7] o F.
Thus, substituting these transformation laws into (4), we get
(7) a;[7] = | det F'[*/ " Va;fr] o F

by the uniqueness of the expansion (4).
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Our next task is to construct functionals of r that transform like
this under biholomorphic maps — and hopefully express a;[r| in terms
of these functionals. Here we utilize the ambient metric construction of
[4]. Associated to each r, we first define a Lorentz-Kéahler metric g = g[r]
on a neighborhood of C* x 9Q C C* x C" by g[r] = >°7; _, 9,7 dz;jdZk,
where g7 = 0%ry/0z;0%,. Let R = R[r] be the curvature of g and
R0 = V9-2VP~2R be its iterated covariant derivatives. Then consider
complete contractions of the form

Wy = contr(R(plv‘h) Q- ® R(pm,qm)),

with > p; = > ¢ = m +w. Such a contraction Wy assigns to each
r a smooth function Wr] := Wx[r]|,,—0 on Q near Q. We call the
functional r — W{r| a Weyl functional of weight w. If W has weight w,
then under (5), we have the desired transformation law

W] = |det F'|?*/ "D W [r] o F.

It is a natural hope that all a; can be expressed in terms of these
Weyl functionals. However, at this stage, it is hard to deal with the
case of arbitrary r. So we here choose a good class of defining functions
in such a way that we can apply the invariant theory of [4], [1], [6].
To specify a class of defining functions, following [6], we consider the
following complex Monge-Ampere equation

(—1)" det (8°U /002" ) _.\ _. = |z0*"
for a function U(zp, z) on C* x Q. This equation admits asymptotic

solutions along C* x 02 of the form

oo
U=ry+ry Z n - (Pt logry),
k=1

where r is a C°° defining function of 2, rx(zo,2) = |20|?r(z) and n; €
C*>(Q). For such a solution U, the smooth part ry = |20|?r is uniquely
determined. So, for each 2, we may define Fq to be the totality of r
that arises as the smooth part of an asymptotic solution U. This class
Fq is shown to be preserved under the pull-back (5).

Now we use Weyl functionals to express Ki[r| for r € Fq. The
invariant theory of [6] implies that each a;[r] admits an asymptotic ex-
pansion

(8) a;[r] = Z W i lr] 7, r € Fa,
k=0
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where W}, is a linear combination of Weyl functionals of weight j + k.
Hence, using r®;_,,[r] = (m — $)®s_,,11[r] to absorb all explicit r in
(8) into other ®,_;[r], we get

Theorem 2. If r € Fq, then K,[r| admits an expansion

oo

) Ki[r] =Y W] @y s,

=0

where each Wj(s) s a linear combination of Weyl functionals of weight
j whose coefficients are polynomials in s of degree < 2j.

The first three terms of the expansion are given by
n 1 s—n—
™ KS[T] = (I)sfnm + ﬂ”RHgozlq)sfnJr?M +O(r 3)'

Here the second term Ws(i)n 41 vanishes. Thus we see in particular that

the Bergman and the Szego kernels have the same expansion in ®[r] up
to this order.

References

[1] T. N. Bailey, M. G. Eastwood and C. R. Graham, Invariant theory for
conformal and CR geometry, Ann. of Math. 139 (1994), 491-552.

[2] L. Boutet de Monvel et J. Sjostrand, Sur la singularité des noyauz de
Bergman et de Szegd, Soc. Math. de France, Astérisque 34—35 (1976),
123-164.

[3] C. Fefferman, The Bergman kernel and biholomorphic mappings of
pseudoconver domains, Invent. Math. 26 (1974), 1-65.

[4] C. Fefferman, Parabolic invariant theory in complex analysis, Adv. in
Math. 31 (1979), 131-262.

[5] C.R. Graham, Scalar boundary invariants and the Bergman kernel, Com-
plex analysis II, Lecture Notes in Math., vol. 1276, Springer, 1987.

[6] K. Hirachi, Construction of boundary invariants and the logarithmic sin-
gularity of the Bergman kernel, Ann. of Math. 151 (2000) 151-191.

[7] K. Hirachi and G. Komatsu, Local Sobolev—Bergman kernels of Strictly
Pseudoconver Domains, in “Analysis and Geometry in Several Complex
Variables”, Trends in Math., pp. 64-96, Birkhiiser, 1999.

[8] K. Hirachi, G. Komatsu and N. Nakazawa, CR invariants of weight five
in the Bergman kernel, Adv. in Math. 143 (1999), 185-250.

[9] M. Kashiwara, Analyse micro-locale du noyau de Bergman Sém.
Goulaouic-Schwartz, Ecole Polytech., Exposé n°® VIII, 1976-77.

10] G. Komatsu, personal communication.

[ , P



6 K. Hirachi

Graduate School of Mathematical Sciences
University of Tokyo

3-8-1 Komaba, Kegro, Tokyo 153-8914
Japan

E-mail address: hirachi@ms.u-tokyo.ac.jp



