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Introduction
Let Ω be a strictly pseudoconvex domain in Cn. Then the Bergman

kernel KB and the Szegö kernel KS of Ω have singularities at the bound-
ary diagonal. These singularities admit asymptotic expansions in powers
and log of the defining function of Ω ([3], [2]) and, moreover, the coeffi-
cients of which can be expressed in terms of local invariants of the CR
structure of the boundary ∂Ω as an application of the parabolic invariant
theory developed in [4], [5], [1], [8], [6] and others. While these works
provide a geometric algorithm of expressing the expansion of each ker-
nel, it is not easy to read relations between them from this construction
— for example, we can say very little about the relation between the log
term coefficients of KB and KS, cf. §2.

In this note we present a method of relating these asymptotic ex-
pansions. Our strategy is to construct a meromorphic family of kernel
functions Ks, s ∈ C, such that KB and KS are realized as special values
of Ks. In the case of the unit ball, {|z| < 1}, such a family is given by

Ks(z) = π−nΓ(n− s) (1− |z|2)s−n,

where Γ(α) is the gamma function, and K−1, K0 give KB, KS, respec-
tively. Note that, for s < 0, Ks is characterized as the Bergman kernel
for the weighted L2 norm defined by the measure (1−|z|2)−s−1/Γ(−s)dV ,
see §1. For general strictly pseudoconvex domains, we begin by defin-
ing Ks for s < 0 as the weighted Bergman kernel, and then extend to
s ∈ C by analytic continuation. Here we only consider the asymptotic
expansion of Ks and define the analytic continuation as a meromorphic
family of formal series, see §2. We then apply the invariant theory to ex-
press Ks in terms of geometric invariants of the boundary (Theorem 2).
In these expansions, all Ks contain the same invariants up to universal
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constants depending polynomially on s. These formulae, in particular,
give a relation between KB = K−1 and KS = K0.

Note that the kernel functions Ks for s ∈ Z have been introduced in
Hirachi–Komatsu [7] and the present note is a continuation of that work.
In [7], Ks are defined as the solutions of simple holonomic systems, which
naturally arise from Kashiwara’s microlocal analysis of the Bergman
kernel [9]. While this point of view is not given explicitly in this note,
this is also the main tool of the proofs of Theorems 1 and 2; the details
will be given in my forthcoming paper.

§1. Weighted Bergman kernels

Let Ω ⊂ Cn be a domain with C∞ smooth boundary. Then there is
a function r ∈ C∞(Ω), called a defining function, such that Ω = {r > 0}
and dr 6= 0 on ∂Ω. Fixing such an r, we define for s < 0 a weighted L2

norm on Ω by

(1) ‖f‖2
s =

∫
Ω

|f(z)|2 r(z)
−s−1

Γ(−s)
dV (z),

where dV (z) is the standard Lebesgue measure on Cn. Let

Hs(Ω, r) := {f ∈ O(Ω) : ‖f‖s <∞},

the Hilbert space of weighted L2 holomorphic functions on Ω. If we take
a complete orthonormal system {hj}∞j=0 of Hs(Ω, r), then the series

Ks[r](z, w) :=
∑

j

hj(z)hj(w)

converges for (z, w) ∈ Ω×Ω and define a function, which is shown to be
independent of the choice of {hj}. We call Ks[r] the weighted Bergman
kernel. Note that the Bergman kernel KB is given by K−1[r], which is
clearly independent of the choice of r.

In case s = 0, the right-hand side of (1) does not make sense because
Γ(−s) has simple poles at s ∈ N0 = {0, 1, 2, . . . }. However, we may
define ‖ · ‖0 by taking the limit

lim
s→−0

‖f‖2
s =

∫
∂Ω

|f |2dσ(z), f ∈ C0(Ω),

where dσ is the volume element on ∂Ω normalized by the condition

dσ ∧ dr = dV on ∂Ω.
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Thus it is natural to define H0(Ω, r) := ker ∂b ⊂ L2(∂Ω, dσ), where ∂b is
the tangential Cauchy–Riemann operator of ∂Ω. Since each f ∈ H0(Ω, r)
admits an extension to f ∈ O(Ω), we may also regard H0(Ω, r) ⊂ O(Ω).
The Szegö kernel is then defined by KS[r](z, w) :=

∑
j hj(z)hj(w),

where {hj}j is a complete orthonormal system of H0(Ω, r).

Model case. In the case of the unit ball Ω0, we may take r(z) =
1 − |z|2. Then the monomials of z form a complete orthogonal system
of Hs(Ω0, r) (cf. [7]) and thus

Ks[r](z, w) =
∑
α

zαwα

‖zα‖2
s

=
Γ(n− s)
πn

(1− z · w)s−n.

The right-hand side is a meromorphic function of s ∈ C (with parameters
z, w ∈ Ω) and, thus Ks[r] (s < 0) can be analytically continued to a
meromorphic function of s ∈ C, which we also denote by Ks[r]. Then,
in particular, K0[r] gives the Szegö kernel KS[r].

§2. Asymptotic expansions of the weighted Bergman kernels

In what follows, we assume that Ω is strictly pseudoconvex, and
mainly consider the restriction to the diagonal of the kernel functions
Ks[r](z) := Ks[r](z, z).

It is known from the work of Fefferman [3] that the boundary sin-
gularity of the Bergman kernel KB(z) takes the form ϕr−n−1 + ψ log r,
where ϕ,ψ ∈ C∞(Ω). Based on his analysis, G. Komatsu has shown
that the weighted Bergman kernels Ks[r] admit similar expansions.

Theorem ([10]). For s < 0, the weighted Bergman kernel Ks[r]
admits the following asymptotic expansion at the boundary:

(2) Ks[r] =

{
ϕ(s)[r] rs−n + ψ(s)[r] log r if s ∈ Z,
ϕ(s)[r] rs−n if s 6∈ Z,

where ϕ(s)[r], ψ(s)[r] ∈ C∞(Ω).

If we introduce the functions

Φs[r] =

{
Γ(−s) rs if s ∈ C \ N0,
(−1)s+1

s! rs log r if s ∈ N0,

then we may rewrite the expansions (2) in a unified form:

(3) Ks[r](z) =
∞∑

j=0

ϕ
(s)
j [r](z)Φs−n+j [r](z), ϕ

(s)
j [r] ∈ C∞(Ω).
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Here the coefficients ϕ(s)
j [r] are not uniquely determined because r and

z are not independent.
Our basic result that enables us to define the meromorphic family

Ks[r], s ∈ C, is the following

Theorem 1. The coefficients ϕ(s)
j [r] of (3) can be chosen so that

ϕ
(s)
j [r] =

∑2j
k=0 aj,k[r] sk holds for functions aj,k[r] ∈ C∞(Ω) that are

independent of s.

Taking ϕ(s)
j [r] as in the theorem above and then using the relation

sΦs+j [r] = −rΦs+j−1[r]− j Φs+j [r], we may rewrite (3) in the form

(4) Ks[r] =
∞∑

j=−∞
aj [r]Φs−n+j [r],

where aj [r] ∈ C∞(Ω) are independent of s and satisfies aj [r] = O(r−2j)
for j < 0 (hence the boundary singularity of aj [r]Φs−n+j [r] gets weaker
as |j| → ∞). Note that aj [r] modulo O(r∞) is now uniquely determined
by r, and moreover it is shown that map r 7→ aj [r] is given by a partial
differential operator.

Now we define Ks[r] for s ∈ C \ (−∞, 0) by the formula (4), which
is regarded as formal series. Then we can show, in particular, that K0[r]
gives the asymptotic expansion of the Szegö kernel KS[r].

§3. Transformation law and an invariant expansion of Ks[r]

We next examine the transformation law of aj [r] under biholomor-
phic maps F : Ω̃ → Ω. Recall [3] that F can be extended to a diffeomor-
phism up to the boundary. So, for a defining function r of Ω, we may
give a defining function of Ω̃ by

(5) r̃ := |detF ′|−2/(n+1)r ◦ F,

where detF ′ is the holomorphic Jacobian of F . Now from the definition
of the norm ‖ · ‖s, we see that the weighted Bergman kernel transforms
according to

(6) Ks[r̃] = |detF ′|2(n−s)/(n+1)Ks[r] ◦ F.

Thus, substituting these transformation laws into (4), we get

(7) aj [r̃] = |detF ′|2j/(n+1)aj [r] ◦ F

by the uniqueness of the expansion (4).
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Our next task is to construct functionals of r that transform like
this under biholomorphic maps — and hopefully express aj [r] in terms
of these functionals. Here we utilize the ambient metric construction of
[4]. Associated to each r, we first define a Lorentz-Kähler metric g = g[r]
on a neighborhood of C∗ × ∂Ω ⊂ C∗ × Cn by g[r] =

∑n
j,k=0 gjk dzjdzk,

where gjk = ∂2r#/∂zj∂zk. Let R = R[r] be the curvature of g and
R(p,q) = ∇q−2∇p−2R be its iterated covariant derivatives. Then consider
complete contractions of the form

W# = contr
(
R(p1,q1) ⊗ · · · ⊗R(pm,qm)

)
,

with
∑
pl =

∑
ql = m + w. Such a contraction W# assigns to each

r a smooth function W [r] := W#[r]|z0=0 on Ω near ∂Ω. We call the
functional r 7→W [r] a Weyl functional of weight w. If W has weight w,
then under (5), we have the desired transformation law

W [r̃] = |detF ′|2w/(n+1)W [r] ◦ F.

It is a natural hope that all aj can be expressed in terms of these
Weyl functionals. However, at this stage, it is hard to deal with the
case of arbitrary r. So we here choose a good class of defining functions
in such a way that we can apply the invariant theory of [4], [1], [6].
To specify a class of defining functions, following [6], we consider the
following complex Monge-Ampère equation

(−1)n det
(
∂2U/∂zj∂zk

)
0≤j,k≤n

= |z0|2n

for a function U(z0, z) on C∗ × Ω. This equation admits asymptotic
solutions along C∗ × ∂Ω of the form

U = r# + r#

∞∑
k=1

ηk · (rn+1 log r#)k,

where r is a C∞ defining function of Ω, r#(z0, z) = |z0|2r(z) and ηk ∈
C∞(Ω). For such a solution U , the smooth part r# = |z0|2r is uniquely
determined. So, for each Ω, we may define FΩ to be the totality of r
that arises as the smooth part of an asymptotic solution U . This class
FΩ is shown to be preserved under the pull-back (5).

Now we use Weyl functionals to express Ks[r] for r ∈ FΩ. The
invariant theory of [6] implies that each aj [r] admits an asymptotic ex-
pansion

(8) aj [r] =
∞∑

k=0

Wj,k[r] rk, r ∈ FΩ,
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where Wj,k is a linear combination of Weyl functionals of weight j + k.
Hence, using rΦs−m[r] = (m − s)Φs−m+1[r] to absorb all explicit r in
(8) into other Φs−l[r], we get

Theorem 2. If r ∈ FΩ, then Ks[r] admits an expansion

(9) Ks[r] =
∞∑

j=0

W
(s)
j [r] Φs−n+j [r],

where each W
(s)
j is a linear combination of Weyl functionals of weight

j whose coefficients are polynomials in s of degree ≤ 2j.

The first three terms of the expansion are given by

πnKs[r] = Φs−n[r] +
1
24
‖R‖2

z0=1Φs−n+2[r] +O(rs−n−3).

Here the second term W
(s)
s−n+1 vanishes. Thus we see in particular that

the Bergman and the Szegö kernels have the same expansion in Φs[r] up
to this order.
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