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Fefferman’s program [11] of getting a biholomorphically invariant as-
ymptotic expansion of the Bergman kernel for smoothly bounded strictly
pseudoconvex domains is realized in dimension 2 with the identification of
universal constants. According to the program, the expansion is in terms
of an approximately invariant smooth defining function of the domain,
which we refer to as Fefferman’s defining function, and the coefficients are
functions in the domain constructed by using derivatives of Fefferman’s
defining function. Consequently, the invariant expansion is necessarily a
finite sum with a remainder term and the ambiguity estimate is crucial in
the problem. We get an expansion such that the boundary values of the
coefficients are CR invariants of weight < 5. This refines earlier results
of Graham [12] and the authors [15]. The refinement becomes possible by
appropriate extensions inside the domain of the CR invariants of weight
4. Due to the ambiguity estimate of these extensions, our expansion is
optimal as far as Fefferman’s defining function is used. A similar result for
the Szegd kernel is also obtained.

INTRODUCTION

The Bergman kernel of a domain €2 in C” is by definition the reproducing
kernel KB(z,w) for z,w € Q associated with the space of square integrable
holomorphic functions in €2, so that any complete orthonormal system
{h;} gives rise to the expression KB(z,z) = 3" |h;(2)[®. This restriction
to the diagonal is also referred to as the Bergman kernel and denoted by
KB, or K& when the dependence on (2 is emphasized. Thus K2 = K&
is a domain functional, which is subject to a transformation law Kgl =
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K& o @ - |det ®'|? under a biholomorphic mapping ®:Q; — s, where
det ®’ stands for the holomorphic Jacobian of ®. If we assume that the
boundary is smooth, the Szegd kernel K5 = Kg is defined similarly, by
using the space of holomorphic functions with L? boundary values. This
time, the dependence on a surface element on 02 must be taken into
account, and we shall be concerned with a case where a canonical choice
of surface element exists such that the biholomorphic transformation law
K§ = K§ o®-|det @'|27/(n+1) holds. Then KB and K are biholomorphic
invariants, a fact which leads to a problem of expressing these in terms of
explicitly constructed invariants. The functions KB and K® are smooth (in
fact, real analytic) in €2, while the boundary behavior is complicated when
n > 1; it depends on function-theoretic properties of €2. If in particular €2 is
strictly pseudoconvex, then KB(z) and K°(z) tend to 400 as z approaches
to the boundary. Furthermore, the boundary behavior of KB and K° can
be localized to a neighborhood of a boundary point of reference.

This paper concerns the local biholomorphic invariant theory, initiated
by Fefferman [11], for the boundary singularities of the Bergman kernel K5
and the Szegd kernel K5 of a strictly pseudoconvex domain  in C" with
smooth boundary. Here, the surface element on 02 which defines K° is
so chosen that K° satisfies a biholomorphic transformation law analogous
to that for KB. Assuming n = 2, we shall explicitly identify the invariant
asymptotic expansions of the singularities of KB and K such that the
boundary values of the coefficients are CR invariants of weight < 5.

Our result is special to dimension two at some crucial points. To ex-
plain these, we begin by giving an overview of Fefferman’s program of the
invariant theory [11] in general dimension. Let r be a smooth defining
function of 0 such that » > 0 in Q. Then, a theorem of Fefferman [9]
(see also Boutet de Monvel-Sjostrand [5]) states that

! B —1)! [ S
KB=" <SO —HﬁBlogr), KS:—(n ) (SO —f—wslogr),
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where B, B, ©5 5 are functions smooth up to the boundary such
that the boundary values of ¢® and ¢° are given by those of J[r] and
J[r]"/ (41 respectively. Here, J[r] denotes the Levi determinant (also
called the complex Monge-Ampere determinant) of r defined by

1\ r or 0z
Tl =(=1) det(ar/azj a%/azjazk>’

where z = (z1,...,2,) € C". The expressions of K and K® above are
compared with the classical asymptotic expansion of the heat kernel on a
compact d-dimensional Riemannian manifold M as the time t — 40:

Hy(z,z) ~ t~%? Z am(x)t™ for x € M.
m=0
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Here, each coefficient a,,(z) is a Riemannian invariant at z, i.e., an O(d)-
invariant polynomial of successive covariant derivatives of the curvature
tensor R. According to the Weyl theory, a,,(x) is a linear combination of
complete contractions of the form

contr (V" ?R@---@ VP 2R) with » p; =2m.

j=1

The present counterpart of Riemannian geometry is local biholomorphic
geometry, which is closely related to CR geometry on the boundary 0f2.
CR counterpart of O(d) is a parabolic subgroup of SU(n, 1), and the Rie-
mannian invariant has CR analogy, which we call the CR invariant, defined
by using Moser’s normal form N(A), A = (Aiﬁ)’ of 00

o0
2Rez, = |/|* + Z Z Aﬁéﬁz; 2 (Imz,)", 2= (2, zn).
lee],|B]>2 £=0

Here, the right side is a formal power series about the origin z = 0 and «,
3 are ordered multi-indices. Let IC® denote the totality of CR invariants
of weight w. Then, an element of IC® is a polynomial P(A) in A which is
subject to the transformation law

P(A) = P(A) - | det ®'(0)[>w/(»+1)
under formal biholomorphic mappings ®: N(A) — N(A) such that ®(0) =
0. Such a polynomial P(A) can be identified with a smooth local boundary
functional K = Kyq satisfying the transformation law

Kaoq, = Kapq, o ® - |det ®'|?/(™+1)  (on the boundary)

under local (or formal) biholomorphic mappings ®: 0y — 0€Qs. Thus,
examples of such P(A) are realized by the boundary values of smooth
local domain functionals K = K¢, satisfying

Ko, = Kq, o ® - |det |2/ (in the interior).

Rigorously, a technical condition concerning the polynomial dependence
on A must be taken into account, though we have omitted it above for
simplicity. Let us use tentative notation w'Y(K) = w to mean that the
above transformation law in the interior holds even when K = K¢ is not
smooth up to the boundary. Then wTl(KB) = n + 1 and wTt(KS) = n,
so that wTH(pB/r"t1) = n + 1 and wT(¢%/r") = n modulo smooth
functions up to the boundary, and wT (¢)B) = n + 1 and w™ (%) = n
modulo flat functions along the boundary.



Fefferman’s program is to invariantly express ¢® mod O(r"*1), ©° mod
O(r™), ¥® mod O(r™¥="), ¥° mod O(rN—"*1) for an integer N > 0 in
terms of r and its derivatives, with an appropriate choice of a smooth
local defining function r of 92 as a local domain functional. Specifically,
one seeks expansions of the form

7=0 Jj=n+1
n—1 N

= Z SO§ TJ + O(T‘n)’ ws — Z gp? ,r,j—n + O(TN_TL_'_I),
Jj=0 =

where go? = cp}g [r], gp? = gpjs-[r] are locally constructed functions which
are smooth up to the boundary. When N < n or N < n — 1, the above
expansions are interpreted as

©; 7’9+O N+1).

Mz

N
= Z 90;3 i+ O(rN T,

§=0 §=0
It is natural to require w'(r) = —1, J[r] = 1 and expect w'"(¢}) =

TL(QOJS-) = j, N = 4o00. The hope is strengthened by a lemma by Feffer-
man [10] stating that

J[ul] - J[u2] od if U1 = Uy od . |detq)/’—2/(n+1)‘

Then we are naturally led to a local version of the boundary value problem
for the complex Monge-Ampere equation

Jul]=1(u>0) in Q, u=0 on 0. (0.1)

However, an elementary construction in [10] of smooth local approximate
solutions via successive approximation stops at a finite step, and this is
compatible with later results of Cheng-Yau [6] and Lee-Melrose [17]. By
[6] the boundary value problem (0.1) has a unique solution ©™# with finite
differentiability up to the boundary, while by [17] the solution uMA has an
asymptotic expansion of the form

A me- (0 logp)k with = mi[p] € CF(Q)

for any smooth defining function p of 2. We thus confine ourselves to
the best possible smooth local approximate solution r of (0.1), which has
ambiguity O(r"*2) and satisfies

wil(r) = =1 mod O(r"2), Jir] =14+ 0™,
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We write » = ¥ for such a local defining function of the boundary. Let
r = rF. Then w™(pB) = 0 mod O(r"*1) and wT"(¢%) = 0 mod O(r™),
so that we have hope of getting go? and cp;q-’ for j < N such that

WIL(B) = wTh(p$) = ) mod (N 179)

with some N < 2n + 2 for g0}3 and N < 2n +1 for gpjs. This is realized by
giving for each j < N a vector space I; y of locally constructed smooth
functions with the following properties:

(1°) If ; € I; v then w(p;) = j mod O(rNT177);
(2°) The restriction to the boundary gives a surjection I; y — I jCR.

Here, the polynomial dependence on Moser’s normal form coefficients is
again ignored. The space Iy y is trivially defined by the totality of absolute
constants. Once such vector spaces I; y are given, the expansion of ¢ =
©B, ©° is obtained as follows. Define first g by the boundary value of .
Then ¢g € IOCR, so that ¢¢ € Iy n. If we have an expansion of the form

© =00+ o1r+ -+ T+ 0()

with some j <n+1orn (j < N), then ¢; € I; 5 is defined by taking
an extension of the boundary value of (¢ — g — 17—+ — ;1777 1) /1.
Similarly for the expansion of ¥ = ¢B, ¢S if N > n +1 or n.

To construct the spaces I; y as above, Fefferman [11] developed a new
theory, called the ambient metric construction, as follows. A Lorentz-
Kihler metric ¢ = g[r] depending on r = 7 is defined on C* x Q near
C* x 09 by the potential 7% (2o, z) = |z0|>r(2), where zg € C* = C\ {0} is
an extra variable. The curvature tensor R of this g is used in constructing
complete contractions of the form

W# = contr (Vql*QVpﬁQR R ® vqsﬂvps%R) ’

S S

iD= (¢-1)=w.

j=1 j=1
Then, each W# = W#[r] regarded as a functional of r takes the form
W#[r](z0, 2) = |20| > WTr](2).

For w fixed, we tentatively refer to linear combinations of these W = Wr]
as Weyl functionals of weight w and use notation IV for the totality of
Weyl functionals of weight w. Counting the number of differentiation and
developing the invariant theory, Fefferman [11] proved that I; y = IJW with
N = n satisfies the ambiguity estimate (1°) for j < n and the surjectivity
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(2°) for 7 < mn —19. The surjectivity (2°) was recently refined to j < n by
Bailey-Eastwood-Graham [1]. Consequently, the choice I; y = I]W with
N = n satisfies the conditions (1°) and (2°), so that the expansions of ¢®,
¢5 and that of 1 mod O(r) are obtained.

For n > 3, there are few explicit results. Christoffers [8] directly com-
puted ©® mod O(r®). The same result was obtained independently by
Diederich (cf. [20]). Graham [12] later showed dim IF® = 0 and that IS®
is generated by [|AJ]|* = > la]=2 |A9 |2, so that if 7 = ¥ then

PP = 1+, [ AGI1Pr2 +0(r?),  ¢° =1+ 3, [|A%]%* + O0(),

1 1

B

2,n
putation implies CQB’n # 0. These constants cQB,n, cg’m were later identified

where c5, and 5, are universal constants for n > 3. Christoffers’ com-
)

in [15]; in particular, cgm # 0. Consequently, a Weyl functional of weight
2 does appear in the above expansions of B and ¢S for n > 3.

Let n = 2. The feature is different from the case n > 3. Graham [12]
explicitly wrote down bases of [ ]CR for 7 < 4. In particular, dim I*® =
dim ISR = 0, so that

PP =1+00?); ¢=1+0(7), ¢5=0().

The first non-trivial space is I$®. According to Graham’s table [12], I$®
and ISR are one dimensional. (We have dim IS® = 2; see Proposition 1 in
Section 1.) Once we are given spaces I3 5 and I4 5 satisfying the conditions
(1°) and (2°), we get expansions of the form

5 5
WP =3 QP 00%), Wt =) i o) (0.2)

=3 j=3

with 7 = r¥, where ¢; € I;5 for j = 3,4,5 for ¢; = go?, gojs-. (We have

taken I 5 = Iy 5 = {0} and I5 5 = IS®.) Observe that the expansion (0.2)
does not follow from the above-mentioned results of general dimension.
The first difficulty is to discover a space I5 5. (Though there exists a Weyl
functional W € I3V such that 0 # W|sq € I$R, the ambiguity estimate for
W is bad. This is because W is linear in R, cf. Propositions 10 and 10’ in
Section 6.) A breakthrough was made by Graham in [12] and [13]. Fixing
r = 7%, he considered in [13] the initial value problem corresponding to
(0.1) and constructed a formal asymptotic solution of the form

uG =r> g (" logr)t, € C™(Q),
k=0

where the boundary value of (n§ — 1)/r"*! is prescribed arbitrarily as an
extra initial data. Then wT(n¢) = k(n+ 1) mod O(r"*1). It was proved



in [12] that if n = 2 then the boundary value of n{ generates IS®. Thus
I3 5 is defined by using 1" and we have expansions of the form

VB =B+ cBefRr +0(r?), ¥° = SnPr 4+ cfefBr? + O(r3)  (0.3)

with universal constants c? and cJS. for j = 3,4, where eJ® is a base of ITR.

Specifically, n¥|sq = 4A21 by [12], where the two dimensional notation for
Moser’s normal form coefficients A% = Af; 3 for |a| = p, |B| = ¢ is used.

Then ¢§ = -3, ¢&§ = —2 (cf. [12], [15]). The constants c} and ¢} were
identified in [15] with e{® specified.

The purpose of this paper is to refine (0.3) a step further and get the
expansions (0.2) explicitly. The point is the construction of the space I4 5.
For each w < 5, we define a subspace LYY of IV by

'Y ={wery; w"(W)=w mod O(r®7)},

and refer to elements of I'WF as Weyl-Fefferman functionals of weight w.
Thus the restriction IVF |5q is a subspace of ISR. Let us tentatively denote
by d,, the dimension of IWWF|5q. Our first main result (Theorem 1) states
that

di=dy=d3=0, dy=1, ds=2.

and gives bases of VY and I3VF. Consequently, we may take I;5 = IJWF

for j = 4,5 and get expansions (0.2). That is, once bases e}’ " € VY and

eV eWE € IVY are specified in such a way that e}'F|so = e$R, we get

B_ B G, B WF B WF , B WF\ .2 3
YT =cgny +egey 7”+(C51€51 + C52€52 )7” +O(r?),

s_ s a S WF_2 S WF , S _WF\ .3 4
YW =cymyr ey T +(C51€51 + C59€59 )7" +O(r?),

where B, B, ¢3;, c3, are universal constants (Theorem 2). It turns out
that we have two natural expressions for the choice of e}'¥, so that these
constants differ accordingly. Our second main result (Theorem 3) gives
the identification of these constants.

The Weyl-Fefferman functionals e}'¥, eWV¥ eW!F are nonlinear in R;
these are squared norms of tensors of the form V?~2VP~2R with respect
to the ambient Lorentz-K&hler metric g. The ambiguity estimates (1°) for
these are proved by using that Aﬁa = 0 for p,q < 3, a fact which is specific
to n = 2 and used throughout this paper. We deduce the surjectivity (2°)

for e}'F, eWF eWF from their explicit representations in Moser’s normal
form.

In determining the universal constants cB, c&,, ¢2;, 8, above, we need
explicit computations of Graham’s asymptotic solution u® as well as the
singularities of the Bergman kernel K and the Szegd kernel K. For KB



and K5, we use algorithms based on the microlocal calculus of Kashiwara,
[16] and Boutet de Monvel [2-4]. These algorithms were used in [15] in the
same context. For an algorithm of expanding u® with respect to Moser’s
normal form coefficients, we consider a linearization of the Monge- Ampere
operator J[-|, which is different from that of Graham [13] in constructing
u®. All computations are simplified by using a special class of domains.

This paper is organized as follows. In Section 1, we first give lists of CR
invariants and Weyl-Fefferman functionals of weight < 5, and then state
our main results on the Bergman kernel KB and the Szegd kernel K.
Our main results are reduced in Section 2 to several propositions which
are proved in the subsequent sections. In Section 3, we introduce the
notion of biweight which is a generalization of that defined by Boutet de
Monvel [2-4], and review some known facts from a viewpoint of biweight.
CR invariants of weight five are identified in Section 4. Section 5 is devoted
to the study of n*. Weyl-Fefferman functionals of weight < 5 are identified
in Section 6. In Section 7, we compute the singularities of K and K® by
using a method in [2-4].

Recently, the first author refines in [14] the result of this paper for KB
and that of Bailey-Eastwood-Graham [1] by giving a complete invariant
expansion of the singularity of KB for domains 2 in C". The expansion is
done with respect to a class of smooth defining functions of €2, for which
one can formulate a biholomorphic transformation law without ambiguity.
This class consists of the smooth parts of certain asymptotic solutions
of a Monge-Ampere equation lifted to C* x 2, and is parametrized by
a variable C' = (Ciﬁ) like Moser’s normal form coefficients A = (Ai B).
Then the boundary value of a Weyl-Fefferman functional is a polynomial
in (A, C), which is referred to as a Weyl invariant depending on C'. It turns
out that any CR invariant is realized by a Weyl invariant independent of
C, and vice versa.

The second author would like to express his gratitude to Professor
Charles Fefferman for suggesting the possibility of realizing the CR invari-
ant of weight four as the boundary value of a Weyl-Fefferman functional.

1. STATEMENT OF THE RESULTS

1.1. CR invariants and Weyl-Fefferman functionals of weight < 5.
We begin by recalling the definition of CR invariants. Let 2 be a strictly
pseudoconvex domain in C? with C*° boundary 0f2. We shall be working
near an arbitrarily fixed boundary point, say, the origin 0 € C2. Let us
assume for a moment that the boundary is real analytic near 0. Then,
after a holomorphic change of coordinates, €2 is locally given near z = 0
by 2u > |21]? + F(21,21,v), with z = (21, 22) € C? and 23 = u + iv, where



F is a convergent power series of the form

F(z1,21,0) = Y Apg(v) 202, Ayg(v) =D Al (1.1)
=0

D,q>2

satisfying Agp(v) = Apg(v) and Ay5(v) = Agz(v) = Agz(v) = 0. In this
case, we say that 0% is in Moser’s normal form at 0 € C2. Setting A =
(Af;a), we denote by N(A) the (germ of) real hypersurface in Moser’s
normal form with coefficients Afﬁ, and define \V to be the totality of such
A. We say that a real-valued polynomial P = P(A) in A € N is a CR
invariant of weight w if

P(A) = P(A) - | det ®'(0)[>*/3 (1.2)

for any local biholomorphic mapping ®: N(A) — N(A) such that ®(0) = 0.
By the construction of Moser’s normal form in [7], we may regard each CR
invariant as a real analytic function on 9f2 near 0.

In case 0f) is not real analytic and merely C*, we consider formal
power series. Then, after a formally holomorphic change of coordinates,
0f) is written formally in Moser’s normal form at 0. If we also consider
®: N(A) — N(A) as above as a formal power series, then the CR invariants
are defined as in the real analytic case. In this case, we may regard a CR
invariant as a C'°>° function on 0f).

Let IC® denote the complexification of the real vector space of all CR
invariants of weight w, so that I§® = C. (We also refer to elements of IC®
as CR invariants of weight w.) Then we have:

Proposition 1. IR = SR = {0}, dim ISR = dimI$® = 1 and
dim IS® = 2. The spaces IS® and ISR are generated by Al and |A% 7,

respectively. The space IST is spanned by Foc,f” and FS(I;”, where
FOr(A) = alAL* +b|A%[? + Re[(cAg5 —id AL Agﬁ}

with ¢ = —2a+10b/9 and d = —a + b/3.

Remark 1.1. The results on ISR for w < 4 above is due to Graham [12].
However, in the list of ISR in [12] and also in [15], the term Agg in F(S?(A)
is missing, though I$® was not used in [12] and [15] in the description of
the Bergman kernel and the Szego kernel.

We next define Weyl-Fefferman functionals. It is shown by Fefferman
[10] that there exists a C>° defining function r = rF of Q = {r > 0} such
that rF is unique modulo O*(99Q) and satisfies J[r¥] = 14 03(9Q), where
J[r] denotes the Levi determinant of r defined by

B r or/0zy,
Ilr] = det (ar/azj a2r/azjazk>
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and O™ (09) for m € Ny = {0,1,2,...} stands for an error term which is
smoothly divisible by the mth power of a C'*° defining function of 92. We
refer to any one of ¥ as a Fefferman’s defining function of €.

For r = r¥, we set

r#(zo,z) = ]z0|2r(z), (20,2) €eC* x Q (C*=C\{0}),

and define the ambient metric g by using Kahler potential r#, that is,
9% = 0%r# /02,07, for j,k = 0,1,2. Then g is a Lorentz-Kihler metric
near C* x 9 in C* x Q. Denoting by R the curvature tensor of g, we set
R4 = V1-2yP—2R for p,q > 2, where V and V stand for the covari-
ant differentiations. For each w € N = {1,2,...}, we consider complete
contractions of the form

W# = contr (R(pl"“) R ® R(ps’q3)> (1.3)

such that 377, p; = >0 ¢; = s +w, and we set w(W#) = w. There
may be several ways of taking complete contraction, and we choose one
of these. We consider a linear combination W# = ¢; W# + .- 4cn V[/'f\“}é
of complete contractions Wj# as in (1.3) such that W(W]#) = w, and call
W# a Weyl polynomial of weight w. Here, we regard the variable of W7
to be the components of R®% with p,q > 2.

We take a Weyl polynomial W# of weight w. Then for each domain €
and a Fefferman’s defining function r = 7¥ of Q, a function W#[r] in a
neighborhood of C* x 99 is defined by evaluating the curvature R®% for
the ambient metric g[r]. We see that W#][r] takes the form

W#r](z0,2) = |z0| > W[r](2),

where Wr] is a function in a neighborhood of 9€2. Due to the ambiguity
of the choice of r = r¥, the function W][r] is not uniquely determined.
Taking account of the ambiguity, we define Weyl-Fefferman functionals as
follows.

Definition. We say that W is a Weyl-Fefferman functional of weight w if
W is well-defined modulo 05~ (99).

Let IV¥ denote the totality of Weyl-Fefferman functionals of weight w.
We shall see in Proposition 3 that if W € IWF then its boundary value is
a CR invariant of weight w. We identify two Weyl-Fefferman functionals
if these have the same boundary value. In other words, we consider the
quotient space fy F of IVF by the equivalence relation of having the same
NG IR,

boundary value. Then one may regard as a linear subspace of

Now we have:

10



Theorem 1. IWVF = IWF = IWF — {0}, dim I)VF = 1 and dim I)VF = 2.
The space IVF is generated by either one of ||[R*2||2 and || R®3)(]2,and the
space IVF is spanned by ||[RG2 |2 and ||[RA)||2, where ||[R(@?) |2 denotes
the squared norm of the tensor R\“®) with respect to the Lorentz metric g.
(The squared norm need not be non-negative.)

Note by Proposition 1 and Theorem 1 that 0 = dim EWF < dim I$R = 1.
Instead, 4‘421 € IS® is realized as the boundary value of 1, where n¢ is
contained in Graham’s asymptotic solution u = u& of the complex Monge-
Ampere boundary value problem

Jul=1 (and u>0) in €, u=0 on 0. (1.4)

More precisely, Graham [13] showed that if r = r¥ is specified then for any
a € C*(019) there exists a unique formal series

oo

uC =7 Z njg . (7“3 10gr)j, njq c Coo(ﬁ), (15)

=0

such that u = u“ satisfies (1.4) formally and 1§ = 1+ar®+0*(99Q); each
n$' is independent of a modulo O3(842).

1.2. Invariant expansion of the Bergman kernel and the Szego
kernel. In addition to the assumption that 2 is a strictly pseudoconvex
domain in C? with C* boundary, we assume that € is bounded. Recall
that the Bergman kernel KB(z,w) and the Szego kernel K5(z,w) (z,w €
2) associated with €2 are defined by

KB(z,w) = Z WP (2) hB(w), K5(z,w) = Z hS(2) BS (w),

where {h?} and {hjs} are complete orthonormal systems of the Hilbert
spaces HB(Q) and HS(Q), respectively. Here, H2(Q) is the totality of L?
holomorphic functions, and H"() is the totality of holomorphic functions
with L? boundary values, so that the space H5(£2) depends on the choice
of a surface element o on 9€). We choose ¢ in such a way that the Szego
kernel is transformed by biholomorphic mappings invariantly in the sense
of [11]. Specifically, we assume that o satisfies

2
dzj N dZ;
o Adr=J[r]"/?dV(z) on 0Q, with dV(z)= /\ RIS

where r is an arbitrary defining function of 2. Then o is determined
independent of the choice of r. It is observed by Fefferman [9, 11] (see also
[5]) that KB(2) = KB(2,2) and K5(2) = K5(z, %) satisfy

2 B

S
™ B _ ¥ B 2.8 _ P S
7K _r_3+w IOgT, s K _T_2+¢ lOgT (16)

11



near 09, where ¢, B and ©°, ¢S are functions C> up to the boundary,
and ¢B = % = J[r] on 9. It is then shown by Graham [12] and in [15]
that if 7 = ¥ then

24
OB =1+0%09), B =-3n%+ = |A% 2 r + O?(09),
(1.7)
8
O =1+0%09), ¢°5=-2n5r+ G |A% 12 7% + 03(09),

with n$ in (1.5). We refine (1.7) a step further. That is, our main results
are stated as follows.

Theorem 2. Let r = r¥ be a Fefferman’s defining function of 0. Then
there exist real universal constants cB, 8, ¢B, ¢B B ¢B and e}, 5, cg,
¢, &, ¢ independent of the choice of 0 such that ¥® and ¢S in (1.6)
satisfy

oP + 307
= BRI |2+ (FIRCD + EIRD|2) 2 4 0%(00)
= FRED|2r 4 (B ROD|2 4+ RSP |2) 12 + 0% (09),
VS 20
= SIRAD|292 1 (SIROD |2 + SRV ) r* + 0%(00)

= SIRED|202 + (FIROD |2 + F[RED ) 1* + 0%(60).

Here |[R@Y) |2 are regarded as functions on the base domain Q by restrict-
ing to zg = 1.

Theorem 3. The universal constants in Theorem 2 above are given by

Pt =t S

1}20 14}120 7?40
B, Foga, =
= B B oo
§=o B0 5=

2. PROOFS OF THEOREMS 2 AND 3

2.1. Biholomoxl)hic transformation laws. Given a domain functional
K = Kq € C*(9Q) which is well-defined modulo O%(99)), we say that K
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satisfies the biholomorphic transformation law of weight w € Z modulo
OF(09Q) if
Ko, = Ko, o ® - |det ®'|**/3 mod O*(8Q)

for any biholomorphic mapping ®:§2; — 5. This notion can be localized
to a local domain functional K defined only near a boundary point, say
0 € C?, such that K satisfies the transformation law as above for any local
biholomorphic mapping ® which fixes the origin. For such K, we write
K e I&™(k). If K € I3™(k) for all k € N, we write K € 12" (oc0).

Proposition 2. Let ¢ and ¢S be as in (1.6) with r = rF. Then:
(1°) B € I8 (00) and ¥° € I3"%(c0).
(2°) rF € I*9%(4) and n§ € I39%(3).
(3°) If W € IYVY with w < 5 then W € I2"™(6 — w).

Proof. The statements (1°) and (2°) are not new, but we shall give the
proofs in order to show the reasoning. To prove (1°), let us recall that K5
and KS satisfy the biholomorphic transformation law of weight 3 and 2,
respectively, without error. Noting that the singularities of K and K5
are localizable near a boundary point (cf. [5,9]), we have B € I3 (c0)
and ¥° € 13" (00). To prove (2°), let us recall the transformation law for
the Levi determinant:

Juy] = Ju]o® if u; =uod-|det®'|"3,

where ®:Q; — Qs is biholomorphic and u € C*°(),) is arbitrary. Since
r¥ is unique modulo O*(99) and satisfies J[r¥] = 1 + 03(9Q), it follows
that ¥ € 1*9%(4). Similarly, we have u® € I*¥*(c0) formally, where the
meaning will be apparent though u¢ ¢ C>°(Q) even formally. This yields
0$ € 137 (3)

It remains to prove (3°). Following Fefferman [10], we lift a biholomor-
phic mapping ®:; — Q3 to a biholomorphic mapping ®#:C* x ; —
C* x €5 defined by

(29, 2) = (zo [det @' (2)]71/3, @(z)) .
If 7o is a Fefferman’s defining function on {23, then r; = ro0®-| det <I>'|_2/3
is a Fefferman’s defining function on € and ri = 7’# o ®# holds. Thus
g1 = (®7)*gs, where g; and gy are respectively ambient metrics with
potentials 7 and r¥. Consequently, if W#[ry] and W#[r;] are complete

contractions of the form (1.3) constructed respectively from r; and ry in
a same way, then

W#[ri] = W#[ry] o % and thus Wri] = W[ry] o ® - | det (I)/|2w/3.

13



Thus, if W € IWF then W € I#™(6 — w), because W is by definition
well-defined modulo O%~%(9Q) independent of the choice of r = r¥.

2.2. Polynomial dependence on Moser’s normal form coefficients.
Given an arbitrarily fixed boundary point, say, the origin 0 € C?, we
assume for a moment that 0€) is real analytic near 0 and that 0f) is in
Moser’s normal form N(A) = {2u = |z1|? + F(z1,%1,v)}. Setting

U(Z,z) :UO—F(zl,El,v), U() =2u— ‘21’2, (21)

we make a real change of coordinates (z1, z2) — (21, 25) defined by 2] = z;
and z5 = U 4 iv, so that '/ = U and v' = v. Abusing notation, we write
(21,U +iv) in place of (21,u'+iv"). Given a local domain functional K =
Kq € I3™(k), we consider the Taylor expansion in the new coordinates

where the coefficients ¢, are formal power series in (21,21, v), so that these
Taylor expansions make sense even when 0f2 is not real analytic. We write
K € I,(k) if all the coefficients of the formal power series ¢, for m < k
are polynomials in A € N. If K € I,(k) for all £ € N, we then write
K € I,,(c0).

Proposition 3.
(1°) B € I3(c0) and ¢S € I5(c0).
(2°) rF e I_1(4) and n¥ € I3(3).
(3°) If W € IYY with w <5 then W € I,(6 — w).

By virtue of Proposition 2, only the point of Proposition 3 is the poly-
nomial dependence, which will be seen in Subsections 3.1, 4.1 and 5.1.

2.3. Proof of Theorem 2. Recall by Proposition 3 that ¢® € I3(cc) and
n$ € I3(3), so that the boundary values of " and n{ are CR invariants
of weight 3. It is shown by Graham [12] that nf = 4 A% on 9Q. It
then follows from Proposition 1 that there exists a universal constant c§
such that 9B = c¢§ 7 on 0Q. We can thus define y2 € C>(Q) by 4B —
cBny = B r. Recalling by Proposition 3 that » € I_;(4), we see that
PP € 1,(2). Setting Wy, = [|[R*?)||2 and Wy = |RG3)||2, we have by
Theorem 1 and Proposition 3 that Wy, Was € I4(2). Thus Proposition 1
and Theorem 1 imply the existence of universal constants ¢ and ¢ such
that B = B W,y = &8 Wiy on 99Q. We can thus define 98,98 € C=(Q)
by
WP = B Wi + 05 r =3 Waa + 05 r.
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Arguing as before, we have 15, J? € I5(1), so that
Vg = c§ War +¢§ Waz + 01(09), 5 = Wsy +25 Waz + 0'(09)

with W5, = |R®2)||2 and W5y = [|[R™|?, where 5, B, B, &8 are
universal constants. This completes the proof for 1)®. The expansion for
1S is obtained in a same manner.

2.4. Explicit expressions in terms of Moser’s normal coordinates.
The proof of Theorem 3 requires explicit expressions in terms of Moser
normal form coefficients.

Proposition 4. Let v = (1,0,t/2) € C* x C2. Then, as t — +0,

|RW2|2(7f) = 25 - 7| A% + 2% Fro,036.2 .+ (A) t + O(%);
||R(3’3)||2(%#) =2%.3 |A2§|2 + 27 4! Fo5 043 4. (A) t + O(t2);
IRC2|2(7#) = =4 - (51)2Fy 18,44 (A) + O(t);

[REDI2(F) = =4+ (5 Faja5/5.0.4(A) + O(8),

where
Py o,z (A) = 1 |AS[ + c3 | AG[2 + Re| (dr AG; — idp A3y) AT ).

F

In particular, we have, for r = ",

3 11
RSO -3 RO = (2RI - DRI r 002 (22)

We now specialize the class of domains to

Qpg = {2u > [21|* + Agazfzi + Agﬁzg?f}
with p+¢ <7 and p > q.

Proposition 5. Let v, = (0,t/2) € C2. IfQ = Q,, withp+q <7 and

p > q, then
0y (1) = cpglni’] [Apgl* #7797° + O(), (2:3)
368 680 1956

where caz[’] = 5 cs2lnf’] = — 3 caslny’] = — 5
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Proposition 6. If Q = Q,, withp+q <7 andp > q, then

2 _ —
PP (1) = epg W] |Agg|” 77177 + O (),

S S11 40 |2 —4 -3 (2.4)
(1) = cpg[U°] | Ag| T + OPTIT3 (1),

where

caa[B] = —216, c52[t)B] = 660,  ca3)®] = 1116,
440 4040

ca[9)°] = — 3 cs2 Y] 5 cas[y®] = 760.

2.5. Proof of Theorem 3. By virtue of Theorem 2, it remains only

to determine universal constants cP, ¢, B, ¢B, B, B and ¢}, 5, 5, &,

¢, &. By (2.2), it suffices to identify cP, cB, ¢§ and ¢}, 5, c5. We thus
specialize the class of domains to §2,, with p +¢ < 7 and p > ¢. It then
follows from Propositions 5 and 6 with Theorem 2 that

(cpalt?®] + B epaln]) | Afg|” 74777

= FIREOD 2+ (B ROV + f |RAD|2) 2 + 0 (1),
(cpalt®] + 2 cpalnf]) |AGg [ 7

= SIROD22 + (S IRV + & ROV 2) ¢ + 0%(0),

(2.5)

where the Weyl-Fefferman functionals in the right sides are restricted to
z = 7, and the constants c,q[n%], cpg[VB], cpg[t0®] in the left sides are
given by Propositions 5 and 6. We now use Proposition 4. If (p, q) = (4, 2)

then (2.5) with [R42)|[2(0) = 2 - 7| A% |” yields

If (p,q) = (5,2), then
IR (1) = 2% - 50 [AZ|* ¢ + O(t?)

and | RG-2)[2(0) = 3 R4 |2(0) = —4- (5!)2 | A2 |2, so that (2.5) yields

4 19 4 13
B, *B_ _19 s, %8s _ 1o
2T 3% = 500600 2T 3% 90720
Similarly, if (p,q) = (4, 3), then (2.5) yields
19 17 19 41
B, 19 B _ s, 19 s ‘
T30 T 552000 302 T 153600
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Solving these, we get the desired result.

3. WEIGHT AND BIWEIGHT WITH RESPECT TO DILATIONS

Let us assume that M C 02 is an open C'*° portion and in Moser’s nor-
mal form M = N(A). For the coordinates (z,%), we set F4 = C[A][[z,Z]],
the totality of formal power series in (z,Z) such that the coefficients are
polynomials in A. In this section we introduce the notion of biweight on
F4 as an obvious generalization of the weight for CR invariants and lo-
cal domain functionals such as Weyl-Fefferman functionals, by weakening
the transformation law under local biholomorphic mappings to that under
dilations

da(z1,20) = (A2, |A[?20) for X\ e C*. (3.1)

We also consider the biweight on classes containing F 4.

3.1. Biweight for Moser’s normal coefficients and coordinates.
For A = (Af;q), we define w-biweight of Af;a and that of constants by

wi(Al)=(p+l—1,q+0—1) (3.2)

and w3 (¢) = (0,0) for ¢ € C*. (We do not define w3 (0), but this will be
naturally interpreted in each case, for instance, as wj (0) = (—00, —00).)
Then the notion of w-biweight extends to monomials in A in such a way
that

wi (PL(A) Pa(4)) = wi (PL(A)) + wi (Pa(A)) (33)

for monomials P;(A) and P»(A), where the sum of biweight is defined by
(w, wy) + (wh, wh) = (w] + wh,w] + wi). For a polynomial P(A), we
write
P(A) = Pi(A)+---+ Py(4) with w3 (P;(4)) = (w),w]), (3.4)
where P;(A) are monomials constituting P(A). We say that P(A) is of wt-
biweight (w', w") and write wy (P(A)) = (w',w") if (w}, wj) = (w',w") for
all . When we do not specify (w’, w”), we say that P(A) is of homogeneous
wT-biweight. The equality (3.3) remains valid when P;(A) and P,(A) are
polynomials of homogeneous wT-biweight.
For Moser’s normal coordinates (z,Zz), we define w™-biweight for mono-
mials in (z,Z) by setting
wy (A47{275") = (=p— L= m,—q =L —m) (3:5)
and w, (¢) = (0,0) for ¢ € C*. As in the case of wt-biweight, the notion
of w™-biweight extends to polynomials in (z,z). In particular, w, (Up) =
(—1,-1).
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Let 0, = (01,02) and 0z = (01, 05), where 0; = 0/0z; and O = 0/0%y.
We define w™-biweight for monomials in (0., 0z) by setting

wy (O7020505") = (p+ L +m,q+ L +m), (3.6)

and extend the notion of w~-biweight to polynomials in (0,,0z). Since
(3.6) is consistent with (3.5), the notion of w™-biweight extends to (linear
partial) differential operators with polynomial coefficients. We note that
w ™ -biweight defined by (3.5) and (3.6) differs by sign from biweight defined
by Boutet de Monvel [2—4].

For monomials P = P(A;z,Z) in A and (z,Z), we define its biweight by
setting wo(P) = wj (P) + w, (P). Then the notion of biweight extends
to polynomials in A and (z, %), and hence, to the space F4 defined at the
beginning of this section. In particular, wo(U) = (=1, —1). If an element
P = P(A;2,Z) of F4 is of homogeneous biweight, then Py (A) = P(A;0,0)
and P_(z,Z) = P(0;2,z) are polynomials of homogeneous w™-biweight
and w~-biweight, respectively, and w5 (Py) = wo(P) = w, (P_). The
notion of biweight extends to differential operators with coefficients in F4.

Let us give a remark on dilations in (3.1). Obviously, w~-biweight
corresponds to the exponents of the homogeneity with respect to dilations:

P(6r(2), 2(2) = AN P(2,7) i wy (P(2,2)) = (w',w"),

while wt-biweight corresponds to the exponents of the transformation laws
under dilations for Moser’s normal form coefficients:

Al = NPl AL where N(A) = ¢, (N (A)).
Consequently, a series P(A;z,Z) € F4 is of biweight (w’,w”) if and only
if

P(A;¢x(2),0x(2)) = A 'A% P(A;2,7) for every X € C*.

3.2. Weight associated with biweight. We first define wT-weight for
polynomials P(A) in A. We set wt(P(A)) = (w' +w")/2if P(A) is of wt-
biweight (w’,w”). In general, P(A) admits a unique decomposition (3.4),
where P;(A) are polynomials of homogeneous w*-biweight. If W +wf =
2w for all j, we say that P(A) is of wT-weight w and write w (P(A)) = w.
As in the case of biweight, we say that P(A) is of homogeneous wt-weight
when w is not specified. If P(A) € ISR, then wy (P(A)) = (w,w) and thus
wh(P(A)) = w.

Similarly, w~-weight is defined for polynomials in (z,%) and for differ-
ential operators with polynomial coefficients. (We note that w—-weight is
—1/2 multiple of weight defined in [2-4].) Also, weight is defined on the
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space F4 and for differential operators with coefficients in F4. In par-
ticular, w(U) = w—(Up) = —1. We have seen that the notion of weight
(with respect to dilations) is associated with that of biweight. Similarly
for extensions of biweight which will be done in subsequent subsections.
Therefore, once biweight is introduced, we regard that the corresponding
weight is defined.

Let w; = (w}+w?)/2 in the decomposition (3.4). If w; > w (resp. < w)
for all j, we say that P(A) is of wr-weight > w (resp. < w) and write
w(P(A)) > w (resp. < w), though w*(P(A)) may not be determined as
a number. This notation is justified by the fact that if w™(P(A)) > w
and w(P(A)) < w then wt(P(A4)) = w. Note that if wH(P;(A)) > w;
(resp. < wj) for j = 1,2 then wt (P (A)P2(A)) > wi+ws (resp. < wq+ws).
Similarly, we define the notion for polynomials P(z,%) in (z,%Z) to be of
w-weight < w (resp. > w) and write w™ (P(2,%)) < w (resp. > w). These
notions for w¥-weight extend to F4 by regarding (z, %) or A as parameters.
Then, for an element P = P(A4;z,z) of Fu with w(P) = w, P is of w-
weight > wy (resp. < wy) if and only if P is of w™-weight < w — wy
(resp. > w — wy).

3.3. Biweight for powers of UO_1 and logU. Setting w; (UJ") =
(—m, —m) for each negative integer m, we define biweight for formal power
series of U, ! with coefficients in Fa:

0
P(A;2,%z) = Z P, (A;2,2)UJ", P,, € Fa,

m=—oo

by wo(P) = (w',w”) if wao(Pp) = (w' + m,w” + m) for all integers
m < 0. Expanding negative powers of U = Uy(1 — F/Uy), we see that
wo(U™) = (—=m,—m) for m € Z. It should be noted that the expansion
of P above is not unique, unless each P,, is normalized to be independent
of Uy in the coordinates z1,Zz1,v,Uy. Nevertheless, the series for P with
general P, makes sense as an asymptotic series of increasing w™-weight
(or equivalently, decreasing w—-weight), as in the case of elements of Fjy.
That is, for any integer w > 0, there exists an integer m(w) < 0 such that
if m < m(w) then w(P,,) > w and if m(w) < m < 0 then P,, modulo
terms of wt-weight > w is uniquely determined by a polynomial in (z,%)
contained in P, = P, (A;z,%).

We next set wa((logU)*) = (0,0) for k¥ € N, and define biweight for
formal power series of log U with coefficients in F4 by the additivity as
before. Then the biweight of log U is consistent with that of U~! via
partial differentiation, and the restriction to A = 0 leads to the definition
w, (log Up) = (0,0). This definition is also consistent with the biweight of
logU —log Uy = log(1 — F/Up), where the right side is expanded as in the
case of negative powers of 1 — F'/Uj.
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Let us finally consider a formal defining function r of M = N(A) which
is regarded as an element of Fju, that is, r/U € F4 and r/U > 0 at
(2,2) = (0,0). If wo(r) = (—1,—1), then log (r/U) € F4 is of biweight
(0,0), and thus ws((logr)¥) = (0,0) for k € N.

3.4. Ambiguity of Fefferman’s defining function r¥. Let us recall
that ¥ is unique modulo O(U%). An elementary calculation shows that
this ambiguity is indeed arbitrary. That is, if a function 7, C* up to
the boundary, satisfies 7 — r¥ = O(U?) then J[F] = 1+ O(U®). Thus,
identifying ¥ with its Taylor expansion with respect to the coordinates
21, 51, v, U,

’I"F: ZPm(zl,El,v)Um, P1:1,
m=1

we see that P, for m > 4 are arbitrary; while P,, for m < 3 are shown to
be elements of F/, = C[A][[z1,Z1,v]] by virtue of Fefferman’s construction
of 7¥ in [10]. We define C' = (C’ﬁ%”) by writing

P, = Z Clmlzivt for m >4,

p,q,£20
and set , N
rh=> PUm, - =>"PUm (3.7)
m=1 m=4
Setting as in (3.2)
wi(Chm)y = (p+L+m—1,q+¢+m—1), (3.8)

we first extend the notion of wT-biweight to polynomials in (A, C). Then
the notion of biweight extends from F4 to F4,c and .7:1/470, where

Fac =C[AC[z,7]] and F) o= C[A,C][[z1,%1,v]].
It follows that P, € Fy o and w2(Pp) = (m —1,m — 1) for all m, so that

WQ(T‘F) = WQ(TF — ri) = Wg(ri) =(-1,-1). (3.9)

3.5. Biweight for covariant derivatives of the curvature tensor.
Setting w, (z0) = w, (Zo) = (0,0), we extend the notion of weight to the
space C[A,C’][[zo,20_1,2,20,20_1,2]], where the connection with dilation
is ignored. Then

w (0p) = wy (05) = (0,0), where 0y = 0/0z¢ and d5 = 9/0%.
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It follows from (3.9) that wo(r#) = (=1, —1) for r = 7¥. We set
w, (dz;) = wy (2;5) and w, (dZy) = wy (Z) for j,k=0,1,2.

It then follows from the definition of the ambient metric g = (g,z), which
is a covariant tensor, that

2
wa(g) = W2< Z 974z ® d2k> = (—1,-1).
5,k=0

(We also have wo(det(g,z)) = (0,0).) This together with Cramer’s formula
implies

wa( Y g0 @) = —wa(g) = (1,1),

3,k=0

where (¢7*) is the inverse matrix of g = (g 7). These equalities are written
componentwise as follows:

wa(g7) = wy (jk) — (1,1) = —wa(¢’") for j,k=0,1,2,  (3.10)
where w; (jk) = w; (0;07). More generally, we use the notation
wy (af) = w; (Dadp)

for (ordered) multi-indices @ = ay -+, and 5 = (1 --- [ with «;j, Ok €
{0,1,2}, where 0 = 0a, -+ Oa, and 05 =03 - -0, We also write

wy (7) = wy (aB) = Wy (0a0p),

where 7 is a multi-index of mized type obtained by a rearrangement of af3.
For the later use, we set

laf =a, [Bl=181=0b, Il=lal+]B].

For the (covariant) curvature tensor R = (R,g,;) of the metric g, we
have

wa(R) = (=1, 1), ie., wa(R ) = wy (kfm) — (1,1), (3.11)

a fact which is obtained by applying (3.10) to the expression

2
R iy = 0i0p000mr™ — Y g"1(050;007) (0,00 ).

jkfm
p,q=0
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We also have, for the (iterated) covariant derivative VR = (VR ) of

order ¢ (v being multi-indices of mixed type with |y| = ¢),
wa(VER) = (=1, -1), ie, wa(Vy R gm) = wy (yikem) — (1,1). (3.12)

More generally, if a covariant tensor S is of homogeneous biweight, so is
its covariant derivative T of arbitrary order and wo (7)) = wa(.S). We write
this fact as follows:

w2 (V) =(0,0), or equaivalently, w5 (V,) = w5 (7). (3.13)

By virtue of (3.13), we see that (3.11) yields (3.12). This fact (3.13) is ob-
tained by using WQ(ng) = w, (jk) — wy (£), where F?k =3 ¢ (0;9km)
are the Christoffel symbols; indeed, Vo, = 001 — >, Fﬁ-kw, Vior =
8j P etc.

Suppose we are given a covariant tensor S = (S,) of homogeneous
biweight. Let us describe the effect of raising arbitrarily certain indices in
7 via the (covariant) metric tensor (¢7*). We first define the dual indices
by (0*,1*,2*) = (2,1,0), and then extend the definition to multi-indices,
so that we have a* for a. Setting B* = (3%, we get a mapping v — v* for
multi-indices of mixed type. Then it follows from (3.10) that

w2 (S7) = wa(S5+); in particular, wo(SP) = wa(Sq7g-)- (3.14)
Similar equalities are valid when we raise indices partially. For instance,

wa(S,0) = w2(S 5), where v and § are of mixed type.
For a multi-index of mixed type v = 71 - - - V., we define its transpose by

Y= Yo Y1, and write V’YR]E% = RjE@ﬁ;t’y' We also set

t

Ryg = R With a=jta’,f=kmf'.

Then (3.12) yields wa(R 3) = w, (aB) — (1,1). Consequently, (3.14) and

wy (777) = wa () + wy (7F) = (7], )
imply

wa(R,5) +w2(R*) = (Ja| + 6] - 2,]a] + 6] - 2),
wa(Ra®) = (Jo] = 1,]a] = 1).

Let us finally give a remark on the change of coordinates. In Section 5
below, we shall compute covariant derivatives of the curvature tensor with

22



respect to the projective coordinates ¢ = ((p,(1,(2) defined by (o = zo,
(1 = 2071 and (o = zpz2. Nevertheless, the facts stated in this subsection
remain valid with respect to the coordinates ¢ in place of (2, z), because

wy (¢j) = wy (%) for j7=0,1,2.

3.6. Transformation laws for the singularities of KP and KS.
So far in this section we have assumed M = N(A) € C*°, because local
biholomorphic transformation laws are apparent for locally constructed
objects such as CR invariants, the Monge-Ampeére asymptotic solutions
and Weyl-Fefferman functionals, even when the mappings are given by
formal power series. We have to be careful in treating the Bergman kernel
KB and the Szegd kernel K3, since we consider the localizations of KB
and K which are defined globally and thus the transformation laws are
not obvious.

Let us begin by recalling the asymptotic expansions of KB and K.
Assuming 02 € C*°, we specify a defining function r of ) arbitrarily. To
unify the description, we set

K® = (x2/2)KB, K® = 72KS,

and consider K) for w = 2,3. According to Fefferman [9] and Boutet de

Monvel-Sjostrand [5], there exists a sequence {K,(#) )}mZO of functions of
the form

K = or™ +dplogr with ¢,¢, € C*(9Q),

such that 1, — ¥,—1 = O(r™), and, as m becomes larger, K(*) — K is
smoother and the vanishing order at 0f2 is higher. Hence, if we let m = oo
formally, then

K™ ~ or= 4 qplogr  with ¥ — b, = O(r™Hh). (3.15)

More precisely, v is realized as an element of C> (), and the difference
between both sides of (3.15) belongs to C'>°(2).

Fixing p € 0S) arbitrarily, we take a local coordinate system z about the
origin in such a way that r = Uy + O(|z|3). Identifying ¢ modulo O(r%)
and 1 with their Taylor expansions at the origin, we regard the right side
of (3.15) as the (formal) singularity of K(*). We also identify r with its
Taylor expansion. Then, in view of the constructions in [9] and [5], we
see that the mappings of the Taylor coefficients of r to those of ¢ modulo
O(r™) and 1 are well-defined and that these are polynomial mappings. In
particular, the singularity of K(*) is localizable.
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Let us next consider the local transformation law. Suppose we are given
a biholomorphic mapping ®: U — U’ such that

(M) =M, o(p) =y, (3.16)

where U C C? is a neighborhood of p and M C U is a strictly pseudoconvex
C*®® real hypersurface containing p; similarly for p’ € U’. More rigorously,
M and M’ are germs of C* hypersurfaces at p and p’, respectively, and
® is a germ of biholomorphic mapping satisfying (3.16). Shrinking M if
necessary, we take arbitrarily a smoothly bounded strictly pseudoconvex
domain © CcC C? such that M C 9. Denoting by KS(;U) the kernel K
associated with €2, we write the (formal) singularity of Kg()w) as KJ(\ZU). It

then follows from the polynomial dependence above that K ](\ZU) is indepen-
dent of the choice of €). Consequently, we may write, corresponding to
(3.15),

K](\;) _ gm“iw +Ylogr with ¢, ¢ € (C[[Z,Z]]

To get the transformation law for K ](\ffv), we first shrink M to My so that p €
My CC M, and take a smoothly bounded strictly pseudoconvex domain
Qo € QNU in such a way that My C 9Qy. Then Qf = ®(Q) is a
smoothly bounded strictly pseudoconvex domain, and Mj = ®(My) is a
real hypersurface satisfying p’ € M) CcC M’ and M} C M’. Hence, the
global transformation law yields

K& = (K o ®)| det &2/, (3.17)

We consider (3.17) about p € M. Let us write, in the sense of (3.17), as
follows:

Kiy) ~org ™+ vlogro, Ko ~fng™" 4+ logrp, - (3.19)
where 79 and 7 are defining functions of )y and (X, respectively. (We
may take rqg = r near My.) That is, if we regard M and M’ as C*° germs,
then the right sides of (3.18) are respectively Kgg) and Kg(;g) in the C'*°

sense. Let us first assume that rj satisfies 79 = r} o ®| det ®'|~2/3. Then
(3.17) yields

o=¢ 0o®+0(r¥), 1= (¢ o®)|detd|>/3 (3.19)

which constitute the local biholomorphic transformation law for the singu-
larity K ](\1;). In case r{, is a general defining function of €}, the transforma-
tion law for ¢ is unchanged while that for ¢ is subject to an obvious change.
Even when ® is given by a formal power series, (3.19) remains valid as a for-
mal transformation law. Consequently, we may assume M = N(A) € C°
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as in the previous subsections. Also, the polynomial dependence of "
and 15 on A in the sense of Subsection 2.2 becomes apparent.

3.7. Biweight for simple holonomic singularities. Assuming M =
N(A) € C* as before, we use coordinates (z1,%1,U,v) and consider for
w € Z fixed a (formal) singularity of the form

w—1 [e%s)
K(z,z) = Z O UMY + Z o U™ " log U, (3.20)
m=0 m=w

where ¢, € F'y satisty wa(¢p,) = (m, m) for m > 0. We abbreviate these
conditions by writing wa(K) = (w,w). When w < 0, we agree to regard
©m = 0 for m < 0. Observe that K does not involve (formal) smooth
terms.

Recalling that U depends on A € N, let us expand logU and negative
powers of U as in Subsection 3.3. Then (3.20) with wo(K) = (w,w) yields

w—1 o)
K(z2) = Y anlUd"™"+ Y anlUi" “logUp+---,  (321)
where a,, € F/y satisfy wa(an,) = (m,m) for m € Z, and --- stands for

terms which belong to F4. We can recover {¢,,} from {a,,} via

i an U 1og Uy = i o U™ % 1og Uy,
- B o
Z an Uy ™" = Z o UM™Y + Z U™ log(1 — F/Uy) +--- .
m=—o0o m=0 m=w

The latter equality also yields w™ (a,,) < w™ (F™) < 3m < 2m for m < 0.
Consequently,
w (an,Ug") < —|m| for m € Z. (3.22)

Let us next recall the complex normal form of M = N(A) introduced by
Boutet de Monvel [2—4]. This is defined by solving the equation U(z,%z) = 0
for M with respect to the variables Z5. Then M is given by

22:—,22—|—|21’2—|—HB(Z,§1)7 that is, UB(Z,E):O

with Ug(z,%) = Uo(2,2) — Hp(2,%1), where Hp(z,%1) is a (formal) power
series of the form

Hp(z,71) = Y Bug(22)2Z] with Byg(z) = > Bz,
=0

p,q=>2
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It follows that Byg(22) = Byg(22) = Bss(22) = Bgg(22) = 0; thus the name
complex normal form. We also have

wy (Brg) = wy (A4g),  Fp = Fa. (3.23)

In fact, A = (Afﬁ) — B = (Bf;q) is an injective polynomial mapping
together with its inverse, and preserves w—-biweight; in particular, B = 0
if and only if A = 0.

We now use coordinates (z,z1,Upg). Then (3.20) with wo(K) = (w,w)
and (3.23) yields

w—1 0
K(2,2) =Y YuUg ™"+ Y ¢nUg “logUs, (3.24)

m=0

where v, € C[A][[z,Z1]] satisfy wa(1,) = (m,m) for m > 0. The right
side of (3.24) is the formal version of a simple holonomic singularity in the
sense of Sato, Kawai and Kashiwara [19], cf. [16] and [2-4]. As in (3.21),
we get by (3.24)

w—1 o)
K(z2Z)= Y bnaUl"™"+ Y bpUi “logUp+ -+, (3.25)

m=—oo m=w

where b, € C[A][[z, z1]] satisfy wa(b,,) = (w,w) for m € Z, and - - - stands
for an element of C[A][[#,Z1,U]]. As in (3.22), we have

w (b UJY) < —|m| for m € Z. (3.26)

Observe that b(0,0) = 1¢(0,0) = ¢0(0,0,0) = ag(0,0,0), which is of
w ™~ -biweight (0,0) and thus a constant independent of A.
3.8. Biweight for microdifferential operators of infinite order.
Let us define [Up],, for m € Z as the singularities by

Cn Uy log Uy, Cp, =1/ml! for m >0,

[UO]m = m m-+1
Cr Uy, Cp=(=1)"""(—m—-1)! for m < 0;

thus 05 [Uolm = [Uolm—_r and [Up]o = logUy. Then (3.25) with wo(K) =
(w,w) and (3.26) is written as follows:

[e.e]

K(z2) = Y cn(22)[Uolm—uw (3.27)

m=—0oo

wo(Cm) = (m,m), w (cn[Uolm) < —|m| for meZ, (3.28)
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where ¢, (2,21) = (1/Cp—w)bm(2,Z1). Observe that the operator 0y act-
ing on such singularities is invertible, and the inverse 05 !is determined
85 ' [Uolm = [Uo]m+1 and

0y 1( f(z2)[Uolm Z JJC(J) (22 UO]m+1+J for f(z2) € C[[22]].
7=0
In particular, 9105 ' [Uolm = —Z1[Uo]m. We thus set
Q(27C) = Z Cm(za_gl/QZ)CQ_m € CHZ’ g,1/62]],

where ¢ = ({1, (2) stands for the dual variable of z = (21, z3). (Be careful
that ¢ here is different from that in the projective coordinates at the end
of Subsection 3.5.) Then (3.27) is written as

oo

K(2,2) = Q(z.0.)[Un)—w, Q(z.0:)= . cmlz,~010,1)05™, (3.29)

m=—0o0

and thus Q(z, () is the total symbol of Q(z,0.).

We define the notion of w*-biweight and biweight for Q(z,d,) and
Q(z,¢) so as to be consistent with the definition for K(z,%z) via (3.28).
This is done by setting w; (95 ') = (=1, —1) and

Wy (G) = (1,0), wy (G2) = (1,1),  wy (1/G) = (=1, -1).

Then the condition (3.28) is written as
w2(Q) = (0,0), W (em(z,—C1/G2)6 ™) < —|m| for m € Z. (3.30)

In particular, if we write @ = Y Q; with w™(Q;) = j € Z by arranging the
terms of Q(z,() € C[[z,(,1/¢]] then Q;(2,() € C[z,(,1/¢2]. We denote
by M the totality of the formal operators Q(z,d,) as in (3.29) satisfying
(3.30). Hence our singularities are parametrized by M via (3.29).

Given @) € M and a sequence {Qr} in M, we write Qr — @ in
M= if w(Q — Q) < wy with a sequence wy — —oo. Then the notion
of limit with respect to w™-weight is defined on M, and each element of
M can be regarded as an asymptotic series via (3.30).

We now define a subclass Mtite c M as follows: @ € Mfinite if
in the series expression (3.29) there exists my = mo(Q) € Z such that
¢m = 0 for m < mg. Hence each Q € Mfirite js the formal version of
a pseudodifferential operator of order < —myg, or rather, a holomorphic
microdifferential operator in the sense of Sato, Kawai and Kashiwara [19],
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cf. [16] and [2-4]. Thus each Q € M is called (the formal version of)
holomorphic microdifferential operator of infinite order. In general, Q) €
M is not pseudo-local and amounts to a Fourier integral operator. It
follows from (3.30) that each Q € M® can be approximated with respect
to w-weight by a sequence in M Tet us also note that Afinite
is closed under operations of taking the formal adjoint and composition,
defined by the symbol relations

. 1 . 0?
Q (Z, ) - kZ:O E(az : aC) Q(za _C>7 az 8C ~ ag]@gj?
(Q10Q2)(2,¢) = < %(az’ -8@)'“{@1(2,0)622(2’,()})
k=0 " (2/,¢")=(2,0)

It is seen that these operations extend consistently to M.

Let us finally consider the inversion in M*. For A € C, we denote
by M>(A) the totality of @ € M such that ¢¢(0,0) = X in the series
expression (3.29). It is clear that if @ € M*°(\) then Q* € M>(\) and
that if Q € M™>()\;) for j = 1,2 then Q1Q2 € M (A A2). It follows from
(3.30) that if Q@ € M®(0) then w=(Q) < —1/2 and thus w— (Q¥) < —k/2
for k € N. Consequently, if Q € M>(1) then 1 — Q € M*(0), so that

oo N

D (1-Q)F = lim > (1-Q)" e M*(1)

N —o0

is well-defined and gives the inverse Q! of . Since M>()\) = AM®(1)
for A € C*, it follows that the union of M>(\) over A € C* constitutes
invertible elements in M, and that Q~! € M (1/)) when Q € M>(\).

4. CR INVARIANTS OF WEIGHT < 5

4.1. Polynomials of homogeneous biweight. Recall that a CR in-
variant of weight w is a polynomial in Moser’s normal form coefficients
A= (Afﬁ) of (homogeneous) biweight (w,w) in the sense of Subsection
3.1. To prove Proposition 3, we thus begin by determining all such poly-
nomials for w < 5.

Lemma 4.1. Letw <5, and let P, (A) be a real polynomial in A = (Afﬁ)
of biweight (w,w). Then

Py(A)=a, Pi(A)=Py(A)=0, Py(A)=aAl,
Py(A) = Fape(A), P5(A) = Fupedeas(A),
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with Fape(A) = a|A%[* +b A% + c AL, and

Fubedcap(A) = 0| AD[? + b A%[% + Rel(a A% + 5 ALy) A,

0 1 2
+ CA66 + dA5g + eAM,

where a,b,c,d,e € R and o, B € C are arbitrary constants.

Proof. Let Vj denote the vector space of real homogeneous polynomials in
A of degree k > 0. Obviously, 0 # P,(A) € V; if and only if w = 0, and
this fact yields in particular Py(A) = a. Recall next that A% = Agg =0
and that if Wg(Af)a) = (w,w) then ¢ = p and / = w —p+ 1. We then
see that P,(A) € Vi is possible for w = 1,...,5 only when P;(A) = 0,
P5(A) =0 and

P3(A) =a Al

Py(A) = Fope(A),  P5(A) = Foocdeoo(4),

respectively. Let us now assume that 0 # P, (A) € Vi for £ > 2. Recall
that if AL; # 0 then w(Al;) > 2, and that w(Al;) = 2 if and only if
Af;q = AgZ or Agﬁ. Consequently, w = w(P,(A)) > 2k, and in particular
w > 4. (This yields in general P;(A) = P2(A) =0 and P3(A) = GAZZ‘) If
w = 4 then k = 2, while Py(A) € V5 is a real quadratic polynomial in AgZ
and A}, so that Py(A) = a|A|*. (Thus Py(A) = Fupe(A) in general.)
It only remains to consider the case w = 5, in which case we have again
k = 2. What we need to show is that the assumption 0 # P5(A) € V;
implies P5(A) = Fapo00a3(A). Observe that Ps(A) is a linear combination
of monomials of the form @Q1(A)Q2(A), where the following two cases are

possible for Q; = Q;(A):

w(Q1) =w(Q2) =5/2; or w(Q1) =3 and w(Q2) = 2.

In the former case, Q1Q)> is a constant multiple of |Agﬁ|2 with (p,q) = (5,2)
or (4,3). In the latter case, the possible choices are Q1Qs = o A% A°

35°742°
I} A;ZA% and their complex conjugates. Therefore, P5(A) = Fap00003(4)
as desired. N

4.2. A group action on polynomials in A. To describe the nonunique-
ness of Moser’s normal form, we recall Moser’s construction of normal
forms. For A, A € N, let B(A, A) denote the set of all formal biholomor-
phic mapping ® near the origin such that ®(0) = 0 and ®(N(A)) = N(A).
Let H denote the isotropy group of the Siegel domain 2u > |z1|?. Thus,
H consists of automorphisms of the Siegel domain which fix the origin. In
[7] (see also [18]), a group action

HxNe€(hA)—hAecN

29



is constructed in such a way that for each (h, A) € H x N there exists ® =
D1, 4) € B(A, h.A) with ®'(0) = h'(0) having the following properties:

(i) If h(N(A)) = N(A) for some A € N, then ®(; 4y = h;

(ii) For each ® € B(A, A), there exists a unique h € H such that

A=h.Aand & = (I)(h,A)-
Therefore, formally holomorphic equivalence classes of A/ are realized as
H-orbits of N. Consequently, the transformation law (1.2) is equivalent
to
P(h.A) = P(A)|det h'(0)|~2*/3 for any h e H. (4.1)

It is convenient to rewrite the transformation law (4.1) by the Lie group
H in terms of the Lie algebra of H. In fact, we have:

Lemma 4.2. A real polynomial P(A) of biweight (w,w) is a CR invariant
of weight w if and only if

d
—P(¢re . A) =0 forany &€C, (4.2)
dt =0
where Vg (21, 22) = (21 — € 22, 20) /(1 — E 21 + |€]?22/2).
Proof. Setting Hy = {1 € H;det¢’(0) = 1}, we observe that every h € H
admits a unique decomposition h = ¢y o 1) with A\ € C* and ¢ € Hy.
Let us recall that Hj is isomorphic to the Heisenberg group and that each
element of ¢ € H takes the form

— 1
bzm) = BT822 e = Liepvin e ecxr
1—E&21+n2 2
Recalling that the Heisenberg group is generated by elements of the form
(&,7) = (&,0), we see that H is generated by

dx, e with (X, €) € C* x C.

Hence, the transformation law (4.1) can be written as follows:

P(¢r.A) = |\ 72“P(A) for \eC*, (4.1a)
P(¢pe.A) = P(A) for ¢ € C. (4.1b)

The first condition (4.1a) says by definition that P(A) is of biweight (w, w).
The second condition (4.1b) is equivalent to

%P(wtérA) =0 for (t,é-) € R x C? (41b)/

because tg(z1,22) = (21,22). Noting that ¢ 0 Yy = Y1) for any
t,t’ € R, we see that (4.1b)" is equivalent to (4.2). O

4.3. End of the proof of Proposition 1. Let us compute the left side
of (4.2) for polynomials P(A) = P, (A) in Lemma 4.1.
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Lemma 4.3. With £ € C arbitrarily fized, let A(t) = 1¢.A. Then,

d

0 o (¢}
EAM(t) =0 =0, (1%)
d _
ZFac(A(1)|_ =ReE(er Al + 2 Afy)]. (2°)
d —
 Fabedeas(AD)| _ = Re|(e E AL + 4§ A7) AL (3°)

+ Re [E (cs Agg + c¢ Aig + c7 Agz)} ,

where co (resp. c7) is a linear combination of b, c (resp. ¢,d and e), and

3
c1=—-b—10ic, c¢3=—-2a+ 504—5@'5,

2, 3 '
c1=3b—Sa+3if, o5 =—2—12id, c5=5c—2d—l0ic.

Proof. 1t is proved by Graham in [12], Lemma 2.8, that

A% (t) = AL, A(t) = Ags — £ Ay,
1-
Ag(t) = A, Ag(t) = Ay + 3 St Agg,

3 3
Ags(t) = Ags + 5§t Ags — 5§t Ay — €424,

24

Aéz(t) = Aéi - 5iZtAgg + 3i£tAgZ 1+ 3 ’£t|2AgZ-

Then (1)° is obvious and |A2§(t)|2 does not contribute to (2°). The de-
rivative at ¢ = 0 of the nonlinear part of Fypedeas(A(t)) in A(t) is given

by Re [(03 ZAgg + ¢y §AgZ)A2§]. It remains to consider the linear parts of

Fupe(A) and Fupedeas(A), which we denote by Q4(A) and @5(A), respec-
tively. That is,

Qu(A) = b A% +c AL, Qs(A) = c A% +d AL + e A%

44

We are concerned with Q4(A) and Qs5(A), where A = (Af;q) is defined by
f:lfﬁ = dAf;q(t)/ dt| o 1t s _elementary to verify Afm = Af;a and that each
Af;a is a polynomial in A, £, £ of homogeneous biweight (p+¢—1,q+¢—1)
if biweight for &, € is defined by

W2(§) = (07 1), W2(g) = (170)‘
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It then follows from the trace conditions on Moser’s normal form that

Ag, = Re -E (CllAgg + CQlAéZ):| N

5=

Ai@ = Re E (0121423 + 62214;,1)} )

Agé = Re _g (C51Ag€ + C61A}15 + C71A22’>Z)

Aég = Re 5(05214% + 662144115 + C72Ai2’>1)

A2, = RelE (cs3A% + cas AL + cr3A2))

with absolute constants cq1,...,c73. We need to determine c11,c12 and
csj,ce; for j = 1,2,3. Let us recall another result of Graham in [12],

Lemma 2.4, a); it is shown that if a surface in Moser’s normal form is
defined by

N(4) = {2u = |21 + 2Re (F2510) | with k>4, €20,
then N (i ¢.A) is given by

2u = |z1|* + 2Re [zf?’f“ve + %6 (t€ |21 PR T4 — te Tk T3yt

1
2
—i(k + D)EE |21 [P0t + ikt zf‘lilfﬂfu“l] T

(k4 £ — 3)t€ |21 | 20" — (k4 0)te2rzh 20t

where --- stands for terms of weight < —k — ¢ — 1. In other words, if
we start from A € N such that all Af)a = 0 except for Aim = 1 with

k> 4,0>0, then

Ai:r;lM:Re[%ez}’ Aiﬂle :Re[— (k:+€—3)§],
At —Re| —2i(k+ 1),

Using this result for (k,¢) = (4,0), (5,0), (4,1) we get

C11 = —1, C12 = —10i,
cs1 = —2, c52=—124, c53 =0,

i .
Co1 =75, Co2= -2, ce3 = —101.

Therefore,

Qu(A) = Re [E(cl A%+ ¢ A;Z)] ,

Q5(A) = Re [E (cs Agg + cg A}S + ¢ Agz)] ,
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as desired. H

Proof of Proposition 1. For w < 5, a CR invariant of weight w is exactly
the polynomial P, (A) in Lemma 4.1 which satisfies the condition (4.2)
in Lemma 4.2. Note that the case w < 2 is trivial. Using Lemma 4.3,
(1°),(2°) and (3°), we consider the case 3 < w < 5. If w = 3, then by
(1°) the condition (4.2) for P,(A) is automatically satisfied. If w = 4,
then (4.2) holds if and only if ¢; = ¢ = 0 in (2°), a condition which is
equivalent to b = ¢ = 0. Let w = 5, and thus (4.2) holds if and only if

c;=0 for 3<j5<7 in (3°). (4.3)

Note that the condition c¢5 = c¢g = 0 is equivalent to ¢ = d = e = 0,
in which case we have c; = 0. Consequently, (4.3) holds if and only if
c3 =c4 =0 and c =d = e = 0. Solving the equations c3 = ¢4 = 0, we get,

as desired,

10 )
a:—2a—|—§b, B:ia—%b.

5. FEFFERMAN’S DEFINING FUNCTIONS AND
GRAHAM’S ASYMPTOTIC SOLUTIONS

In this section, we prove Proposition 3, (2°) and Proposition 5.

Let us recall that the point of Proposition 3, (2°) is the polynomial
dependence of ¥ and 1 on Moser’s normal form coefficients. We thus re-
formulate in Subsection 5.1 Graham’s construction of asymptotic solutions
in (1.6) of the complex Monge-Ampere boundary value problem (1.5), in
such a way that the polynomial dependence is obvious.

Once Proposition 3, (2°) is established, the proof of Proposition 5 is re-
duced to identifying the universal constants c,,[n{] for (p, q) = (4,2), (5,2)
and (4,3), by virtue of the following lemma.

Lemma 5.1. Let Q = Q,, withp+q <7 andp > q. If K € I,,(6 — w)

with w < 5, then there exists a constant c,q such that

Ko(vt) = Cpq‘AgaF et 4 O(tﬁ_w)-

Proof. Let us write Ky for Kq. By definition, we have the expansion

5—w

Knay(w) =Y Pau(A)t™ +0(t°™),

m=0

where each coefficient P,,(A) is of biweight (w+m,w+m). For the surface
99y = N(A), Lemma 4.1 yields Ppy4-2(A) = ¢pq|A)z|* and P, (A) = 0
form=p+q—2. O
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Remark 5.1. For Fefferman’s defining function r*, we have

r(m) = t+O0(th).

In fact, if we consider the expansion 7 (y;) = Zf’n:l P (A)t™ + O(tY),
then each coefficient P,,(A) is of biweight (m—1,m—1), so that Lemma 3.1
implies P, = P3 = 0. Note also that P; is a universal constant independent
of A, and the value P;(A) = 1 is determined by using the Siegel domain
2u > |21]?.

To determine c,,[n{], we consider in Subsection 5.3 an asymptotic ex-
pansion with respect to Moser’s normal form coefficients A. Namely, in
addition to the filtration with respect to the vanishing order on the bound-
ary, we also consider a filtration relative to the degree of polynomials in
A. This enables us to do explicit computations in Subsection 5.4.

5.1. Polynomial dependence. As in Section 3, we set
Fa = C[A][[z,z]] = C[4][[21,71,U,v]] and F = C[A][[21,Z1,]]-

Let B denote the ring of formal series of the form
f=> m-(UlogU)* with ny =mi[f] € Fa. (5.1)
k=0

We now construct formal solutions of (1.4) in the form v = UVy(1 + f)
with f € B, where Vy = J[U]~'/2. Recall by Fefferman’s construction of
r¥ in [9] that J[UVp] =1+ O(U), so that

JIUVo(1+10)] = (1+1m0)* + O(U).

We thus require n9 = O(U), that is, fly—o = 0. Then the condition u > 0
in €2 is formally satisfied, and (1.4) is formally written as follows:

M[f] =1, where M[f]=JUVo(1+f)], Vo=JU] Y3 (5.2

We now have, as a refinement of [12], Theorem 2.11, the following result.

Proposition 7. For every a € C[[z1,%1,v]|, there exists a unique solution

f = fla] € B of (5.2) such that ng = no[f] € Fa satisfies
OFmolu=o = 3'a and ny = O(U). (5.3)

Furthermore, f = f|a] depends polynomially on A € N and the coefficients
of the series a, that is,

nk € C[A, C[[21,%1,U,v]] for a= ZC’%Z{’E‘{M with C° = (Cﬁg).
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Before proving Proposition 7 above, let us observe that this implies the
polynomial dependence of ¥ and ¥ on A € N.

Proof of Proposition 3, (2°). We first note that u is uniquely determined
by specifying a € C[[z1,%1,v]]. Then (5.2) yields u® = UVy(1 + f) with
f = fla] in Proposition 7. Comparing the smooth part of both sides, we
get

' =UVo(1+mnolf]) +O(U"),

which, together with Proposition 2, implies 7 € I_1(4). Comparing next
the coefficients of log r in the expansion with respect to rf, we obtain

nt = m[fVo(U/r*)t = m[fIVg (L +nolf]) ™" + O(U?).

Since 01 [f]Vy *(1 + no[f])~* € Fa, Proposition 2 implies n¢ € I5(3). O

In order to prove Proposition 7 above, we begin by determining the
linear part of the operator M in (5.2). We set

DA - «/C‘A[6Z17(%17U8U781)]5

the ring of linear differential operators generated by 0., , 0z,, U0y, 0, with
coefficients in F4; thus D4 acts on B. We then have:

Proposition 8. Let V € Fa satisfy V|a—o = 1. Then there exists an
operator L € D4 acting on B such that

JUV(1+ )| =JUV](1 - Lp) +¥(Prp,...,Pip), (5.4)

where Py,... , Py € Dy and ¥(x) € Clx] with x = (x1,...,x¢) satisfies
U(z) = O(|z|?). The operator L takes the form

L=1Udy)+UPy with I(r) = (r+1)(r — 3),

where Py € D4 satisfies Pyla=o = Qo with

. . X
Qo = 02,0z, — 5 2102, 0, + 5 7102,0,+ 7 (U + 1) 02,

Remark 5.2. A similar result holds in the n dimensional case. In fact, the
formula (5.4) is valid with I(7) = (7 +1)(t —n — 1) and

n—1 . .
Qo = Z (8%,6;3, — §zj62j87} + 5@-8@.8@ + Z_l’zj’ 82}) + ZUGU,

J=1

where the partial derivatives are taken with respect to the real coordinates
Rly--- 7Zn—1;§17 s ,En—la UJU'
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Postponing the proof of Proposition 8 until the next subsection, let us
continue the argument of proving Proposition 7. We use Proposition 8
with V = Vi = J[U]7'/3. Then

MIf) = JUVRJ(L = LF) + U(Pif, ..., Pof). (5.5)

Note that M[f] is a polynomial in Pf, P € Ds. Thus, M consists of
(nonlinear) totally characteristic operators in the sense of [17].
It is convenient to introduce a filtration B = By D By D --- by setting

[7/3]
Z nj.k - (log U)k;nj,k € -7:,/4}-
k=0

By, = iBj, where B; = {Uj
j=k

Then f € By if and only if no[f] = O(U). Consequently, the condition
(5.3) is equivalent to f € B(a) N By, where

B(a) = {f € B; ;o f]lu=o = 3la} .
We shall construct a solution f € B(a) N By of (5.2) in the form

k
f=lm fi with fi =Y A, and ); €B;, (5.6)

j=1

where we require A3 € Bs(a) := B3N B(a). Observe that this limit makes
sense as a formal series f =) i>1 Aj. To define f; for j > 1 successively,
we first linearize the operator M at f;_1.

Lemma 5.2. If f € By is given as in (5.6), then
Mfm] = M[fj=1] = I(U0y)N; mod Bjiq (5.7)
for1 <j<m < oo, where fo =0 and foo = f.
Proof. Noting that P \; € B; for P € D4, we have
Lfm =Lfi—1+I1(Udy)\; mod Bjii.

On the other hand, since B; - By C B4y, it follows from the assumption
f S Bl that

V(P fm,-- Pofm) =¥ (Pifj—1,...,Pifj—1) mod Bjiq.
Hence (5.5) implies
M fm] = M[fj-1] = =J[UV] I(Udy)A; mod By
Recalling that J[UVy] = 1 mod By, we obtain (5.7). O
We next solve the linear equations for A\; € B; (j > 1):
I(Udy)A; = pj € B, (5.8);
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Lemma 5.3. If j # 3, then (5.8); always has a unique solution. For
j = 3, the equation (5.8)3 has a solution A3 € Bs if and only if us does
not contain logU, that is, us € Fa. Furthermore, the solution is unique
under the restriction A3 € Bs(a), for each a € Cl[z1,%1,v]] prescribed.

Proof. For A\j, pn; € B, we write

(/3] . [5/3] ‘
A= Z A kU (log U)k, Wy = Z 15,1 U7 (log U>k
k=0 k=0

with \j i, 1t 1 € Fy. Then, (5.8); holds if and only if
IG) Ak + (b + DI (D Ajkr + (B +2)(k+ DA pte = e (5.9);

Notice that A\j, = 0 for & > [j/3]. If j # 3, then I(j) # 0, and thus
(5.9); uniquely determines \;j for all & > 0. Consequently, (5.8); for
j # 3 always has a unique solution. For j = 3, we note that I(3) = 0 and
Az =0 for k> 1. Thus (5.9)3 is equivalent to

4)\371 = H3,0, U3k = 0 for k& 2 1.

Therefore, the equation (5.8)3 has a solution if and only if pg = 0 for
k > 1, and the solution is in general of the form A3 = UB()\g’() +A3,11logU)
with A31 = ps0/4. Hence, the solution becomes unique by specifying
)\3,0 = Q. O

Using Lemmas 5.2 and 5.3, we can prove Proposition 7 as follows.

Proof of Proposition 7. Suppose at first we are given f € B(a) N By arbi-
trarily, and let f;, A for j > 0, K > 1 be defined by (5.6), where f; = 0.
It then follows from Lemma 5.2 that (5.2) is equivalent to

Mfj—1]=1 mod B; forall j>1, (5.10)

which holds if and only if (5.8); is valid for each j > 1, where p; denotes
the B, component of M[f;_1]. In this case, we must have by Lemma 5.3
that pus € F4NBgs, which together with the condition f € B(a)NB; implies
A3 € Bs(a) and then the uniqueness of the solution f of (5.2) in B(a)NB;.
Furthermore, Lemma 5.3 with Lemma 5.2 permits us to construct f; for
j > 1 as in (5.6) successively so that (5.10) holds, where fy = 0. In fact,
the condition usz € F4 N Bg is satisfied because

fo=M+XeB;1+By CFy

and thus M| fs] € Fa. Therefore, (5.2) has a unique solution f € B(a)NBy,
while, as we have remarked before, the condition f € B(a)NBj is equivalent
to (5.3). O
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5.2. Proof of Proposition 8. We consider the n dimensional case as in
Remark 5.2. For F4 and D4 as in the previous subsection, we set

Fi={p € Fa; ¢lazo =0}, Dy ={P €Dy; Placo=0}.

Let us recall that our coordinates z,, zZg (o, =1,...,n—1), U, v are
obtained by a change of variables from the standard ones z;, Z (j,k =
1,...,n) in C". Denoting by D;, D; the partial derivatives with respect
to the original coordinates z;, Zj, respectively, we also recall that

B . B U DEU
JU®] = (—1)"det(Hy®P), Ho® = <DJ.U DjDkU> ®,

where U acts as a multiplication operator. We introduce artificial notation

i 0 i 0
—E%, n—g@ (and thUS 3,1—}-((%—0),
together with usual abbreviation 0o = /024, 03 = 0/9zg, Oy = 0/0U.
Writing F; = 0;F, F = 0;F and Fg= 0;0:F, we also set

On =

aa:_za_Faﬂ GE:_Zﬁ_Fﬁv an:l_Fn’ ap =1 - I5.

Dj :aj—l—aj@[j, DE:%—FGE@U,
DjDE = 8J8E + XjE 8U + CL]'CLEa(QJ,

Where XjE = ajag + agﬁj — 6;E — FjE Wlth

§—=06-=0.

Jn nk

045 = Sap
Setting b, = aq/a, and bg = aﬁ/ az, we apply elementary operations on
Hy®. First, we subtract the last row multiplied by b, from the o + 1st
one, and then the last column multiplied by bz from the S+ 1st one. Next,
we divide the first row by U and multiply the last column by U. Let H;®
denote the resulting matrix. Then,

1 U=Y(D5 — bsDr)U DzU
H1@ = (Da — baDn>U hag U(Da - boan)DﬁU (I)v
D, U (DB — bgDﬁ)DnU UD, DzU
with
hy5 = (DaD5 = baDy D5 = b3DaDs + babzDu D) U,
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We set d,5 = —(X,5 — baX, 5 — b5Xam + babzXnm) and
Ya = 804 - baana B 85 bﬁaﬁ
= aa% - baan% bﬁa 3ﬁ b bganaﬁ

Then Y, = D, —b,D,,, Yﬁ = DB— %Dn, and each d_3 1s a multiplication
operator given by the function

dOéB = 5(15 + YOZBF'

Consequently,
1 Yz D7zU
Hi®= | UYy UY,5- daBaUU UY,DzU | ®.

Setting ® = V(1 + ¢), we write H1® = Hy + Hsp, where Hy = H,V and
Hyp = H1(Vp). Since V — 1 € F}, it follows that Hs takes the form

VoYV oV
Hy=| 0 —dgzV 0 |+UF},
a,V YgV 0

where UF} stands for a matrix of which each entry belongs to UF}.
Noting that a, — 1, a7z — 1 and daﬁ — 5a3 all belong to F}, we have

0 Fl 1/a,
Hy' = v 0 —d;% 0 +UF},
Varw FL  —lan]™2

where (d_l) is the inverse matrix of (daﬁ)- Similarly,

af
1 Da DU
H3=V | UDa UY,53-d300U  UDa | +UDj,
DnU DA UDnDﬁU

where UDY, stands for a matrix valued operator of which each entry belongs
to UDY. Recalling J[U®] = (—1)"det(H;®) and J[UV] = (—1)" det Ha,
we have
JUV(1+ )] = JUV]-det(1 + Hy ' Hsp)
= JUV]- (L4 tx(Hy " H3)p) + U(Prg, ... , Pup),
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where tr(H, ' H3) denotes the trace of the matrix valued operator H, ' Hs.
Thus we get (5.4) with

L=—tr(Hy ' Hs).
We have
L= —a,'D,U — a-'DzU + |a,| 2UD,, DyU

+U Z dgaY,5— (n—1)0pU + UD}.
76 1

Let us note that I(Udy) = dyU(OyU — n — 2). Using 0,, + 07 = 0 and
d;% — 5aﬁ € F}, we get

n—1
L-I({Udy) =U?0,05+U Y Yom + UD}.

a=1

Writing the right side as U Py, we obtain the desired result.

Remark 5.3. Let us consider the special case in which the function F' is
independent of the variable v. Then we have a subclass N of N consisting
of A= A’ of the form A" = (A)), and we may write

Far = ClA[[21,21,U]], Fu =C[A][[z1,71]].

In this case, if a € C[[z1,%1 ]] in Proposition 7, then the solution f = f[a]
of (5.2) is independent of v in the sense that nx[f] € Fa for k > 0. This
fact is seen by inspecting the proof of Proposition 7 as follows. We write
B, By, Bj, ... as B, B}, B}, ... when A € N is replaced by A" € N,
We set Dar = Far[0s,,0%,,Udy], which acts on B’. Then Proposition 8
remains valid if we replace Fa, Da, B and Q¢ by Fa/, Dar, B’ and

Ay = —0,,0%,, (5.11)
respectively. Similarly, Lemmas 5.1 and 5.2 can be modified in an obvious
manner, where Bj, B;, ... are replaced by B, B,.... Thus we have

f[azz)‘Ja []GB;-
7=0

We shall use this fact, without comment, in Subsections 5.4 and 5.5.
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5.3. Expansion with respect to the normal form coefficients. For
each m € Ny, let A,, denote the totality of f € B as in (5.1) such that if
we write

melf] =Y miklfIU7 with n;.[f] € Fh,

J=0

then n; [f] are polynomials of homogeneous degree m in A. Thus the
dependence of U on A is not taken into account. We then get a filtration

B=AyD> A D+, where A, =) A, (5.12)

For f = f[a] € B(a)NB; in Proposition 7, we set g = Vo (1+ f[a])—1 € B.
Then
Milg] =1, where Mi[g] = J[U(1+ g)].

Note that 1+ nolg] = Vo(1 + mo[f]) and mi[g] = Vonk[f]; in particular,
nolg] = O(U). We thus write

g=g[bl, where 3!b=d5molglv—o,
so that g € B(b). We also have g € B(b) N Ay, because J[U] =1+ A; and

thus fla] € A;.
As in (5.6), let us consider the following expansion of g = g[b]:

g= lim g, with g, =) 6n and 6, € Ay, (5.13)

m=1

and thus g = Zm21 0,,. Then we have the following analogue of Lemma
5.2 for the filtration (5.12).

Lemma 5.4. If g € B(b) N A; is given as in (5.13), then
M1[gj] = ./\/l1[gm_1] — (I(U@U) -+ UQo)Hm mod Am—i—l (5.14)

for 1 <m < j < oo, where go =0 and goo = g. The operator I(Udy) and
Qo are given in Proposition 8.

Proof. Setting V =1 in (5.4), we have
Mgl = JUJ(1 = Lg;) + @(Prgy, - - Peg;)-
Let us observe by definition that
Am - An C Amsn, DaAm CAnm, DYAL C Anir.
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It follows from g; € A; that
S(Prgj,...,Pugj) = P(Pigm—-1,---, Pegm—1) mod A,41.
Recalling the definition of £, we next get
L(g; — gm-1) = L(UOy) +UQo)0, mod Apyi.

Using J[U] =1+ A;, we obtain the desired result. O
For g = g[b], let g, = gn[b] and 6,, = 0,,,[b] be defined by (5.13). Then

(I({U) + UQo)bm = Ym € A (O € Ayy) (5.15)m

for m > 1, where 7, = n[b] denotes the A,, component of M;[gy,—1].
We now need an expression of 6, in terms of ,,, which gives an analogue
of Lemma 5.3 for the filtration (5.12). Let us first recall by Lemma 5.3
that the operator I(Udy): B — BT admits a right inverse I, : BT — B(b),
where B* denotes the space of elements ¢ € B such that the B3 component
of ¢ does not contain logU. Using the operator I, , we have:

Lemma 5.5. For every m > 1, the equation (5.15),, has a solution if and
only if ym € BT. The solution is unique under the restriction 0, € B(b),
where b € C[[2,2',v]] is arbitrarily prescribed. The solution operator,
denoted by Ky: BT — B(b), is given by

Ky =Y (L UQY I, v=>Y I, (-UQoI, ).
j=0 Jj=0

Proof. Since UB C Bt and I(Udy)B C BT, the validity of (5.15),, implies
Ym € BT. Conversely, suppose we are given v,, € BT. Observe that the
series defining K are well-defined. In fact, if v € By N Bt then I, v € By,
and thus UQoI, v € Bi+1 NBT. Consequently, for v € Bt and k > 0, the
B components of Ky are determined successively. Setting

o0

Om[b] = Kym = > (=1, UQo)Y' I, Ym for m>1, (5.16)

=0

we shall show that 6,, = 6,,[b] is a unique solution of (5.15),, such that
O, € B(b). Since I(Udy)I, is the identity operator on BT, it follows that

(L(U) +UQ0) Y Iy (~UQoLy Yim = 7 — (~UQuIy )™ .

Jj=0
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Thus 0,, = 0,,[b] € B(b) in (5.16) satisfies (5.15),,. Since I, I(Udy) is the
identity operator on B(b), it follows that, for any 6,, € B(b),

> (=L, UQoY I, (I{Udy) + UQ0)m = O — (—I;, UQ0)™ .

j=0
This implies the uniqueness of the solution of (5.15),, in B(b). O

Using Lemmas 5.4 and 5.5, we argue as in the proof of Proposition 7.
Then we see that each term 6, in the expansion (5.13) of g = g[b] is given
by (5.16), where ~,, denotes the A, component of M1 |[g,,—1] with go = 0.
Note that ¢,,—1 and ~,, depend on b.

Remark 5.4. We shall apply the argument of this subsection to a class of
surfaces in normal form characterized by the condition

l
ALz =0 whenever (p,q,f) €A,

where A is an index set. In this case, it is convenient to set

A= (Af@)(p,ql)el\

and consider A’ instead of A. That is, we define A’ by A,, with A’ in
place of A, so that we get a filtration

o
Ay DA D+, where A = ZA;n
m=n

Then, Lemmas 5.3 and 5.4 remain valid if the spaces A,,, are replaced by
A! . Therefore, we have (5.13) with 6,, € A/ | and each 0,, = 60,,[b] is

m?

given by (5.16), where the A/ component ~,, of Mi[gm_1] belongs to
Al

5.4. Explicit computation for special domains. We now restrict
ourselves to the class of domains €2, as in Proposition 5. Let us compute
go = 01 + 05 explicitly to the extent we need in the proof of Proposition 5.

For each (p,q) € {(2,4),(2,5),(3,4)}, we set A’ = (A}, AY) as in
Remark 5.4 so that Q,, = N(A’) and write F,, = F4/ for the function
F = F4 in (1.1). For simplicity of the notation, we shall drop primes
in BY,B,... of Remark 5.3 and write By, B;,... instead. We also write

Aj, Aj, ... inplace of A%, A% ... Assume
b=0
and thus g = ¢g[0]. Then, (5.16) gives

oo

Om = Koym = Y _(IgUAY Iy (m > 1) (5.17)
j=0

for Ay in (5.11), where 7, is the A,, component of M;i[g;—1]. Using
(5.17), we first have:
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Lemma 5.6. Let 01 = 077 for Q = Q,,. Then
42 A0 o 4 3
91 - _4 Re|: 4§(U Zl + § Z1 Zl):| ;
952 _ 20 R AO U 3 4 —
=g e 5(U 27 +21721) |,
613 = _4Re [A2§(2 U221 +3U 227 +22372)] .

Proof. Since F' = F), is independent of the variable v, it follows that
J[U] =1 — A1F. Recalling that go = 0 and thus Mi[go] = J[U], we get
v1 = —AF. Since [Ay, I;U] =0, [Ay, I7] =0 and AYT'F =0, it follows
from (5.17) that

q—1

0r=-) (I, UYIy A{7'F.

§=0

Noting ¢ < 3 and I; U’ = U7 /I(j) for j € No \ {3}, we get

q—1

—  UIAJT'F
== T 1)

Evaluating the right side explicitly, we obtain the desired result. U

Let us next consider the As component y5 = 737 of M;[g1]. We may
write
B = | AT Pe7 + 2 Re[ (A5)2471), (5.18)

where ¢P?,1P? € B are independent of A’. Using Lemma 5.5, we can
identify ¢P? as follows.

Lemma 5.7. Let ¢P1, 4P € B satisfy (5.18). Then,

256 512

p'? = —3 B 9 21|°U + 48 |21 |1 U,
400 700 2000

()052 — _? |21|10 o T |Zl|8U—}- T |Zl|6 U2,

O = —1922,|'° — 368 |2, [P U — 48 |21(° U? + 288 |21 |* U? — 48 U°.

Proof. We set 7 = Aga, T = Agﬁ and © = 14 6, with ; = 679, Recall
that M1[01] = J[U®] is a polynomial in 7 and 7 such that the coefficient
of |7|? is P4, We follow the procedure in the proof of Proposition 8 for
n = 2 with © in place of ®. Since F' and © are independent of the variable
v, we have

Fy=F;=0, ©,=05;=0,
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where we used the notation F; = 9;F, etc. Then J[UO] = det H', where
S O1 oyU©
H'=| U6, UO;7-(1+F71)opU6 UdyUO,
oyU®O ouUOz UdzUe
Since the entries of H! are at most quadratic in 7 and 7, we may write
H''= H? + 7H? + 7H* + |72 H® 4+ £(7%,7%),

where £(72,72) stands for an error term of the form O(72) + O(7%). Then

1 0 1 0 0 1
H*=(0 -1 0|, (HH) =10 -1 0
1 0 0 1 0 -1

We set H™ = (H?)"YH™ for m = 3,4, 5. Noting det H? = 1, we have

JUO) = det (14 7H + 7H* + [r[2H) + £(%,7)
= 1+ 7tr(H%) + Fte(HY) + 720" + £(r%,72),

where B B B o
P4 = tr(H®) 4+ tr(H?)tr(H*) — tr(H*H?). (5.19)

We know that tr(H3) = tr(H*) = 0, a fact which is also seen directly from
Lemma 5.6 and the expressions

N Oy UY’ Oy UL Uogue

HY=| U6, —F;+U0;-0vU¢  —UdyU6 |,
~Udyt’ ~Udy b~ (1= (Udy)?)e’

N Oy Uo” oy UbY UozUe”

H*=| -U¢) —FL+U¢--0opU6"  -UdUs |,
~Udy6” ~Udy oY (1—(Udy)*)e”

where we wrote F' = 7F' +7F"” and 0, = 70’ +70". Thus
P = (DM — (1™,

where (I)"? = tr(H®) and (I1)"? = tr(H*H*). We have

0 0 0
H>=—-H>=1|0 F:0pU0" + F-0uU6 0
0 0 0
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We also have tr(fISfI‘l) =T, + 15 + T3, where

Ty = |0pU0'|” + |(Udy — 1)auU6'|° — 2Re [(UZUE ) (UdL6"))],
Ty = U(|Uu6}|* — |011%) + U (|UOub* — 6717),
Ty = |Fly — Ul + 0pU0|”.

Using these expressions, we get, by direct computation,

128
(D)*? = —64U | |° — = |21 [%,
400 200
(1)52 — _? U|Zl|8 _ ? |Zl‘107
(M* = —288T2|21|® — 288U |z1|® — 96 | 212,
64 128
(I* = 48U |aa|* = T Ul + 5= |,
2000 500 200
(11)52 _ _T U2|Zl|6 . 7 U|Zl|8 + ? |21|10,

(IN* = 48 U® — 288 U3| 21 |* — 240 U?|21(® + 80 U 21| + 96 | 21 |'°.
These together with (5.19) yield the desired result. O
Let us finally consider 6, = 657, By (5.17) and (5.18), we have
671 = | A% |? Ko™ + 2Re[(Ag§)2K0wpq . (5.20)

We are concerned with KypP? restricted to z; = 0.

Lemma 5.8. For each (p,q), there exists a constant c,q such that, for
KopP? in (5.20),

Kopr? = Up+q_2(cpq +dpgloglU) at 2z =0,

where

368 680 1956
dog = =, dos = ———, d3g=——r.
24 5 ) 25 3 ) 34 5

Proof. Observe by Lemma 5.7 that each ¢P? is a linear combination of
|21|2U* with 3 < j + k < 5. For such terms, we have

Ko(|z2 [ U*) = (A1) (I UY Ig UF + - -
= (1)) LG UY I UR + -
where - - - stands for terms which vanish at z; = 0. Note that
Iy UY I UR = UR(dy + d)j logU),  j+k >3,
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/ ! s
where ¢, are constants and d;, are given by

1 1
=7 Il = for k<3, dj,=0 for k>3

We thus get Ko(]z1]|2U*) = (—l)j(j!)QUHk(c;k + dfy logU) at 21 = 0.
Using this formula and Lemma 5.7, we obtain the conclusion. U

5.5. Proof of Proposition 5. The existence of the constants c,q[n¢]
in (2.3) follows from Proposition 3, (2°) and Lemma 5.1. Let us identify
these constants by using Lemma 5.8.

We begin by recalling that u“ = U(1 + g[b]), where b corresponds to
the ambiguity of u®. Since this ambiguity does not affect the values of
Cpq[n¥], we take b = 0. Then,

u® =U(1+ 65 +657) mod As.
Let us restrict ourselves to z; = 0. Then, Lemma 5.8 with (5.20) implies
05 = d, |Aga]2Up+q_2 logU + -+,

where the dots --- stands for terms irrelevant to our purpose. Using
Lemma 5.6 and noting 61|,,—0 = 0, U(vy) = ¢, we get

uC () = £(1+ dyg | AL 271758 log 1)) + -
Recalling that ¥ (7;) = 4 + O(t*), we obtain
77?(%) = dpq ‘A2§|2tp+q_5 4+,

This implies, as desired, cpq[n¥] = dpq.

6. WEYL-FEFFERMAN FUNCTIONALS OF WEIGHT < 5

This section is devoted to the proof of Theorem 1, Proposition 3, (3°)
and Proposition 4. We first consider the polynomial dependence on A € N,
together with the ambiguity caused by that of r = r¥. We have:

Proposition 9. Let W# be a complete contraction of weight w < 5 that
is mot linear in R. If w <5, then W € IWW¥; moreover W € I,(6 —w). If
w < 3, then W = O~ (09Q).
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Proposition 10. Let W € I)YY with w < 5. If W# is linear in R, then
W = 05~%(90Q).

We prove Propositions 9 and 10 above in Subsections 6.1 and 6.2, re-
spectively. Observe that these propositions imply Proposition 3, (3°).
Furthermore, Theorem 1 follows from these propositions if we assume the
validity of Proposition 4, which is proved in Subsections 6.3, 6.4 and 6.5.

In what follows, we shall be concerned with surfaces in Moser’s normal
form N(A), real analytic or C*°, where A € N varies.

6.1. Proof of Proposition 9. As in Subsection 3.4, we decompose
Fefferman’s defining function r = 7% of N(A) as r¥ = rf + (¥ — o),
where r — 75 = O(U*) describes the ambiguity of rf. Let g = (gjg) be
the ambient metric with potential 7# and define R(?) for g. We sometimes
write R(**) = R(@)[r] in order to emphasize the dependence on r. Making
a change of coordinates

(20721722) - C = (CO7C17C2) in C* x C2

defined by zp = (o,21 = (1/(o and 22 = (2/(o, we consider the compo-
nents of R(®?[r] with respect to dg;, dzj (j =0,1,2), and regard these as
formal power series in ¢, ¢ about the point ey = (1,0,0). Then we have an
expansion in ¢, about eg:

g=go+ 3 cupll¢ —e0)*(C — o),

la]+]B]>1
where
0O 0 1
go=[0 -1 0|=g"
1 0 O

Each coeflicient c,5(g] is a matrix such that the entries are polynomials in
A and C.

Lemma 6.1. For any component of R(*®[r], the coefficients of the ex-
pansion in C,C about e are polynomials in A = (Afﬁ) and C' = (C’ﬁg”).

Proof. For any component @ of R(®"[r], we consider the expansion
Q= c,5lQl(¢ —e0)*(C —e0)”.
a,B

Then each coefficient c¢,5[Q] is a polynomial in (c,z[g]) and (g7 (eg)).
Thus, ¢,5[Q] is a polynomial in A and C. O

Let us next consider the dependence on C.
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Lemma 6.2. Let W# be a complete contraction of weight w. Then the
coefficient P,, of the expansion

W)~ Y Pu(A,C)t™,  where v = (0,1/2), (6.1)

is a polynomial in A and C of biweight (w + m,w + m).

Proof. 1t follows from the transformation law under dilations that W &
Fa,c is of biweight (w,w). Since t = (22 + Z2)/2 has biweight (-1, —1),
we see that P, (A, C) has biweight (w + m,w + m). O

Proposition 9 now follows from:

Lemma 6.3. Let P be a monomial of degree > 2 in A and C. If P is of
biweight (w,w) with w < 5, then P is independent of C. If w < 3, then
P =0.

Proof. Let us first recall that w(AL) > 2 and w(C[?") > 3. Hence, if
P depends on C, then w = w(P) > 5 and thus w = 5. Consequently,

_ A0 (04 0 (04 : ‘o
P = A21006 or A 45006 up to scalar multiples. This is absurd, because

wa(A%C%) = (4,6), wa(A%LCH) = (6,4).

Thus P is independent of C'. The second statement follows from Lemma
4.1, or, the proof is already obvious by the argument above. O

F

6.2. Proof of Proposition 10. Starting from r» = ", we form a linear

complete contraction
W# = W#[r] = contrR®P)  for p=w+1>2. (6.2)

There are several ways to make a complete contraction, and we fix any
one of these; for instance,

contrR(PP) = Z R.“ (p=w+1).

|oe|=p

Our results below are independent of the definition of contrR(®-P),

Proposition 10’. The following statements hold for W# in (6.2).
(1°) If w < 2 then W#(eg) = 0.
(2°) If w = 3 then W modulo O(U?) depends on C.
(3°) If w > 4 then W#(eq) depends on C.
(4°) If w =3 then W#(eg) = —(4!)2 A%,

Observe that Proposition 10 follows from Proposition 10’, where (4°) is
not used.
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Let us prove Proposition 10’. It follows from Lemma 6.2 that W# (eq)
is a polynomial P(A,C) of biweight (w,w). If w < 2 then P(A,C) is
independent of C because W(Cﬁg”) > 3. Consequently, Lemma 4.1 implies
(1°).

It remains to prove (2°), (3°) and (4°). Denoting by ¢ = ¢[r] the linear
(homogeneous) part of r with respect to A and C, we set ©# = |(o|?¢p,
which is regarded as a formal power series in ¢, about eg. Then

0? go#
9¢;0C,

9% = (90) ;7 + +0%(4A,0),

where O*(A,C) stands for a formal power series in ¢,( such that the
coefficients are polynomial in A, C' which do not contain terms of degree
< s. Thus noting that gg is a constant matrix, we get

Lemma 6.4. R 5= 8?8?90# + 0?%(4,0).

By virtue of Lemma 6.4 above, the following proof of Proposition 10’ is
valid independently of the definition of contrR®?).
Since g = go + O (A, C), it follows from Lemma 6.4 that

W# = (AF)Pe* + 0%(4,0), (6.3)
where A# denotes the Laplacian with respect to gg. Specifically,

A#: 82_ N 82_ B 82_‘
0C0Cy  0C20C,  9¢10¢,

The following lemma is useful.

Lemma 6.5. Let 0 = |Co|2(UF)™, where UY = |¢o|2Us. If myn € N
satisfy n < m, then

(Ao#)n@m,é — Cn,m,@ Pm—n, b,

where Cp o = H?:_Ol(m —J)m—j+20+2).

Proof. Setting Z = Z?:o ¢;0/0¢;, we have
(AL, U =q (U (Z+Z+q+2)
Since Z|(o|2¢ = Z|¢o|2¢ = £|¢o|2¢ and A¥|¢o|2¢ = 0, it follows that
A pqe = (AT (U6 + (UF) AT 60> = ala + 26+ 2)pg-1e.
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Using this for g = m,m —1,...,m —n + 1, we obtain the result. Il

With the aid of Lemmas 6.4 and 6.5, let us prove (2°). We consider
Wf = contrR*¥[ry], where 14 = U + 0865 Us.

It follows from (6.3) that W§ = C9(A¥)%ps 4 + O*(C) + O'(A). On
the other hand, Lemma 6.5 yields

(A#)4905,—4 =Claps,_ap1,—a =541 4.

Therefore, W3 modulo O(U?) depends on ng as desired.
The proof of (3°) is similar as follows. We set, for w =p—1 >4,

W# = contrRPP)[r,], where r,=U + ng UP.

Then (6.3) implies W = ng (AF )P, 1_p+O0%(C)+O0'(A), while Lemma
6.5 yields

(2p —5)!p!

(A#)pg?p,l—p = Cp,p,l—p|C0|2_2pa Cp,p,l—P - (_1)1’ (p - 3)!

# 0.
Therefore, Wi (eg)| a=o modulo O?(C) is a non-zero multiple of C’gg , and
thus W (eg) depends on ng :

It remains to prove (4°). We recall by Lemma 6.2 that W#(eg) is of

biweight (3,3). Then, by Lemma 6.3, W#(ey) must be linear in A and C,

so that
W# (60) =C AZZ + co ng, (64)

where ¢; and ¢y are constants. Hence (4°) is equivalent to
C1 = —(4!)2, Cy = 0.

Let us first prove co = 0. We restrict ourselves to the case A = 0.
Setting r = Uy + C’gg Ug, we have, as in the proof of (3°),

WHlr] = C3 (AF)*pa—s = CJ Cua—5]C0| "
while C4 4 3 = 0. Therefore, c; = 0.
Let us next identify the constant c¢;. We restrict ourselves to the case
Q = Quq, so that U = Uy — A21|z1|8. Recall that the expansion of r = rF
in the sense of Subsection 5.3 is given by the formally smooth part of

U(l+g) with g=g[b] =61 +02+---.
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We take b = 0 and write §; = 011, Arguing as in the proof of the Lemma
5.6 and using I; U3 = (U3/4)log U, we get

4
Collecting linear terms in AZZ for the smooth part of U(1+67*), we obtain
0 g, 16 ¢ 4772 27713
gp:—AM |21| —|—?’21| U0—|—12|21| U0+16|21| UO .

Direct computation yields A# o7 =16 A% 41 ¥3,—3- Thus Lemma 6.5 implies
(AF) ™ =16 AY3 (AT )P 05,3 = —(41)* Al4lCo| "

From this, we get W# (eg) = —(4!)? A, and thus ¢; = —(4!)?. Hence, the

proof of (4°) is finished. O

6.3. Proof of Proposition 4. We reduce the proof of Proposition 4 to
that of the following:

Proposition 4'. For constants c1,ce,d1 and da, let
ﬁ[cla co,di,d2] =c1 ’R111@‘2 tc2 |R12§|2
+ Re [Rmﬁ(dl Ry1935 + d2 R11@)] )

where the right side is evaluated at ey. If (a,b) = (4,2) or (3,3) then

IR |2(vf) = c§” |Ryyza(eo)|* + Flef, ¢, ds®, dg®) t + O(£?),
and if (a,b) = (5,2) or (4,3) then
IR )% (e0) = Flef®, 5, di’, d5",
where d$,d3® are complex constants independent of A,C and

=28, =8, ¢’ =416,
cd =12, 3 =12, c3° =324,
t? = —36, = —1800,
‘1*3 = —48, c3* = —1140.
In this subsection, we assume the validity of Proposition 4’ and prove

Proposition 4. To express Raﬁ(eo) as above in terms of A, let us begin
with a general observation.
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Lemma 6.6. Let wao(R,3) = (w',w") with 2w = w' +w" < 6 and
(w',w") # (3,3). Then R g5(eo) is a linear combination of Aﬁﬁ with
Wo (Af)ﬁ)

of a (resp. B) and satisfies R 5(e0) = Rga(eo)-

Proof. It follows from Lemma 6.2 that Raﬁ(eo) is a polynomial in A and
C of biweight (w’,w”). Since w(Alz) > 2 and w2 (Chs) = (3,3), it follows
that Rag(eo) must be linear in A and cannot contain C'. Then, Lemma 6.4
implies the symmetry in the entries of « (resp. ). It remains to prove the
Hermitian symmetry of R a3<€0)- Recalling that the metric g is Kahlerian,
we see that

= (w',w"). Furthermore, R z(eo) is symmetric in the entries

RQ’-B = Rﬂlmﬁzﬁz;@...afpﬁy..ﬂq fOI' RO‘B = R

a1 BrazBz;az--apfa-fy”
Therefore, the desired result follows, as before, from Lemma 6.4. O

The following lemma is crucial.

Lemma 6.7. R, 55, R 1135 and R,y55 evaluated at ey are respectively
: 0 0 0

gwen by —8 A5, —40 A5 and —24 A ;.

Proof. Let aff = 1122,11122 or 1222. Then wo(R,3) = (3,1),(4,1) or
(3,2), respectively, so that Lemma 6.6 applies. Recalling the conditions
on A € N, we see that R 3(eo) are constant multiples of A}, AP or
Agg, respectiv.ely, say, Raﬁ(eo) =0 AZE’ Co Agi or C3 Agg, respectively. .In
order to identify these constants, let us restrict ourselves to €2 = 2, with
(p,q) = (4,2),(5,2) or (4,3). Note by Lemma 6.4 that

R, 5(c0) = 0807% (eq) = 02020(0),

because o and (3 do not contain 0 in their entries. We may take ¢ = ¢©P? to
be the linear part of U(1+677) in (A, A);). Then we can easily identify
c1,cs and c3 by using Lemma 5.6. O

We now prove that Proposition 4 follows from Proposition 4’. In view
of Lemmas 6.6 and 6.7, we only have to show that both R, ,55(eo) and
R, 533(e0) are linear combinations of A%, and Aj;. This fact is obtained

just as at the beginning of the proof of Lemma 6.7.

6.4. Preliminaries for the proof of Proposition 4’. In order to prove
Proposition 4’, we need to compute ||[R(*? |2 at ey for a + b = 6,7 and
(d/dt)||R(@?)||2(4#) at t = 0 for a + b = 6. Recall by definition that

IR“Y|2= YRR (6.5)
|al=a,|B|=b
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with

Rozﬁ — Z gaa gﬁ B Ra’@’
la’|=a,|B'|=b
where g = g"‘lo‘ill---go‘“OTZZ for a« = a3+ -, and o = o} ---al, with

¢! = (¢7%), and similarly for ¢%”.
We first evaluate both sides of (6.5) at e for a+b = 6,7. Then the sum
in the right side is considerably simplified by using the following lemma.

Lemma 6.8. Let o, 8 be multi-indices with |a|, |3] > 2.
(1:) If either w(R,5) <2 or wa(R,5) = (2,2), then R,5 =0 at eo.
(2°) Rjj3 =0 and R 55 =0 at eg for j =0,1,2. R o5 = (1 —|a])R,5
and R 55 = (1 —[B])R,5 at eo.

Proof. (1°) follows from Lemma 6.6, because w(AL;) > 2 and wo(AL;) #
(2,2).

To prove (2°), we follow Fefferman in [11], pp. 175-179, and introduce
a new coordinate system by

! ! /
zog =logzy, 2] =21, 25=29,

and set Z; = 0/0z; for j = 0,1,2, so that Z; = 9/9(; at eg. Then
Zor#* = r#, and thus L 7,9 = g, where Lz, denotes the Lie differentiation
along Zy. Hence,

Vz2,2;=Z;, Vz,Zj=0, for j=0,1,2, (6.6)
LZOR(WJ) — R®9  for RP9D — (Raﬁ)lalznlﬁlzq' (6.7)

Using (6.6), we get R,z = 0 as follows:

2
> R’ Ze = [V, V7,2 = 0.
{=0

Applying Vﬁ with 3 = k¢, we obtain R,.- = 0. Arguing with Z, in

0j8
place of Z;, we get R.5 =0.

To prove the latter statement of (2°), we set
Zo=(Zay,-- 1 Z0a,), Zg=(Zg,...,Zg,)
forao=ay---ap, and f = p;---f,4. Using (6.6),

(VZOR(p’q))(Za,Zﬁ) _ (LZOR(p’q))(Zm?ﬁ)
q
— _ZR(WJ)(Z&,ZBI,...,VZ)ZBS,...,qu)
s=1

= —qRPD(Z,,Z3).
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This together with (6.7) yieldi VZOR(WI) = (1 —q)R™9, that is, R 55 =

(1 —|B))R,5- Arguing with Z, in place of Zy, we get Vz,RPD = (1 -
p)RP9) . Thus, using (6.6), we obtain

R,5=(R

= (R

a1z, 8y )ag...apoﬁg...ﬁq

a1a231§2)a3...ap33...3q0 =(1- p)RaE. O

Lemma 6.9. Let 6 <a+b<7in (6.5). Then RQBRO‘B =0 at eg unless
both of the following two conditions are satisfied.

(i) 2<w(R,5) <a+b—4and w' # w", where (W', w") =wa(R,5).
(if) no(y) +n1(y) = 2 and n1(y) +na(y) = 2 for v = o, B, where n; ()
denotes the number of j’s contained in a multi-index .
Proof. Assuming RGBRCYB # 0 at e, let us prove (i) and (ii). Recall that
| R(@9) |2 is of biweight (wq,wq) with wy = a + b — 2 and that wa(R,3) +
w2 (R*P) = (wo,wp). It then follows from Lemma 6.8, (1°) that
4<w +w" <2wy—4 and (w',w") #(2,2), (wo — 2,w — 2),
a condition which is equivalent to (i). To prove (ii), we use Lemma 6.8,
(2°). The condition ni(y) + n2(y) > 2 for v = «a, 8 follows from R 5 # 0
at eg, while the assumption R*? # 0 at e implies ng(vy) + n1(y) > 2. O

Observe that the condition (i) is symmetric in the entries of a (resp. [3).
The same applies to RQB and RoP by virtue of Lemma 6.6, because the
condition (i) implies 2w(R,5) < 6 and 2w(R*P) < 6. Consequently,
denoting by o(«) the number of permutations of a multi-index «, we have

IR@DP= 3 o(@)o(BR,GRT at e, (6.8)
‘O¢|:a,|ﬁ|:b

where the notation 3’ means that the summation only extends over non-
decreasing multi-indices. Hence, Lemma 6.9 is restated as follows.

Lemma 6.9'. If6 < a+0b <7, then (6.8) holds, where the summation
only extends over o and (3 satisfying the conditions (i) and (ii) in Lemma

6.9. Furthermore, for RoB in the right side of (6.8),
ROP — (—1)"1(0‘)+”1(B)Rﬂ*5 at e, (6.9)

where &* and * are the dual indices of a and B defined in Subsection 3.5.

The latter part of Lemma 6.9" above follows from the Hermitian sym-

metry in Lemma 6.6 and the formula ggk = (=1)m0)§I ¥ where §7 is
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Kronecker’s delta. Again, Rg.5+ in (6.9) is symmetric in the entries a*

(resp. B%).

We next consider, for a + b = 6,

d (¢4
IR 2

0
— (a;b) )12
Ro (- 1R ) (eo)

t=0

and compute the right side. Note that 0/9(> above can be replaced by
V3, the covariant differentiation along 0/0¢s. We have

Va(R,5R) = (VaR,5) R + R 5(V2RP),

while VoR 5 = R,,5 at e and R,5(VoR%) = R Ry.pox at eg. Con-
sequently,

d a
IR ()

t_o:Re( 2 Raw@o)Rﬁ“(eo))

lo|=a,[B]=b

-I-Re( > Razﬁ(eo)Rﬁo‘(eo)).

|B]=a,|al=b

(6.10)

Now the proof of Lemma 6.9 yields the following lemma.

Lemma 6.10. Let a +b = 6. Then (6.10) holds, where RQQBRO‘B =0 at
eo unless both of the following two conditions are satisfied.

(i) 2 <w(R,y5) <3 and w' # w", where (W', w") = w2 (R,,3).
(i) no(y) +n1(7) 2 2 and ni(y) +n2(7) 2 2 for v = a2, 5.

In view of the symmetry again in the entries of « (resp. ), we get:

Lemma 6.10". Ifa+b =6, then

d a
IR

t=0

:Re< Z + Z/ )0(@)0(6)RazﬁRo‘ﬁ at eq,

la|=a,|B|=b  |B|=a,la|=b

(6.11)

/

where both summations extend over o and [ satisfying the conditions (i)
and (ii) in Lemma 6.10.

We have thus obtained the expressions (6.8) and (6.11), where the sum-
mations are subject to the restrictions given by Lemmas 6.9 and 6.10’,
respectively. Our next task is to express the right sides of (6.8) and (6.11)
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in terms of Ryy535, Ri1133, Ri933, Ri1993, R11355 and their complex conju-
gates evaluated at eg. Let us first consider the terms in (6.8), and suppose

that RQERQB # 0 at eg. Then o and [ satisfy the conditions (i) and (ii)
in Lemma 6.9. Recalling that 6 < |a|+ |3] < 7, we find by inspection that
both wa(R,3) and wo (R*?) must be one of the followings:

(6.12)

Similarly for the terms in (6.11). That is, if RQQBRO‘B # 0 at eg with

laf +|B| = 6, then the possible values of w2(R,,7) and wo (R*?) are given
by (6.12).

Observe that the latter four cases in (6.12) are reduced to the former
four cases by virtue of the Hermitian symmetry.

Lemma 6.11. If w(R, ,15) < 3 and wa(R, 15) # (3,3), then
Rloﬂﬁ = R2a5§ + ROOEB at €Q. (613)

Proof. By the definition of the Ricci tensor,

2 2
: _ ik _ ik
el P T B o
e

J,k=0 4,k=0
where a = a;a’ and 8 = 514’ Thus, (6.13) is equivalent to

(RIC f)a,@:() at €Q- (613)/

a1

Since the metric g = g[r] is Kéhlerian, it follows from the relation det g =
|z0|*J[r] that

Ric; 7 = ¢, 0z log(det g) = O

J

&Cj log J[r].

2

Recalling that r = ¥ satisfies J[r] = 1+ O(U3), we see that log J[r] is of
the form f U? with f smooth. Hence, (6.13) is equivalent to

(aalagl( f U%)W —0 at e (6.14)

By the assumption W(Rlaﬁ) < 3, we have ny < 3 and n; < 6—2ns, where
n; = nj(lalf). If ni(a) = n1(B8) = 3 — na, then wa(Ry,15) = (3,3), a
contradiction. In other cases, (6.14) holds, and the proof is complete. [

By using Lemmas 6.8 and 6.11, we have:
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Lemma 6.12. If w2(R,3) = (3,1),(4,1),(3,2), (4,2) then

Rz =copRimm  cpBinze,  Cogllioze  Copllinoee T doliioes

at eg, respectively, where c, and d are constants. Specifically,

=—-1, =2, =2, ¢ =06
C11793 = Cr1212 = — L, G113 = Cii1011 = 25 Gt = — 6.

Proof. Setting (w',w") = w2(R,5) and w = w(R3), we recall that

ma(0) = ma(8) = w' —u', ma(a) £ na(B) = w1 - 3 (m(a) +m()).

We eliminate 0,0 and 1T in o3 repeatedly by using Lemmas 6.8 and 6.11.
By the procedure of eliminating 11, ni(a))—n1(3) is unchanged and ns(a)+
ns2(3) increases by 1. Both are invariant when 0 or 0 is eliminated. Hence,
R 5 is a linear combination of R 5 with wa(R,7z7) = (w',w") such that

nm(f)=0, 0¢d,p; |]|6]>2

Enumerating possible o/ 3’ for each (w’,w”), we obtain the former conclu-
sion, the existence of ¢, 5 and d_z. The latter half is elementary. U

6.5. Proof of Proposition 4. We first prove the existence of the
constants cg?, ;”b,dab for 7 = 1,2, and then identify these except dab In

what follows, all the quantities R 3, R%5 and ||R(@Y)]|]2 are evaluated at
€o.

Step 1 (ewistence of the constants). Let us first prove the existence of g’
for (a,b) = (4,2), (3,3). We use Lemma 6.9’, and find that if RQBR“B # 0
n (6.8) then (w',w"”) = wa(R,3) is either (3,1) or (1,3). Noting that

wa(R,, RO‘B) = (4,4), we see by Lemma 6 12 the existence of ¢g.

Let us next prove the existence of %, b, d%t dsb for (a,b) = (5,2),
(4,3), (4,2), (3,3). We begin with the case (a, b) (5,2) or (4,3), and

thus wa(R, Raﬂ) (5, 5) (6.8). Note by Lemma 6.9" that 4 < w’ +
w'’ = 2W(Ra5) < 6. If w4+ w” =4 or 6 then (w',w”) = (3,1),(1,3) or
(4,2),(2,4), respectively, and thus Lemma 6.12 implies

R R = F[0,0,d}", d5”] (6.15)
with some constants d?ﬁ and ng. If w' +w” =5 then (v, w") = (4,1),
(3,2), (2,3), (1,4), so that again Lemma 6.12 applies. We thus get the
existence of c?b and d;”’ for j = 1,2 in the case (a,b) = (5,2) and (4, 3).
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It remains to consider the case (a,b) = (4,2) or (3,3). We use Lemma
6.10" in place of Lemma 6.9’. Note that WQ(RQQBRQB) = (5,5) and that
4 <2w(R,,5) < 6. As before, if 2w(R_,5) =4 or 6 then

R,,5R°7 = F[0,0,d5", d5”] (6.16)

with some constants dg‘ﬁ and dZ‘E. If2w(R,,y5) = 5 then Lemma 6.12 again
applies, and the case (a,b) = (4,2) or (3,3) is also done. This completes
the proof of the existence of the constants in Proposition 4’.

Step 2 (listing possible af and a23). For the terms in (6.8), we find by
inspection that R QBRO‘[} = 0 except for the following cases.

(a,b) = (4,2): «af = 002211, 111111;

(a,b) = (3,3): «af = 012111, 111012;

(a,b) =(5,2): 2XV(RQE) :é6 o B
af = 1111111, 0111211, 0012211;

(a,b) =(4,3): QXV(RQB) :_4,6 or - - -
aff = 1112011, 0112012, 1111111, 0111112, 1111012,

0122011, 0022012, 0112111, 0012112, 0022111.

If a+ b =7 and 2w(R,5) = 4,6 then R 3R’ takes the form (6.15).

Similarly, we find for the terms in (6.11) that RQQBRO‘E = 0 except for
the following cases.
(a,b) =(4,2): 2W_(Ra25) :iG or
a2/ = 0111211, 0012211, 1120012, 0120022,
1120111, 0120112, 0121111;
(a,b) =(3,3): 2W_(Ra23) :iG o - -
a2B = 0022111, 0112012, 1112011, 0122011,
0022012, 0112111, 0012112

If 2w(R,y5) = 4,6 then RazBRO‘B takes the form (6.16).

Step 3 (identifying the constants). Noting the Hermitian symmetry
stated in Lemma 6.6, we have by Lemma 6.9" and Step 2 above that

||R(4’2)||2 =6 |Roo22ﬁ|2 + |R1111ﬁ|2 = 28 |R11ﬁ|2a
IRG2|? =6 |Roomril” + 6| Rypiomsl” = 12| Ry,
where Lemma 6.8, (2°) and Lemma 6.12 are used in getting the second
equalities. We thus get c§? = 28 and ¢33 = 12. Similarly, if (a,b) = (5,2)
or (4,3) then
| RO = Ti® + T3 + F[0,0,d5", d5"),
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where T152 = _|R11111ﬁ‘27 T252 = —30 ‘R00122ﬁ|2 - 20 ’R01112ﬁ’2 and

T143 =-6 ’R0022m|2 -6 |R1111m|2,
Tz43 = —36 ’Roomoﬁ’z =72 |R0112O@|2
- |R1111m\2 - 12R1112ﬁR11201T

— 36 R0012ﬁR0110122 —12 R0111ﬁR0111112

2
—12 |R0112111| — 36 R0122011R1120012'

We then get T2 = c%|R,,,55|* and T¢® = c§°|R,,55|? with 2 = —36,
52 = —1800, cj® = —48 and ¢33 = —1140.

It remains to identify c¢§® and c§® for (a,b) = (4,2) or (3,3). We now
use Lemma 6.11 in place of Lemma 6.10. Then

d a a a a a
IR (H)| = Re(Ty+ 75" + Fl0,0,d5", dg)),

49 - _ 33 __ I
where T7% = =2 Ry s11 Ri11112 1177 = —6 Rygoori Ri11022 and

42 _ - _ —_— -
T2 - 4R0111211F5111112 4R1120111R111211

—12 RommRoomﬁ —12 R00122ﬁR11m

—12 Rll2m30122ﬁ —24 RommRonzﬁ’
Tz33 = — 6 Ryq19011 112117 — 36 Ro112012 Ro10112

—6 Ro112mR111m - 18 R0012mRo11@

— 36 R0022mR012@ — 36 R0122ﬁR112m-

As before, we then get TP = ¢f°|R,,55/° and T§® = c2°|R,,55)* with
cf? = 8,c3% = 416,c¢3® = 12 and ¢33 = 324. Therefore, all necessary
constants are identified, and the proof of Proposition 4’ is complete.

7. MICROLOCAL CALCULUS OF THE BERGMAN
AND THE SZEGO KERNELS

7.1. Method of computation. Let us use the notations in Subsections
3.6-3.8, so that K](\j) and K](\Z) are the singularities of (72/2) KB and 72K,
respectively, for M = N(A). Recalling the polynomial dependence of K 1(\14”)
for w = 2,3 on A, we assume that M is real analytic. To prove Proposition
6, we use the following formulas in [2-4] and [15]:

K (2,2) = (AB) U052, K2 (2,2) = (45) U5 2, (7.1)
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where AB = AB(2,0,) and A5 = A5(z,0,) are elements of M% defined
by
AP(2,) = exp[-Hp(z, —G1 /)G,

AS(2,¢) = V(z,—(1/(2) AP (2,¢)

with VS(z,21) = J [UB]l/ 3 which is independent of the variable Z; in fact,

(7.2)

8UB/82’1 82UB/82’18§1

U] = det (8UB [0z OPUp 02207 ) '
Recall that Q € M (1) for Q = AB, AS implies the existence of Q* ~! €
M (1) which is given by the Neumann series > (1—Q*)*. This expression
of @* ~! enables us to compute explicitly the asymptotic expansion of K 1(\14”)
for w = 3,2. (Thus the real analyticity assumption on M can be removed.)
Let us add a remark on the formulas in (7.1). It is easy to see that the

operators AB, AS defined by (7.2) satisfy
AP(2,0.)logUy =logUp, A%(2,0.)Uy "' =V5(z,21)Uz",  (7.3)

while the point proved in [2—4] and [15] is that (7.3) implies (7.1). This im-
plication for K 1(\3) is a consequence of Kashiwara’s characterization in [16]
of constant multiples of K (3 by a simple holonomic system of holomor-
phic microdifferential equations, and the same idea applies also to Kl(\j).
In (7.3), log Up represents microlocally a constant multiple of the Heavi-
side function of a domain Q with M C 99, and similarly for VS(z,%,)Uz"
which corresponds to the delta measure supported on M with respect to

the invariant surface element defining the Szegd kernel K, cf. [2-4] and
[15].

7.2. Proof of Proposition 6. By virtue of Lemma 5.1, we see that
(2.4) holds with some constants c,,[¢®] and c,,[1/°]. Tt remains only to
determine these constants. We shall show that

Cpg[¥07] = SR {(p+q)!—ﬁ}’

2-(p+g-5) (p—q)!
B (_1)p+q 2pq
Cpq[¢s]—m{(p+Q)!—T(p+q—1)!
2(pq)® a\2  (p))?
9 (p+q_2)!_<1_§) (p—Q)!}'

Let us begin by noting that H(z,%Z1) = Fp4(21,%1) (cf. Subsection 5.4 for
the notation Fj,), so that the symbols AB(z,¢) and A5(z, () are indepen-
dent of the variable zo, because

JU) =AU =1— Ay F,.
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We thus write V5(z1,%1), AB(21,¢) and A5(21,¢) in place of V5(z,z),
AB(z,¢) and AS(z, (), respectively. Setting

= A% 2 (—(1 /)%, 2 =pq Al TN (=G /G)
wo = AL 21(~C /)G, wh=pg ALl (—Gi/G)P

we have AB(z1,() = exp[—(z1 + 22)] =1 — (z1 + 22) + 1 22 + --- and

1 2
V321, =G1/G) = (L + oy +a)' P = 14 S (2 +ah) — Saqah + o,

where - - - stands for terms containing (AJ;)? or (AJ;)?. Consequently,

AS(21,Q) = V5(21, =1/ Q)AP (21, ) =1 —y1 — g2 —ys + -+,
where y1 = 21 — 21/3, y2 = x2 — x4 /3 and

/

1
y3:—$2$2+—$/1$2+§(

/ /
5 Ty Ty + TH 7).

Recalling that each y; is a function of (21, (), we denote by Yj' the formal
adjoint of y;(21,0,). Then (A5)*(21,0,) =1—-Y{ =Yy —YJ +---, so that

(A%)* " Nz1,0.) =1+ Y + Y+ (Y + Y/ YV{ + YY) + -

So far, we have only neglected higher order terms in Aof and AO If we
denote by - - - also terms which do not contain |AJ|?, then

(AS) "M(21,0,) = Y4 + V] Yy + VI Y/ + - . (7.4)

A similar expression for (AB)*~1(z1,0,) is obtained by formally setting
) =xb=01in (7.4).

Let us compute the right side of (7.4) at z; = 0. In order to treat
the Bergman kernel case simultaneously with the Szego kernel case, it is
convenient to set

BY. = pq A% =B (7.5)
so that #/3 = BS; 2~ (- Cl/cz)q 1, #4/3 = B 217 (—¢1/¢)P" and
thus

1 =Apg 27 (— @/@)qcz— BY, ”‘1<—<1/<2>q—1,
yo =A% 21(—C1 /)Pl — BE2d (=G /G)P

— |A% 2T (- @/@)p*ch + 2| B2 (<G )T

(BO AO +B2pqu) pra- 1( Cl/CQ)p—’_q_lCQ'
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(The notation Bga here is a tentative one and not for the complex normal
form coefficient.) Then,

-1 —1 _
—(A%0%2F — BO 997 ) (—an) 1,
—1 —1 _
Yy =(AG07 2 — BRot ™ 217 )(=02)' 7,
:{_|Ag§’23{’+qu4‘q + 2‘Bof|23f+q_2zf+q_2

pq”~gp qp- P4

(BO AO —I—BO AO )aerq 1 p+q 1}(_82)2—17—q7

where the powers of z; act as multiplication operators. We can now eval-
uate Yy, Y/ Y] and Y] Y/ at z; = 0. Recalling p > ¢, we see that Y{ =0
and thus Y]Y; = 0 both at z; = 0. We also have, at z; =0,

Vi ={ = 0+ ) |45 +2 - (0 +a — 2)![Bf

+ (p+ g = DH(BRAY + Bl A5 ) H(=8,)2770,

qp =P 4

/ p! 0 (p—1! o } P—q 1—
Y] = A0 BO_LaP—e(—g,)1-P,
’ {(p—Q)! PR S

1 .
Yy Y] :m@f‘lgq — (p— D! B[ (=02)* 77

It then follows from (7.4) that, at z; = 0,

(A5 0,0 = (V] + VYD) = ue)-02 77 (16)
z1=
where, with B, and BJ; as in (7.5),
- 2
Gpg[°] = — (P + Q! Apg* +2- (p+ ¢ —2)! | By
040 0 40
+(p+q— 1) (B)z Ay +ququ)
1
+ p! A% — (p— 1! B[

If we formally set B); = By = 0 in (7.6) above, we get

(AB)"71(0,0:) = Gpg[0®] (—02)* 77, (7.7)

where

lt? = { =t s Al

The conclusion follows from (7.5)—(7.7) via the well-known formula
-y

T (m—DI(l—m)

oy tuy;™ U™ logUy  for £ >m > 0.
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