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Abstract. We prove that the anti-canonical divisors of weak Fano 3-folds with
log canonical singularities are semiample. Moreover, we consider semiampleness
of the anti-log canonical divisor of any weak log Fano pair with log canonical
singularities. We show semiampleness dose not hold in general by constructing
several examples. Based on those examples, we propose sufficient conditions which
seem to be the best possible and we prove semiampleness under such conditions. In
particular we derive semiampleness of the anti-canonical divisors of log canonical
weak Fano 4-folds whose lc centers are at most 1-dimensional. We also investigate
the Kleiman-Mori cones of weak log Fano pairs with log canonical singularities.

1. Introduction

Throughout this paper, we work over C, the complex number field. We start by
some basic definitions.

Definition 1.1. Let X be a normal projective variety and ∆ an effective Q-Weil
divisor on X. We say that (X, ∆) is a weak log Fano pair if −(KX + ∆) is nef and
big. If ∆ = 0, then we simply say that X is a weak Fano variety.

Definition 1.2. Let X be a normal variety and ∆ an effective Q-Weil divisor on
X such that KX + ∆ is a Q-Cartier divisor. Let ϕ : Y → X be a log resolution of
(X, ∆). We set

KY = ϕ∗(KX + ∆) +
∑

aiEi,

where Ei is a prime divisor. The pair (X, ∆) is called

(a) kawamata log terminal (klt, for short) if ai > −1 for all i, or
(b) log canonical (lc, for short) if ai ≥ −1 for all i.

Definition 1.3 (Lc center). Let (X, ∆) be an lc pair. We call that C ⊂ X is an lc
center of (X, ∆) if there exists a log resolution ϕ : Y → X such that ϕ(E) = C for
some prime divisor E on Y with a(E, X, ∆) = −1.

There are questions whether the following fundamental properties hold or not for
a log canonical weak log Fano pair (X, ∆) (cf. [S, 2.6. Remark-Corollary], [P, 11.1]):

(i) Semiampleness of −(KX + ∆).
(ii) Existence of Q-complements, i.e., existence of an effective Q-divisor D such

that KX + ∆ + D ∼Q 0 and (X, ∆ + D) is lc.
(iii) Rational polyhedrality of the Kleiman-Mori cone NE(X).
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It is easy to see that (i) implies (ii). In the case where (X, ∆) is a klt pair, the above
three properties hold by the Kawamata-Shokurov base point free theorem and the
cone theorem (cf. [KMM], [KoM]). Shokurov proved that these three properties hold
for surfaces (cf. [S, 2.5. Proposition]).

Among other things, we prove the following:

Theorem 1.4 (=Corollaries 3.3 and 4.5). Let X be a weak Fano 3-fold with log
canonical singularities. Then −KX is semiample and NE(X) is a rational polyhedral
cone.

Theorem 1.5 (=Corollary 3.4 and Theorem 4.4). Let X be a weak Fano 4-fold with
log canonical singularities. Suppose that any lc center of X is at most 1-dimensional.
Then −KX is semiample and NE(X) is a rational polyhedral cone.

On the other hand, the above three properties do not hold for d-dimensional
log canonical weak log Fano pairs in general, where d ≥ 3. Indeed, we give the
following examples of plt weak log Fano pairs whose anti-log canonical divisors are
not semiample in Section 5 (in particular, such examples of 3-dimensional weak log
Fano plt pairs show the main results of [Kar1] and [Kar2] do not hold). It is well
known that there exists a (d−1)-dimensional smooth projective variety S such that
−KS is nef and is not semiample. Let X0 be the cone over S with respect to some
projectively normal embedding S ⊂ PN . We take the blow-up X of X0 at its vertex.
Let E be the exceptional divisor of the blow-up. Then the pair (X,E) is a weak log
Fano plt pair such that −(KX +E) is not semiample. Moreover we give an example
of a log canonical weak log Fano pair without Q-complements and an example whose
Kleiman-Mori cone is not polyhedral.

We now outline the proof of semiampleness of −KX as in Theorem 1.4. First, we
take a birational morphism ϕ : Y → X such that ϕ∗(KX) = KY + S, (Y, S) is dlt
and S is reduced. We set C := ϕ(S), which is the union of lc centers of X. By an
argument in the proof of the Kawamata-Shokurov base point free theorem (Lemma
2.11), it is sufficient to prove that −(KY + S)|S is semiample. Moreover we have
only to prove that −KX |C is semiample by the formula KX |C = (ϕ|S)∗((KY +S)|S).

It is not difficult to see semiampleness of the restriction of −KX on any lc center of
X. The main difficulty is how to extend semiampleness to C from each 1-dimensional
irreducible component Ci of C since the configuration of Ci’s may be complicated.
The key to overcome this difficulty is the abundance theorem for 2-dimensional
semi-divisorial log terminal pairs ([AFKM]). We decompose C = C ′ ∪ C ′′, where

Σ := {i| −KX |Ci
≡ 0}, C ′ :=

⋃
i∈Σ

Ci, and C ′′ :=
⋃

i6∈Σ

Ci.

Let S ′ be the union of the irreducible components of S whose image on X is contained
in C ′. We define the boundary DiffS′(S) on S ′ by the formula KY + S|S′ = KS′ +
DiffS′(S). The pair (S ′, DiffS′(S)) is known to be semi-divisorial log terminal pair
(sdlt, for short). Applying the abundance theorem to the pair (S ′, DiffS′(S)), we
see that KS′ + DiffS′(S) is Q-linearly trivial, namely, there is a non-zero integer
m1 such that −m1(KY + S)|S′ = −m1(KS′ + DiffS′(S)) ∼ 0. This shows that
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−m1KX |C′ ∼ 0. On the other hand, since −KX |C′′ is ample, we can take enough
sections of H0(C ′′,−m2KX |C′′) for a sufficiently large and divisible m2 (Lemma
2.16). Thus, we can find enough sections of H0(C,−mKX |C) for a sufficiently large
and divisible m, and can conclude that −KX |C is semiample.

To generalize this theorem to higher dimensional weak log Fano pairs, let us recall
the following conjectures:

Conjecture 1.6 (Abundance conjecture in a special case). Let (X, ∆) be a d-
dimensional projective sdlt pair whose KX +∆ is numerically trivial. Then KX +∆
is Q-linearly trivial, i.e., there exists an n ∈ N such that n(KX + ∆) ∼ 0.

The abundance conjecture is one of the most famous conjecture in the minimal
model program. This conjecture is true when d ≤ 3 by the works of Fujita, Kawa-
mata, Miyaoka, Abramovich, Fong, Kollár, McKernan, Keel, Matsuki, and Fujino.

By the same way as in the 3-dimensional case, we see the following theorem:

Theorem 1.7 (=Theorem 3.1). Assume that Conjecture 1.6 in dimension d − 1
holds. Let (X, ∆) be a d-dimensional log canonical weak log Fano pair. Suppose that
M(X, ∆) ≤ 1, where

M(X, ∆) := max{dim P | P is a lc center of (X, ∆)}.
Then −(KX + ∆) is semiample.

Indeed, semiampleness of −KX as in Theorem 1.4 is derived from the above
theorem since the singular locus of any normal 3-fold is at most 1-dimensional and
Conjecture 1.6 for surfaces holds ([AFKM]). We also derive semiampleness of weak
Fano 4-folds such that M(X, 0) ≤ 1 because Conjecture 1.6 for 3-folds holds ([Fj1]).
We remark that by Examples 5.2 and 5.3, this condition for the dimension of lc
centers is the best possible.

In Section 4, by the cone theorem for normal varieties by Ambro and Fujino (cf.
Theorem 4.3), we derive the following:

Theorem 1.8 (=Theorem 4.4). Let (X, ∆) be a d-dimensional log canonical weak
log Fano pair. Suppose that M(X, ∆) ≤ 1. Then NE(X) is a rational polyhedral
cone.

Note that rational polyhedrality of NE(X) as in Theorem 1.4 is a corollary of
the above theorem. In Example 5.6, we also see that the Kleiman-Mori cone is not
rational polyhedral in general when M(X, ∆) ≥ 2.

This paper is based on the minimal model theory for log canonical pairs developed
by Ambro and Fujino ([A1], [A2], [A3], [Fj5], [Fj6], [Fj7]).

We will make use of the standard notation and definitions as in [KoM].
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2. Preliminaries and Lemmas

In this section, we introduce notation and some lemmas for the proof of Theorem
1.7 (=Theorem 3.1).

Definition 2.1. For aQ-Weil divisor D =
∑r

j=1 djDj such that Dj is a prime divisor

for every j and Di 6= Dj for i 6= j, we define the round-up pDq =
∑r

j=1pdjqDj

(resp. the round-down xDy =
∑r

j=1xdjyDj), where for every real number x, pxq
(resp. xxy) is the integer defined by x ≤ pxq < x + 1 (resp. x− 1 < xxy ≤ x). The
fractional part {D} of D denotes D − xDy. We define

D=1 =
∑

dj=1

Dj, D≤1 =
∑

dj≤1

djDj,

D<1 =
∑

dj<1

djDj, and D>1 =
∑

dj>1

djDj.

We call D a boundary Q-divisor if 0 ≤ dj ≤ 1 for every j.

Definition 2.2 (Stratum). Let (X, ∆) be an lc pair. A stratum of (X, ∆) denotes
X itself or an lc center of (X, ∆).

The following theorem is very important as a generalization of vanishing theorems
(cf. [A2, Theorem 3.1], [Fj5, Theorem 2.2], [Fj6, Theorem 2.38], [Fj7, Theorem 6.3]).

Theorem 2.3 (Torsion-freeness theorem). Let Y be a smooth variety and B a bound-
ary R-divisor such that SuppB is simple normal crossing. Let f : Y → X be a
projective morphism and L a Cartier divisor on Y such that H ∼R L − (KY + B)
is f -semiample. Then every associated prime of Rqf∗OY (L) is the generic point of
the f -image of some stratum of (Y, B) for any non-negative integer q.

The following theorem is proved by Fujino ([Fj7, Theorem 10.5]). We include the
proof for the reader’s convenience.

Theorem 2.4. Let X be a normal quasi-projective variety and ∆ an effective Q-
divisor on X such that KX +∆ is Q-Cartier. Suppose that (X, ∆) is lc. Then there
exists a projective birational morphism ϕ : Y → X from a normal quasi-projective
variety with the following properties:

(i) Y is Q-factorial,
(ii) a(E, X, ∆) = −1 for every ϕ-exceptional divisor E on Y ,
(iii) for

Γ = ϕ−1
∗ ∆ +

∑

E:ϕ-exceptional

E,

it holds that (Y, Γ) is dlt and KY + Γ = ϕ∗(KX + ∆), and
(iv) Let {Ci} be any set of lc centers of (X, ∆). Let W =

⋃
Ci with a reduced

structure and S the union of the irreducible components of xΓy which are
mapped into W by ϕ. Then (ϕ|S)∗OS ' OW .
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Proof. Let π : V → X be a resolution such that

(1) π−1(C) is a simple normal crossing divisor on V for every lc center C of
(X, ∆), and

(2) π−1
∗ ∆ ∪ Exc(π) ∪ π−1(Nklt(X, ∆)) has a simple normal crossing support,

where Exc(π) is the exceptional set of π and Nklt(X, ∆) is the union of lc
centers of (X, ∆).

By Hironaka’s resolution theorem, we can assume that π is a composite of blow-ups
with centers of codimension at least two. Then there exists an effective π-exceptional
Cartier divisor B on V such that −B is π-ample. We put

F =
∑

a(E,X,∆)>−1,

E:π-exceptional

E and G =
∑

a(E,X,∆)=−1

E.

Let H be a sufficiently ample Cartier divisor on X such that −B + π∗H is ample.
We choose 0 < ε ¿ 1 such that εG− B + π∗(H) is ample. Since −B + π∗(H) and
εG− B + π∗(H) are ample, we can take effective Q-divisors H1 and H2 on V with
small coefficients such that G + F + π−1

∗ ∆ + H1 + H2 has a simple normal crossing
support and that −B + π∗H ∼Q H1, εG−B + π∗(H) ∼Q H2. We take 0 < ν, µ ¿ 1
such that every divisor in F has a negative coefficient in

M := ΓV −G− (1− ν)F − π−1
∗ ∆<1 + µB,

where ΓV is a Q-divisor on V such that KV + ΓV = π∗(KX + ∆). Now we construct
a log minimal model of (V, G + (1− ν)F + π−1

∗ ∆<1 + µH1) over X. Since

G + (1− ν)F + µH1 ∼Q (1− εµ)G + (1− ν)F + µH2,

it is sufficient to construct a log minimial model of (V, (1−εµ)G+(1−ν)F+π−1
∗ ∆<1+

µH2) over X. Because (V, (1− εµ)G + (1− ν)F + π−1
∗ ∆<1 + µH2) is klt, we can get

a log minimal model ϕ : Y → X of (V, (1− εµ)G + (1− ν)F + π−1
∗ ∆<1 + µH2) over

X by [BCHM, Theorem 1.2].
We show this Y satisfies the conditions of the theorem. For any divisor D on V

(appearing above), let D′ denote its strict transform on Y . We see the following
claim:

Claim 2.5. F ′ = 0.

Proof of Claim 2.5. By the above construction,

N := KY + G′ + (1− ν)F ′ + ϕ−1
∗ ∆<1 + µH ′

1

is ϕ-nef. Then

−M ′ ∼Q,ϕ N − (KY + ΓY )

since (π∗H)′ = ϕ∗H, hence it is ϕ-nef. Since ϕ∗M ′ = 0, we see that M ′ is effective
by the negativity lemma (cf. [KoM, Lemma 3.39]). Since every divisor in F has
a negative coefficient in M , F is contracted on Y . We finish the proof of Claim
2.5. ¤
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From Claim 2.5, the discrepancy of every ϕ-exceptional divisor is equal to −1.
We see that Y satisfies the condition (ii). By the above construction, (Y, Γ) is a
Q-factorial dlt pair since so is (Y, G′ + ϕ−1

∗ ∆<1 + µH1). We see the condition (i).
Because the support of KY +Γ−ϕ∗(KX +∆) coincide with F ′, we see the condition
(iii).

Now, we show that Y and ϕ satisfy the condition (iv). Since we get Y by the log
minimal model program over X with scaling of some effective divisor with respect
to KV + G + (1− ν)F + π−1

∗ ∆<1 + µH1 (cf. [BCHM]), we see that the rational map
f : V 99K Y is a composition of (KV + G + (1 − ν)F + π−1

∗ ∆<1 + µH1)-negative
divisorial contractions and log flips. Let Σ be an lc center of (Y, Γ). Then it is
also an lc center of (Y, Γ + µH ′

1). By the negativity lemma, f : V 99K Y is an
isomorphism around the generic point of Σ. Therefore, if ϕ(Σ) ⊆ W , then Σ ⊆ S
by the conditions (1) and (2) for π : V → X. This means that no lc centers of
(Y, Γ− S) are mapped into W by ϕ. Let g : Z → Y be a resolution such that

(a) Supp ΓZ is a simple normal crossing divisor, where ΓZ is defined by KZ+ΓZ =
g∗(KY + Γ), and

(b) g is an isomorphism over the generic point of any lc center of (Y, Γ).

Let SZ be the strict transform of S on Z. We consider the following short exact
sequence

0 → OZ(p−(Γ<1
Z )q− SZ) → OZ(p−(Γ<1

Z )q)(∗)
→ OSZ

(p−(Γ<1
Z )q) → 0.

We note that

p−(Γ<1
Z )q− SZ − (KZ + {ΓZ}+ Γ=1

Z − SZ) ∼Q −h∗(KX + ∆),

where h = ϕ ◦ g. Then we obtain

0 → h∗OZ(p−(Γ<1
Z )q− SZ) → h∗OZ(p−(Γ<1

Z )q) → h∗OSZ
(p−(Γ<1

Z )q)

δ→ R1h∗OZ(p−(Γ<1
Z )q− SZ) → · · · .

We claim the following:

Claim 2.6. δ is a zero map.

Proof of Claim 2.6. Let Σ be an lc center of (Z, {ΓZ}+ Γ=1
Z − SZ). Then Σ is some

intersection of components of Γ=1
Z − SZ . By the conditions (a) and (b), Γ=1

Z − SZ is
the strict transform of xΓy−S. By this, the image of Σ by g is some intersection of
components of xΓy−S. In particular, g(Σ) is an lc center of (Y, Γ−S). Thus no lc
centers of (Z, {ΓZ}+ Γ=1

Z −SZ) are mapped into W by h. Assume by contradiction
that δ is not zero. Then there exists a section s ∈ H0(U, h∗OSZ

(p−(Γ<1
Z )q)) for some

non-empty open set U ⊆ X such that δ(s) 6= 0. Since Supp δ(s) 6= ∅, we can take an
associated prime x ∈ Supp δ(s). We see that x ∈ W since Supp(h∗OSZ

(p−(Γ<1
Z )q))

is contained in W . By Theorem 2.3, x is the generic point of the h-image of some
stratum of (Z, {ΓZ}+ Γ=1

Z − SZ). Since h is a birational morphism, x is the generic
point of the h-image of some lc center of (Z, {ΓZ}+Γ=1

Z −SZ). Because no lc centers
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of (Z, {ΓZ} + Γ=1
Z − SZ) are mapped into W by h, it holds that x 6∈ W . But this

contradicts the way of taking x.
¤

Thus, we obtain

0 → IW → OX → h∗OSZ
(p−(Γ<1

Z )q) → 0,

where IW is the defining ideal sheaf of W since p−(Γ<1
Z )q is effective and h-exceptional.

This implies that OW ' h∗OSZ
(p−(Γ<1

Z )q). By applying g∗ to (∗), we obtain

0 → IS → OY → g∗OSZ
(p−(Γ<1

Z )q) → 0,

where IS is the defining ideal sheaf of S since p−(Γ<1
Z )q is effective and g-exceptional.

We note that
R1g∗OZ(p−(Γ<1

Z )q− SZ) = 0

by Theorem 2.3 since g is an isomorphism at the generic point of any stratum of
(Z, {ΓZ} + Γ=1

Z − SZ). Thus, OW ' h∗OSZ
(p−(Γ<1

Z )q) ' ϕ∗g∗OSZ
(p−(Γ<1

Z )q) '
ϕ∗OS. We finish the proof of Theorem 2.4. ¤
Definition 2.7. Let X be a normal variety and D a Q-Weil divisor. We define that

R(X,D) =
∞⊕

m=0

H0(X, xmDy).

Definition 2.8 (semi-divisorial log terminal, cf. [Fj1]). Let X be a reduced S2-
scheme. We assume that it is pure d-dimensional and is normal crossing in codi-
mension 1. Let ∆ be an effective Q-Weil divisor on X such that KX +∆ is Q-Cartier.

Let X =
⋃

Xi be the decomposition into irreducible components, and ν : X ′ :=∐
X ′

i → X =
⋃

Xi the normalization. Define the Q-divisor Θ on X ′ by KX′ +Θ :=
ν∗(KX + ∆) and set Θi := Θ|X′

i
.

We say that (X, ∆) is semi-divisorial log terminal (for short, sdlt) if Xi is normal,
that is, X ′

i is isomorphic to Xi, and (X ′
i, Θi) is dlt for every i.

Definition and Lemma 2.9 (Different, cf. [C]). Let (Y, Γ) be a dlt pair and S a
union of some components of xΓy. Then there exists an effective Q-divisor DiffS(Γ)
on S such that (KY + Γ)|S ∼Q KS + DiffS(Γ). The effective Q-divisor DiffS(Γ) is
called the different of Γ. Moreover it holds that (S, DiffS(Γ)) is sdlt.

The following proposition is [Fk2, Proposition 2] (for the proof, see [Fk1, Proof
of Theorem 3] and [Kaw, Lemma 3]).

Proposition 2.10. Let (X, ∆) be a proper dlt pair and L a nef Cartier divisor such
that aL− (KX + ∆) is nef and big for some a ∈ N. If Bs|mL| ∩ x∆y = ∅ for every
m À 0, then |mL| is base point free for every m À 0, where Bs|mL| is the base
locus of |mL|.

By this proposition, we derive the following lemma:

Lemma 2.11. Let (Y, Γ) be a Q-factorial weak log Fano dlt pair. Suppose that
−(KS + ΓS) is semiample, where S := xΓy and ΓS := DiffS(Γ). Then −(KY + Γ) is
semiample.
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Proof. We consider the exact sequence

0 → OY (−m(KY + Γ)− S) → OY (−m(KY + Γ)) →
→ OS(−m(KY + Γ)|S) → 0

for m À 0. By the Kawamata-Viehweg vanishing theorem (cf. [KMM, Theorem
1-2-5.], [KoM, Theorem 2.70]), we have

H1(Y,OY (−m(KY + Γ)− S)) =

= H1(Y,OY (KY + Γ− S − (m + 1)(KX + Γ))) = 0,

since the pair (Y, Γ−S) is klt and −(KY +Γ) is nef and big. Thus, we get the exact
sequence

H0(Y,OY (−m(KY + Γ)) → H0(S,OS(−m(KY + Γ)|S)) → 0.

Therefore, we see that Bs| −m(KY + Γ)| ∩ S = ∅ for m À 0 since −(KS + ∆S) is
semiample. Applying Proposition 2.10, we conclude that −(KY + Γ) is semiample.

¤
Definition 2.12. (cf. [GT, 1.1. Definition], [KoS, Definition 7.1]) Suppose that R
is a reduced excellent ring and R ⊆ S is a reduced R-algebra which is finite as an
R-module. We say that the extension i : R ↪→ S is subintegral if one of the following
equivalent conditions holds:

(a) (S
⊗

R k(p))red = k(p) for all p ∈ Spec(R).
(b) the induced map on the spectra is bijective and i induces trivial residue field

extensions.

Definition 2.13. [KoS, Definition 7.2] Suppose that R is a reduced excellent ring.
We say that R is seminormal if every subintegral extension R ↪→ S is an isomor-
phism.

A scheme X is called seminormal at q ∈ X if the local ring at q is seminormal.
If X is seminormal at every point, we say that X is seminormal.

Proposition 2.14. [GT, 5.3. Corollary] Let (R, m) be a local excellent ring. Then

R is seminormal if and only if R̂ is seminormal, where R̂ is m-adic completion of
R.

Proposition 2.15. (cf. [Ko, 7.2.2.1], [KoS, Remark 7.6]) Let C be a pure 1-dimensional
proper reduced scheme of finite type over C, and q ∈ C a closed point. Then C is

seminormal at q if and only if ÔC,q satisfies that

(i) ÔC,q ' C[[X]], or

(ii) ÔC,q ' C[[X1, X2, · · · , Xr]]/〈XiXj|1 ≤ i 6= j ≤ r〉 for some r ≥ 2, i.e.,
q ∈ C is isomorphic to the coordinate axies in Cr at the origin as a formal
germs.

Lemma 2.16. Let C = C1∪C2 be a pure 1-dimensional proper seminormal reduced
scheme of finite type over C, where C1 and C2 are pure 1-dimensional reduced closed
subschemes. Let D be a Q-Cartier divisor on C. Suppose that D1 is Q-linearly trivial
and D2 is ample, where Di := D|Ci

. Then D is semiample.
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Proof. Let C1 ∩ C2 = {p1, . . . , pr}. We take m À 0 which satisfies the following:

(i) mD1 ∼ 0,
(ii) OC2(mD2)⊗ (

⋂
k 6=l mpk

) is generated by global sections for all l ∈ {1, . . . , r},
and

(iii) OC2(mD2)⊗ (
⋂

k mpk
) is generated by global sections,

where mpk
is the ideal sheaf of pk on C2. We choose a nowhere vanishing section

s ∈ H0(C1,mD1). By (ii), we can take a section tl ∈ H0(C2,mD2) which does not
vanish at pl but vanishes at all the pk (k ∈ {1, . . . , r}, k 6= l) for each l ∈ {1, . . . , r}.
By multiplying suitable nonzero constants to tl, we may assume that tl|pl

= s|pl
.

We set t :=
∑

l tl ∈ H0(C2,mD2). Since C is seminormal, Proposition 2.15 implies
that OC1∩C2 '

⊕r
l=1C(pl), where C(pl) is the skyscraper sheaf C sitting at pl, by

computations on ÔC,pl
. Thus we get the following exact sequence:

0 → OC(mD) → OC1(mD1)⊕OC2(mD2) →
r⊕

l=1

C(pl) → 0,

where the third arrow maps (s′, s′′) to ((s′ − s′′)|p1 , . . . , (s
′ − s′′)|pr). Hence s and t

patch together and give a section u of H0(C, mD).
Let p be any point of C. If p ∈ C1, then u does not vanish at p. We may assume

that p ∈ C2 \ C1. By (iii), we can take a section t′ ∈ H0(C2,mD2) which does not
vanish at p but vanishes at pl for all l ∈ {1, . . . , r}. The zero section 0 ∈ H0(C1,mC1)
and t′ patch together and give a section u′ of H0(C, mD). By construction, the
section u′ does not vanish at p. We finish the proof of Lemma 2.16. ¤

3. On semiampleness for weak Fano varieties

In this section, we prove Theorem 1.7 (=Theorem 3.1). As a corollary, we see
that the anti-canonical divisors of weak Fano 3-folds with log canonical singularities
are semiample. Moreover we derive semiampleness of the anti-canonical divisors of
log canonical weak Fano 4-folds whose lc centers are at most 1-dimensional.

Theorem 3.1. Assume that Conjecture 1.6 in dimension d − 1 holds. Let (X, ∆)
be a d-dimensional log canonical weak log Fano pair. Suppose that M(X, ∆) ≤ 1,
where

M(X, ∆) := max{dim P | P is a lc center of (X, ∆)}.
Then −(KX + ∆) is semiample.

Proof. By Theorem 2.4, we take a birational morphism ϕ : (Y, Γ) → (X, ∆) as in the
theorem. We set S := xΓy and C := ϕ(S), where we consider the reduced scheme
structures on S and C. We have only to prove that −(KS + ΓS) = −(KY + Γ)|S is
semiample from Lemma 2.11. By the formula (KY + Γ)|S ∼Q (ϕ|S)∗((KX + ∆)|C),
it suffices to show that −(KX + ∆)|C is semiample. Arguing on each connected
component of C, we may assume that C is connected. Since M(X, ∆) ≤ 1, it holds
that dim C ≤ 1. When dim C = 0, i.e., C is a closed point, then −(KX +∆)|C ∼Q 0,
in particular, is semiample.
When dim C = 1, C is a pure 1-dimensional seminormal scheme by [A3, Theorem
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1.1] or [Fj7, Theorem 9.1]. Let C =
⋃r

i=1 Ci, where Ci is an irreducible component,
and let D := −(KX + ∆)|C and Di := D|Ci

. We set

Σ := {i| Di ≡ 0}, C ′ :=
⋃
i∈Σ

Ci, C ′′ :=
⋃

i6∈Σ

Ci.

Let S ′ be the union of irreducible components of S whose image by ϕ is contained
in C ′. We see that KS′ + ΓS′ ≡ 0, where ΓS′ := DiffS′(Γ). Thus it holds that
KS′ + ΓS′ ∼Q 0 by applying Conjecture 1.6 to (S ′, ΓS′). Since (ϕ|S′)∗OS′ ' OC′ by
the condition (iv) in Theorem 2.4, it holds that D|C′ ∼Q 0. We see that D|C′′ is
ample since the restriction of D on any irreducible component of C ′′ is ample. By
Lemma 2.16, we see that D = −(KX + ∆)|C is semiample. We finish the proof of
Theorem 3.1. ¤
Corollary 3.2. Assume that Conjecture 1.6 in dimension d− 1 holds.
Let (X, ∆) be a d-dimensional log canonical weak log Fano pair. Suppose that
M(X, ∆) ≤ 1. Then R(X,−(KX + ∆)) is a finitely generated algebra over C.

Conjecture 1.6 holds for surfaces and 3-folds by [AFKM] and [Fj1]. Thus we
immediately obtain the following corollaries:

Corollary 3.3. Let (X, ∆) be a 3-dimensional log canonical weak log Fano pair.
Suppose that x∆y = 0. Then −(KX + ∆) is semiample and R(X,−(KX + ∆)) is
a finitely generated algebra over C. In particular, if X is a weak Fano 3-fold with
log canonical singularities, then −KX is semiample and R(X,−KX) is a finitely
generated algebra over C.

Corollary 3.4. Let (X, ∆) be a 4-dimensional log canonical weak log Fano pair.
Suppose that M(X, ∆) ≤ 1. Then −(KX + ∆) is semiample and R(X,−(KX + ∆))
is a finitely generated algebra over C. In particular, if X is a log canonical weak
Fano 4-fold whose lc centers are at most 1-dimensional, then −KX is semiample
and R(X,−KX) is a finitely generated algebra over C.

Remark 3.5. When M(X, ∆) ≥ 2, −(KX +∆) is not semiample and R(X,−(KX +
∆)) is not a finitely generated algebra over C, in general (Examples 5.2 and 5.3).

Remark 3.6. Based on Theorem 3.1, we expect the following statement:

Let (X, ∆) be lc pair and D a nef Cartier divisor. Suppose there is
a positive number a such that aD − (KX + ∆) is nef and big. If it
holds that M(X, ∆) ≤ 1, then D is semiample.

However, there is a counterexample for this statement due to Zariski (cf. [KMM,
Remark 3-1-2], [Z]).

4. On the Kleiman-Mori cone for weak Fano varieties

In this section, we introduce the cone theorem for normal varieties by Ambro
and Fujino and prove polyhedrality of the Kleiman-Mori cone for a log canonical
weak Fano variety whose lc centers are at most 1-dimensional. We use the notion
of the scheme Nlc(X, ∆), whose underlying space is the set of non-log canonical



ON WEAK FANO VARIETIES WITH LOG CANONICAL SINGULARITIES 11

singularities. For the scheme structure on Nlc(X, ∆), we refer [Fj7, Section 7] and
[Fj4] in detail.

Definition 4.1. ([Fj7, Definition 16.1]) Let X be a normal variety and ∆ an effective
Q-divisor on X such that KX + ∆ is Q-Cartier. Let π : X → S be a projective
morphism. We put

NE(X/S)Nlc(X,∆) = Im(NE(Nlc(X, ∆)/S) → NE(X/S)).

Definition 4.2. ([Fj7, Definition 16.2]) An extremal face of NE(X/S) is a non-zero
subcone F ⊂ NE(X/S) such that z, z′ ∈ F and z + z′ ∈ F implies that z, z′ ∈ F .
Equivalently, F = NE(X/S) ∩ H⊥ for some π-nef R-divisor H, which is called a
supporting function of F . An extremal ray is a one-dimensional extremal face.

(1) An extremal face F is called (KX + ∆)-negative if

F ∩NE(X/S)KX+∆≥0 = {0}.
(2) An extremal face F is called rational if we can choose a π-nef Q-divisor H

as a support function of F .
(3) An extremal face F is called relatively ample at Nlc(X, ∆) if

F ∩NE(X/S)Nlc(X,∆) = {0}.
Equivalently, H|Nlc(X,∆) is π|Nlc(X,∆)-ample for every supporting function H
of F .

(4) An extremal face F is called contractible at Nlc(X, ∆) if it has a rational
supporting function H such that H|Nlc(X,∆) is π|Nlc(X,∆)-semiample.

Theorem 4.3. (Cone theorem for normal varieties, [A2, Theorem 5.10], [Fj7, The-
orem 16.5]) Let X be a normal variety, ∆ an effective Q-divisor on X such that
KX + ∆ is Q-Cartier, and π : X → S a projective morphism. Then we have the
following properties.

(1) NE(X/S) = NE(X/S)KX+∆≥0 + NE(X/S)Nlc(X,∆) +
∑

Rj, where Rj’s are

the (KX + ∆)-negative extremal rays of NE(X/S) that are rational and rel-
atively ample at Nlc(X, ∆). In particular, each Rj is spanned by an integral
curve Cj on X such that π(Cj) is a point.

(2) Let H be a π-ample Q-divisor on X. Then there are only finitely many Rj’s
included in (KX + ∆ + H)<0. In particular, the Rj’s are discrete in the
half-space (KX + ∆)<0.

(3) Let F be a (KX + ∆)-negative extremal face of NE(X/S) that is relatively
ample at Nlc(X, ∆). Then F is a rational face. In particular, F is con-
tractible at Nlc(X, ∆).

By the above Theorem, we derive the following theorem:

Theorem 4.4. Let (X, ∆) be a d-dimensional log canonical weak log Fano pair.
Suppose that M(X, ∆) ≤ 1. Then NE(X) is a rational polyhedral cone.
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Proof. Since −(KX + ∆) is nef and big, there exists an effective divisor B satisfies
the following: for any sufficiently small rational positive number ε, there exists a
general Q-ample divisor Aε such that

−(KX + ∆) ∼Q εB + Aε.

We fix a sufficiently small rational positive number ε and set A := Aε. We also
take a sufficiently small positive number δ. Thus Supp(Nlc(X, ∆ + εB + δA)) is
contained in the union of lc centers of (X, ∆) and −(KX + ∆ + εB + δA) is ample.
By applying Theorem 4.3 to (X, ∆ + εB + δA), We get

NE(X) = NE(X)Nlc(X,∆+εB+δA) +
m∑

j=1

Rj for some m.

Now we see that NE(X)Nlc(X,∆+εB+δA) is polyhedral since dim Nlc(X, ∆ + εB) ≤ 1
by the assumption of M(X, ∆) ≤ 1. We finish the proof of Theorem 4.4.

¤
Corollary 4.5. Let X be a weak Fano 3-fold with log canonical singularities. Then
the cone NE(X) is rational polyhedral.

Remark 4.6. When M(X, ∆) ≥ 2, NE(X) is not polyhedral in general (Example 5.6).

5. Examples

In this section, we construct examples of log canonical weak log Fano pairs (X, ∆)
such that −(KX + ∆) is not semiample, (X, ∆) does not have Q-complements, or
NE(X) is not polyhedral.

Basic construction 5.1. Let S be a (d−1)-dimensional smooth projective variety
such that −KS is nef and S ⊂ PN some projectively normal embedding. Let X0

be the cone over S and φ : X → X0 the blow-up at the vertex. Then the linear
projection X0 99K S from the vertex is decomposed as follows:

X
φ

~~||
||

||
|| π

ÃÃ@
@@

@@
@@

@

X0 S.

This diagram is the restriction of the diagram for the projection PN+1 99K PN :

V := PPN (OPN ⊕OPN (−1))
φ0

uukkkkkkkkkkkkkkkk
π0

))SSSSSSSSSSSSSSSS

PN+1 PN .

Moreover, the φ0-exceptional divisor is the tautological divisor of OPN ⊕OPN (−1).
Hence X ' PS(OS ⊕ OS(−H)), where H is a hyperplane section on S ⊂ PN , and
the φ-exceptional divisor E is isomorphic to S and is the tautological divisor of
OS ⊕OS(−H).



ON WEAK FANO VARIETIES WITH LOG CANONICAL SINGULARITIES 13

By the canonical bundle formula, it holds that

KX = −2E + π∗(KS −H),

thus we have
−(KX + E) = π∗(−KS) + π∗H + E

We see π∗H + E is nef and big since OX(π∗(H) + E) ' φ∗OX0(1) and φ is
birational. Hence −(KX + E) is nef and big since π∗(−KS) is nef.

The above construction is inspired by that of Hacon and McKernan in Lazić’s
paper (cf. [Lc, Theorem A.6]).

In the following examples, (X,E) is the plt weak log Fano pair given by the above
construction.

Example 5.2. This is an example of a d-dimensional plt weak log Fano pair such
that the anti-log canonical divisors are not semiample, where d ≥ 3.
There exists a variety S such that −KS is nef and is not semiample (e.g. the surface
obtained by blowing up P2 at very general 9 points). We see that −(KX + E)
is not semiample since −(KX + E)|E = −KE is not semiample. In particular,
R(X,−(KX + E)) is not a finitely generated algebra over C by −(KX + ∆) is nef
and big.

Example 5.3. This is an example of a log canonical weak Fano variety such that
the anti-canonical divisor is not semiample.
Let T be a k-dimensional smooth projective variety whose −KT is nef and A a
(d − k − 1)-dimensional smooth projective manifold with KA ∼Q 0, where d and
k are integers satisfying d − 1 ≥ k ≥ 0. We set S = A × T . Let pT : S → T
be the canonical projection. We see that KS = p∗T (KT ). Let Ap be the fiber of
pT at a point p ∈ T , and ϕ : X → Y the birational morphism with respect to
|φ∗(OX0(1))⊗ π∗p∗TOT (HT )|, where HT is some very ample divisor on T . We claim
the following:

Claim 5.4. It holds that:

(i) Y is a projective variety with log canonical singularities.
(ii) Exc(ϕ) = E and any exceptional curve of ϕ is contained in some Ap.
(iii) ϕ∗KY = KX + E.
(iv) ϕ(E) = T and (ϕ|E)∗KT = KE.

Proof of Claim 5.4. We see (ii) easily. Since KX +E is ϕ-trivial and −E|E is ample,
we see (iii). (i) follows from (iii). By (iii), ϕ(E) is a lc center. By (φ∗(OX0(1)) ⊗
π∗p∗TOT (HT ))|E ' p∗TOT (HT ), it holds that ϕ|E = pT . Thus (iv) follows. ¤

If −KT is not semiample, then −KY is not semiample and k ≥ 2. Thus we see
that Y is a log canonical weak Fano variety with M(Y, 0) = k and −KY is not
semiample. In particular, R(X,−KX) is not a finitely generated algebra over C by
−KX is nef and big (cf. [Lf, Theorem 2.3.15]).

Example 5.5. We construct an example of a weak log Fano plt pair without Q-
complements.



ON WEAK FANO VARIETIES WITH LOG CANONICAL SINGULARITIES 14

Let S be the P1-bundle over an elliptic curve with respect to a non-split vector bundle
of degree 0 and rank 2. Then −KS is nef and S does not have Q-complements (cf.
[S, 1.1. Example]). Thus (X,E) does not have Q-complements by the adjunction
formula −(KX + E)|E = −KE.

Example 5.6. We construct an example of a weak log Fano plt pair whose Kleiman-
Mori cone is not polyhedral. Let S be the surface obtained by blowing up P2 at very
general 9 points. It is well known that S has infinitely many (−1)-curves {Ci}.
Then we see that the Kleiman-Mori cone NE(X) is not polyhedral. Indeed, we have
the following claim:

Claim 5.7. R≥0[Ci] ⊆ NE(X) is an extremal ray with (KX + E).Ci = −1. More-
over, it holds that R≥0[Ci] 6= R≥0[Cj] (i 6= j).

Proof of Claim 5.7. We take a semiample line bundle Li on S such that Li such
that Li satisfies Li.Ci = 0 and Li.G > 0 for any pseudoeffective curve [G] ∈ NE(S)
such that [G] 6∈ R≥0[Ci]. We identify E with S. Let Li be a pullback of Li by
π and Fi := φ∗(OX0(1)) ⊗ Li. We show that R≥0[Ci] ⊆ NE(X) is an extremal
ray. Since (KX + E)|E ∼ KE, it holds that (KX + E).Ci = −1. By the cone
theorem for dlt pairs, there exist finitely many (KX + E)-negative extremal rays
Rk such that [Ci] − [D] ∈ ∑

Rk for some [D] ∈ NE(X)KX+E=0. It holds that
Fi.D = Fi.Rk = 0 for all k since Fi.Ci = 0 and Fi is a nef line bundle. We see
that, if an effective 1-cycle C on X satisfies Fi.C = 0, then C = αCi for some
α ≥ 0 by the construction of Fi. Thus, any generator of Rk is equal to αkCi for
some αk ≥ 0. Hence R≥0[Ci] ⊆ NE(X) is an extremal ray. It is clear to see that
R≥0[Ci] 6= R≥0[Cj]. Thus the claim holds. ¤
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