数値的小平次元0の極小モデル理論

權業善範(東大数理)

この概要では、対の特異点などの基本的な用語は [KM] に従って用いるとする. また全て複素数体上の仕事である. まず次の結果を得る.

Theorem 1. 対 (X, Δ) を \mathbb{Q} -分解的射影 dlt 対とする. さらに $\nu(K_X + \Delta) = 0$ を仮定する. このとき (X, Δ) は極小モデルを持つ.

ここで、pseudo-effective 因子 D と豊富因子 A に対して、

$$\nu(D) = \max\{k \in \mathbb{Z}_{\geq 0} | \limsup_{m \to \infty} m^{-k} \dim H^0(X, \lfloor mD \rfloor + A) > 0\}$$

と定義する. 注意としては, $\nu(D)$ は豊富因子 A の依存しない数となる, また $\nu(D)$ は [N] の中では, $\kappa_{\sigma}(D)$ という記号が使われている. Theorem 1 は klt 対の場合, Druel により知られていた $(cf.\ [D])$. しかしこの議論は [BCHM] の議論をより精密に用いることにより, dlt 対に拡張することができる. さらに, $[G, Theorem\ 1.2]$ と合わせると次の川又氏によって証明された lc 対に対する数値的小平次元が 0 のアバンダンス定理 ([Ka]) の別証明を得る.

Theorem 2. 対 (X, Δ) を射影 lc 対とする. さらに $\nu(K_X + \Delta) = 0$ を仮定する. このとき $\kappa(K_X + \Delta) = 0$ である.

Theorem 2 は klt の場合,中山氏によって証明された([N, V, 4.9 Corollary]).その後この証明とは全く異なる証明を川又氏がつけ,その結果,lc に拡張した.今回の証明は中山氏が用いた証明の方向での lc 対への拡張である.

今から、Theorem 1の証明の概略を述べる。まず十分豊富な因子 H で (X,Δ) についてのスケール付き MMP を動かすためのスケールになるものを取ってくる。それを用いてスケール付きの $\mathrm{MMP}(X,\Delta) \dashrightarrow (X_i,\Delta_i)$ を走らせる。このとき、定義により、 λ_i という非負な広義単調減少な数列が $K_{X_i} + \Delta_i + \lambda_i H_i$ がネフとなるように現れる。今、 λ_i の極限を λ とする。

極限 λ が 0 でない場合、列 (X,Δ) ---- (X_i,Δ_i) は $(K_X+\Delta+\frac{1}{2}\lambda)$ -MMP となり、[BCHM] により停止する。したがって、 $\lambda=0$ としてよい。今、列 (X,Δ) ---- (X_i,Δ_i) が停止しないとする。このとき X を十分先の X_i に取り替えることで、列 (X,Δ) ---- (X_i,Δ_i) をフリップの無限列としてよい。 さらに、 $K_{X_i}+\Delta_i+\lambda_iH_i$ がネフなので、 $\lambda=0$ に注意すると $K_X+\Delta$ は数値的に固定因子を持たない因子の極限と同値になる。これは $K_X+\Delta$ の因子的 X_i と可能であることを導く。また、今 X_i の因子的 X_i である X_i の因子ので、 X_i の因子のであることを導く。また、今 X_i の因子ので、 X_i の因子的 X_i の因子的 X_i の正部分も X_i である X_i の因子ので、 X_i の因子的 X_i の因子的 X_i の正部分も X_i のである X_i の因子のである X_i の因子的 X_i の因子的 X_i の正部分も X_i の可能にない。

参考文献

- [BCHM] C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468.
- [D] S. Druel, Quelques remarques sur la décomposition de Zariski divisorielle sur les variétés dont la première classe de Chern est nulle, to appear in Math. Z.
- [G] Y. Gongyo, Abundance theorem for numerically trivial log canonical divisors of semi-log canonical pairs, preprint, arXiv:1005.2796v2.
- [Ka] Y. Kawamata, On the abundance theorem in the case of $\nu = 0$, preprint, arXiv:1002.2682.
- [KM] J. Kollár and S. Mori. *Birational geometry of algebraic varieties*, Cambridge Tracts in Math.,134 (1998).
- [N] N. Nakayama, Zariski decomposition and abundance, MSJ Memoirs, 14. Mathematical Society of Japan, Tokyo, 2004.