対数的標準特異点を持つ弱 Fano 多様体について

東京大学数理科学研究科 権業善範

2010年3月24日

Definition

X: proj. normal var. $/ \mathbb{C}$,

 Δ : eff. \mathbb{Q} -divisor on X.

 (X,Δ) : weak log Fano pair $\Leftrightarrow -(K_X+\Delta)$:nef & big

 \mathbb{Q} -Car.,

X: weak Fano var. $\Leftrightarrow -K_X$:nef & big \mathbb{Q} -Car.

Definition

X: normal. var. $/ \mathbb{C}$,

 Δ : eff. \mathbb{Q} -divisor on X s.t. $K_X + \Delta$: \mathbb{Q} -Car. div.

 $\varphi:Y o X$: log res. of (X,Δ) ,

$$K_Y = \varphi^*(K_X + \Delta) + \sum a_i E_i$$

- \bullet (X,Δ) : klt \Leftrightarrow $a_i > -1 \ \forall i$,
- (X, Δ) : lc $\Leftrightarrow a_i > -1 \ \forall i$.

 (X, Δ) : Ic weak log Fano pair.

Problem[Prokhorov, Shokurov]

- (i) $-(K_X + \Delta)$: semiample?
- (ii) $\overline{NE}(X)$: rational polyhedral?

They propose these problem on the study of "Complements on Surfaces".

Known results

- (1) (X, Δ) : klt \Rightarrow (i), (ii): O.K. by B.P.F.T. & Cone T.
- (2) In $\dim X = 2$, Shokurov proved (2002).

My studies are the above problems for "higher" dimensional "Ic" weak log Fano pair.

My results are the following:

Result-1

In general, (i) & (ii) do not holds!

e.g.

S: very general 9-points blow up of \mathbb{P}^2 ,

 $S\subset \mathbb{P}^N$:proj. normal emb.,

 X_0 : the proj. cone of $S\subset \mathbb{P}^{N+1}$,

 $\varphi:X\to X_0$: the blow up at the vertex of X_0 .

E: the exceptional divisor of φ .

Note that $E \simeq S$,

$$-(K_X+E)|_E=-K_E.$$

Because $-K_E$ is not semiample, $-(K_X+E)$ is not semiample.

We see that Ic weak log Fano pair (X, E) does not satisfy (i)&(ii).

The 2nd results are the following:

Theorem

X: weak Fano 3-fold with Ic sing.

Then $-K_X$ is semiample & $\overline{NE}(X)$ is rational polyhedral.

Theorem

X: weak Fano 4-fold with lc sing. Suppose that $\dim(\mathrm{Sing}(X)) \leq 1$ Then $-K_X$ is semiample & $\overline{NE}(X)$ is rational polyhedral.

Key point of the proof (3-dim. case)

- (1) We take "good" dlt blow up s. t. alg. fib. sp. over any union of lc centers (by Fujino's result),
- (2) By the proof of B.P.F.T, we can reduce to lc centers,
- (3) We must treat reducible schemes and alg. fib. sp. over seminormal curves,
- (4) We patch the sections using the abundance theorem for semi log canonical surfaces.

Conj.[Abundance conjecture in the special case]

 (X,Δ) : projective slc pair. Suppose that $K_X+\Delta\equiv 0$. Then $K_X+\Delta\sim_{\mathbb{Q}}0$.

the above conjecture is true in the following cases:

- $\dim X = 2$ by Kawamata,

 Abramovich-Fong-Kollár-McKernan,
- $\dim X = 3$ by Fujino.
- ullet (X,Δ) is irreducible klt by Nakayama, Ambro.

For more higher dimensional, we can get the following:

Main result

Assume that Conj. in (d-1)-dim. holds.

 (X,Δ) : d-dim. Ic weak log Fano pair. Suppose that

 $M(X, \Delta) := \max\{\dim P | P : \text{lc center of } (X, \Delta)\} \leq 1.$

Then $-(K_X + \Delta)$: semiample.

In the next, we consider $\overline{NE}(X)$.

Theorem

 (X,Δ) : d-dim. Ic weak log Fano pair. Suppose that

 $M(X,\Delta):=\max\{\dim P|P\text{:lc center of }(X,\Delta)\}\leq 1.$

Then $\overline{NE}(X)$: rational polyhedral cone.

The following theorem is the key theorem.

Cone theorem for arbitrary normal var.[Ambro, Fujino]

 (X, Δ) : log pair. Then it holds that

$$\overline{NE}(X) = \overline{NE}(X)_{K_X + \Delta \ge 0} + \overline{NE}(X)_{Nlc(X,\Delta)} + \sum R_j,$$

where R_j : $(K_X + \Delta)$ -extremal ray and $\{R_j\}$: locally finite.