2019年度数理科学基礎(理I6,7,9,10組向け,足助担当)演習問題 1 v5 2019/4/9(火)

'19/4/4:初版作成

'19/4/6: 第二版作成. 問 1.12 と 1.13 を修正の上入れ替え.

'19/4/6:第三版作成. 問 1.15 を追加.

'19/4/19: 第四版作成. 問 1.12の3)を追加. 問 1.16を追加.

'19/5/24:第五版. 問 1.14の誤植を修正.

- * が付いている問題はやや難しい(かもしれない)ことを意味する. 難しくとも解ける ことが期待されている問題もあるし、解けることは余り期待されていない問題もある.
- 時々ヒントを出すが、多くの場合ヒント自体が非自明なので証明を考えること.

基礎的な事項

問 1.1. 以下の主張が成り立つことを確かめよ.

- 1) $A = \{0,1\}, B = \{1\}$ とする. $A \not\subset B$ と $A \supset B$ の両方が成り立つ.
- 2) $A = \{0,1\}, B = \{1,2\}$ とする. $A \not\subset B$ は成り立つが, $A \supset B$ は成り立たない.
- 3) $A = B = \{0\}$ とする. $A \not\subset B$ は成り立たない、即ち $A \subset B$ は成り立つ。一方、 $A \supset B$ は成り立つ。
- 4) $A = \{0\}$, $B = \{0,1\}$ とする. $A \not\subset B$ も $A \supset B$ も成り立たない.

従って、 $A \not\subset B$ と $A \supset B$ の間には論理的な関係はない.

問 1.2. $f: A \to B$ とする.

1) f が単射でないことと,

$$\exists a, a' \in A, \ a \neq a', \ f(a) = f(a')$$

が成り立つことは同値であることを確かめよ.

2) f が全射でないことと

$$\exists b \in B, \ \forall a \in A, \ b \neq f(a)$$

が成り立つことは同値であることを確かめよ.

問 1.3. 1) 命題 $[A \Rightarrow B]$ (A ならば B) の否定は

Aが成り立ち、かつBが成り立たない

と表されることを確かめよ.

2) $a \in \mathbb{R}$ とする. また, $f: \mathbb{R} \to \mathbb{R}$ とし, $\delta, \epsilon > 0$ とする. $x \in \mathbb{R}$ に関する命題

$$|x-a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$$

の否定は

$$|x - a| < \delta, |f(x) - f(a)| \ge \epsilon$$

と表されることを確かめよ.

問 1.4. $f: \mathbb{R} \to \mathbb{R}$ が $a \in \mathbb{R}$ において連続であるとは,

$$\forall \epsilon > 0, \ \exists \delta > 0, \ x \in \mathbb{R}, \ |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$$

が成り立つことを言う.

- 1) 上の定義を記号 \forall , \exists を用いずに述べると,(例えば) 任意の $\epsilon > 0$ について,ある $\delta > 0$ が存在して, $x \in \mathbb{R}$, $|x-a| < \delta$ が成り立つならば $|f(x) - f(a)| < \epsilon$ が成り立つ。 となることを確かめよ.
- 2) $f: \mathbb{R} \to \mathbb{R}$ が $a \in \mathbb{R}$ において連続でないことは

$$\exists \epsilon > 0, \ \forall \delta > 0, \ \exists x \in \mathbb{R}, \ |x - a| < \delta, \ |f(x) - f(a)| \ge \epsilon$$

が成り立つことと同値であることを確かめよ.

定義. A, B を集合とし、 $f: A \to B$ を写像とする.また、 $b \in B$ とする. $\forall a \in A, f(a) = b$ が成り立つとき、f を定値写像と呼ぶ.

- 問 1.5. A, B はいずれも空集合ではないとし, $f: A \to B$ を定値写像とする.以下が成り立つことを示せ.
 - 1) $B = \{b\}$ (一つの元からなる集合) であることと、f が全射であることは同値である.
 - 2) $A = \{a\}$ であることと、f が単射であることは同値である.
 - 3) $A = \{a\}, B = \{b\}$ が成り立つことは f が全単射であることと同値である.
- ※ このようなことが成り立つのは f が定値写像だからであって、一般には状況はもっと複雑である.
- 問 1.6. A,B,C を集合とし、 $f\colon A\to B,\ g\colon B\to C$ を写像とする. このとき、以下が成り立つことを示せ.
 - 1) $q \circ f$ が単射ならば f は単射である.
 - 2) $q \circ f$ が全射ならば q は全射である.
 - 3) f,q が共に単射ならば $g \circ f$ は単射である.

- 4) f, q が共に全射ならば $g \circ f$ は全射である.
- 5) f, g が共に全単射ならば $g \circ f$ は全単射である.
- 2) のみ解を記す. 間違っても暗記してはいけないが、参考にはすること(もっと簡潔に書くことが多いが、ここでは敢えて冗長にしてある).

2) の解答例. 主張

$$(*) \qquad \forall c \in C, \ \exists b \in B, \ q(b) = c$$

が成り立つことを示せば良い. $c \in C$ とする. $g \circ f$ は全射だから, $\forall c \in C$, $\exists a \in A$, $c = g \circ f(a)$ が成り立つ. そこで $a \in A$ を $c = g \circ f(a)$ が成り立つものとする. b = f(a) とすれば $b \in B$ であって $g(b) = g(f(a)) = g \circ f(a) = c$ が成り立つ. 従って主張(*)が成り立つので,g は全射である.

問 1.6 の逆の主張はほとんど全て成り立たない.

- 問 1.7. A, B, C を集合とし、 $f: A \rightarrow B$ 、 $q: B \rightarrow C$ を写像とする.
 - 1) f は単射であるが $g \circ f$ は単射でないような例を一つ挙げよ.
 - 2) g は全射であるが $g \circ f$ は全射でないような例を一つ挙げよ.
 - 3) $q \circ f$ は単射であるが q は単射でないような例を一つ挙げよ.
 - 4) $g \circ f$ は全射であるが f は全射でないような例を一つ挙げよ.
- 問 1.8. A, B を集合とし、 $f: A \to B$ を写像とする.このとき、f の逆写像 g が存在すること と、f が全単射であることは同値であることを示せ.

ヒント:問1.6を用いると容易である.

- 問 **1.9***. A, B を集合とし, $\pi: A \times B \to A$ を $\pi(a, b) = a$ により定める(左辺は $\pi((a, b))$ と表した方が定義には忠実であるが,記号が煩わしくなるのでしばしばこのように略記する).
 - 1) $f: A \to B$ が写像であるとき, $\Gamma = \{(a,b) \in A \times B \mid b = f(a)\}$ と置き,f のグラフと呼ぶ.さて, π を(一般の $A \times B$ の元ではなく) Γ の元についてのみ考えたもの(π の Γ への制限と呼ぶ)を π_{Γ} で表す(π_{Γ} : $\Gamma \to A$ である).すると π_{Γ} は全単射であることを示せ.
 - 2) $\Gamma \subset A \times B$ とし、 π の Γ への制限 π_{Γ} は全単射だとする. i)

 $\forall a \in A, \exists b \in B, (a,b) \in \Gamma$

が成り立つことを示せ、また、このようなbは一意的である、即ち、 $a \in A$ について $(a,b),(a,b') \in \Gamma$ が成り立つならばb=b' が成り立つことを示せ、

ii) $f: A \to B$ を, $a \in A$ について b を $(a,b) \in \Gamma$ なるような唯一の B として f(a) = b に より定める. この時, Γ は f のグラフと一致することを示せ.

行列

補題 1.10. 行列の積について,以下が成り立つことを示せ.

$$(A + A')B = AB + A'B,$$

$$A(B + B') = AB + AB'$$

が成り立つ.

2) $A \in M_{m,n}(K)$, $B \in M_{n,l}(K)$, $\lambda \in K$ とすると,

$$(\lambda A)B = \lambda(AB),$$

$$A(\lambda B) = \lambda(AB)$$

が成り立つ.

問 1.16. $A \in M_{m,n}(K)$ とする.

- 1) $E_m A = A E_n = A$ が成り立つことを示せ.
- 2) $O_m A = A O_n = O_{m,n}$ が成り立つことを示せ、また、 $O_{r,m} A = O_{r,n}$ 、 $A O_{n,s} = O_{m,s}$ が成り立つことを示せ、

問 1.11. 以下のように A,B を定める. AB が定まるのであれば AB を求め、定まらないのであればその旨述べよ. また、BA が定まるのであれば BA を求め、定まらないのであればその旨述べよ.

1)
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ 2) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
3) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ 4) $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, $B = \begin{bmatrix} 7 & 8 & 9 & 10 \\ 9 & 10 \end{bmatrix}$ 6) $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, $B = \begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{bmatrix}$

問 1.12. $A \in M_{m,n}(\mathbb{C})$ とする.

- 1) $A^* = \overline{tA} = {}^t\overline{A}$ が成り立つことを示せ.
- 2) $A \in M_{m,n}(\mathbb{R})$ ならば $A^* = {}^t A$ が成り立つことを示せ.
- $A \in M_{m,n}(\mathbb{R})$ ならば t(tA) = A が成り立つことを示せ、また、 $A \in M_{m,n}(\mathbb{C})$ ならば $(A^*)^* = A$ が成り立つことを示せ、

問 1.13. $A, A' \in M_{m,n}(K), B \in M_{n,l}(K), \lambda \in K$ とする. このとき以下が成り立つことを示せ.

- 1) ${}^{t}(A+A')={}^{t}A+{}^{t}A'$ が成り立つ.
- $(\lambda A) = \lambda^t A$ が成り立つ.
- 3) ${}^{t}(AB) = {}^{t}B {}^{t}A$ が成り立つ.
- 4) $K = \mathbb{C}$ とする. このとき $(AB)^* = B^*A^*$ が成り立つ.

また,

5) $\tau: M_{m,n}(K) \to M_{n,m}(K)$ &

$$\tau(A) = {}^{t}A$$

により定めると, τは全単射であることを示せ.

問 1.14. $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \in \mathbb{R}^2 \setminus \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ とする.このとき, \mathbb{R}^2 の部分集合 V を

$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid \exists \lambda \in \mathbb{R}, \ \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \right\}$$

により定める. V は直感的には直線を表す.

- 1) $u,w\in V$ とする.ある $\lambda,\mu\in\mathbb{R}$ が存在して, $u=\lambda\begin{bmatrix}x_0\\y_0\end{bmatrix}$, $w=\mu\begin{bmatrix}x_0\\y_0\end{bmatrix}$ が成り立つことを示せ.
- 2) $u, w \in V$ を 1) のように表す. このとき, u = w が成り立つのは $\lambda = \mu$ が成り立つとき, その時のみであることを示せ.
- 3) $\varphi \colon \mathbb{R} \to V \ \mathcal{E}$

$$\varphi(\lambda) = \lambda \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

により定めると、 φ は \mathbb{R} からV への全単射であることを示せ.

問 1.14 により, \mathbb{R} の元とV の元には一対一の対応が付く.実際, $\lambda \in \mathbb{R}$ に対しては $\varphi(\lambda) \in V$ を考え, $v \in V$ については $v = \lambda \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$ なる $\lambda \in \mathbb{R}$,即ち $v = \varphi(\lambda)$ が成り立つような唯一の $\lambda \in \mathbb{R}$ を考えれば良い. \mathbb{R} の元はもちろん実数である,一方,V の元は \mathbb{R}^2 のベクトルであるから,一対一の対応があるものの, \mathbb{R} とV は異なる.

定義. $m_1, \ldots, m_r, n_1, \ldots, n_s$ を正の整数とし、 $m = m_1 + \cdots + m_r, n = n_1 + \cdots + n_s$ とする. $A \in M_{m,n}(K)$ を $A_{ij} \in M_{m_i,n_j}(K)$ を用いて

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1s} \\ A_{21} & A_{22} & \cdots & A_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ A_{r1} & A_{r2} & \cdots & A_{rs} \end{bmatrix}$$

と表す(考える)ことを A を区分けするなどという.

問 1.15. m_1, m_2, n_1, n_2 を正の整数とし, $m = m_1 + m_2, n = n_1 + n_2$ とする。 $A \in M_{m,n}(K)$ とし, $A_{ij} \in M_{m_i,n_j}(K)$ を用いてA を $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ と区分けする。また, $A' \in M_{m,n}(K)$ とし, $A'_{ij} \in M_{m_i,n_j}(K)$ を用いてA と同様に区分けする。この時,

$$A + A' = \begin{bmatrix} A_{11} + A'_{11} & A_{12} + A'_{12} \\ A_{21} + A'_{21} & A_{22} + A'_{22} \end{bmatrix}$$

が成り立つことを示せ、また、 $\lambda \in K$ とすると

$$\lambda A = \begin{bmatrix} \lambda A_{11} & \lambda A_{12} \\ \lambda A_{21} & \lambda A_{22} \end{bmatrix}$$

が成り立つことを示せ.

(以上)