2016年度線型代数学(理I6,7,9,10組向け,足助担当) 演習問題 **12** 2016/11/4(金) 問 **12.1**.

と置く.

- 1) $C_c^\infty(\mathbb{R})$ は函数の和と定数倍により線型空間であることを示せ . $f\in C_c^\infty(\mathbb{R})$ ごとに M は(一般には)異なることに注意せよ .
- $(2) \ f,g \in C_c^\infty(\mathbb{R})$ について $\langle f \mid g \rangle = \int_{-\infty}^{+\infty} f(t)g(t)dt$ と置くと , $\langle \cdot \mid \cdot \rangle$ は $C_c^\infty(\mathbb{R})$ のユークリッド計量であることを示せ .

問 12.2. S^1 を \mathbb{R}^2 内の,原点を中心とする半径 1 の円周とする.

- 1) $f\colon S^1\to\mathbb{R}$ について, $\widetilde{f}\colon\mathbb{R}\to\mathbb{R}$ を $\widetilde{f}(\theta)=f(\cos2\pi\theta,\sin2\pi\theta)$ により定める. $g\colon S^1\to\mathbb{R}$ について $\widetilde{g}\colon\mathbb{R}\to\mathbb{R}$ を同様に定めると,f=g が成り立つことと $\widetilde{f}=\widetilde{g}$ が成り立つことは同値であることを示せ.また, \widetilde{f} は $\widetilde{f}(t+1)=\widetilde{f}(t)$ をみたすことを示せ(このような函数を周期函数と呼ぶ).
- 2) $\widetilde{f}\colon\mathbb{R}\to\mathbb{R}$ は $\widetilde{f}(t+1)=\widetilde{f}(t)$ をみたすとする. $f\colon S^1\to\mathbb{R}$ を次のように定める. $p\in S^1$ とし, $p=(\cos 2\pi \theta,\sin 2\pi \theta)$ と表わす(θ の選び方は一意的ではないが,一つ選ぶ).そして $f(p)=\widetilde{f}(\theta)$ と定める.f はきちんと定まっている(well-defined である,という)ことを示せ.つまり,f(p) は θ の選び方によらず定まることを示せ.

問 12.3.

$$C^\infty(S^1) = \left\{ f \colon \mathbb{R} o \mathbb{R} \;\middle|\; f$$
は C^∞ 級であって, $f(t+1) = f(t)
ight\}$ が任意の $t \in \mathbb{R}$ について成り立つ

と置く.

- 1) $C^{\infty}(S^1)$ は函数の和と定数倍により線型空間であることを示せ.
- (2) $f,g\in C^\infty(S^1)$ について $\langle f\mid g\rangle=\int_0^1f(t)g(t)dt$ と置くと , $\langle\cdot\mid\cdot\rangle$ は $C^\infty(S^1)$ のユークリッド計量であることを示せ .

問 12.4 (問 12.3 の続き). $n \in \mathbb{N}, n > 0$ について $\varphi_n, \psi_n : \mathbb{R} \to \mathbb{R}$ を

$$\varphi_n(t) = \cos 2n\pi t,$$

 $\psi_n(t) = \sin 2n\pi t$

により定める.また, $\varphi_0(t)=1$ (恒等的に1であるような函数)とする. ψ_0 も記号上現れることがあるが,これは無視することにする.

1) $\varphi_n, \psi_n \in C^{\infty}(S^1)$ が成り立つことを確かめよ.

- 2) $\langle \varphi_n \mid \varphi_m \rangle = \begin{cases} \frac{1}{2}, & n=m, \\ 0, & n \neq m, \end{cases} \langle \psi_n \mid \psi_m \rangle = \begin{cases} \frac{1}{2}, & n=m, \\ 0, & n \neq m \end{cases}$ および $\langle \varphi_n \mid \psi_m \rangle = 0$ が成り立つことを示せ.
- (3) 任意の M について, $\{\varphi_n,\psi_n\}_{0\leq n\leq M}$ は \mathbb{R} 上線型独立であることを示せ.即ち,任意の $a_k,b_k,\ 1\leq k\leq M$ と a_0 について

$$a_0\varphi_0 + \sum_{k=1}^n a_k \varphi_k + \sum_{k=1}^n b_k \psi_k = 0$$

が成り立つ(函数として 0 に等しい)ならば $a_0=a_1=\cdots=a_M=b_1=\cdots=b_M=0$ が成り立つことを示せ.このことを, $\{\varphi_n,\psi_n\}$ は $\mathbb R$ 上線型独立であると言う.

以下では V は有限次元の計量線型空間とする.

問 12.5. V の恒等変換は等長変換であることを示せ.

問 12.6. f,gを V の等長変換とする $g \circ f$, f^{-1} は V の等長変換であることを示せ .

問 12.7. f を V の等長変換とする . $v,w\in V$ とすると , f(v),f(w) のなす角は v,w のなす角に 等しいことを示せ($2\pi\mathbb{Z}$ や符号の不定性は除く). また , $\|f(v)\|=\|v\|$ が成り立つことを示せ .

問 12.8. f が V の等長変換であることと , $f^*=f^{-1}$ が成り立つことは同値であることを示せ .

問 12.9. $\|\cdot\|$ を \mathbb{R}^n の標準的なユークリッド計量から定まるノルムとし , $p,q\in\mathbb{R}^n$ について , $d(p,q)=\|p-q\|$ と定める .

- 1) $p,q \in \mathbb{R}^n$ について d(p,q) = d(q,p) が成り立つことを示せ.
- (2) $p,q,r\in\mathbb{R}^n$ について $d(p,r)\leq d(p,q)+d(q,r)$ が成り立つことを示せ、また,等号が成り立つための条件を求めよ.
- $(3) p,q \in \mathbb{R}^n$ について $d(p,q) = 0 \iff p = q$ が成り立つことを示せ.

問 12.10. $d(\cdot,\cdot)$ を問 12.9 のように定める $.f:\mathbb{R}^n\to\mathbb{R}^n$ とし , 任意の $p,q\in\mathbb{R}^n$ について d(f(p),f(q))=d(p,q) が成り立つとする .

- 1) f(o) = o が成り立つとする.
 - a) $\forall v \in \mathbb{R}^n$, ||f(v)|| = ||v|| が成り立つことを示せ.
 - b) $\forall v, w \in \mathbb{R}^n$, $\langle f(v) \mid f(w) \rangle = \langle v \mid w \rangle$ が成り立つことを示せ.
 - c) f は線型であることを示せ.

ヒント: $\|f(\lambda p + \mu q) - \lambda f(p) - \mu f(q)\|^2$ を計算してみよ .

- d) $A \in O_n$ が一意的に存在して $\forall p \in \mathbb{R}^n, \ f(p) = Ap$ が成り立つことを示せ.
- (2) 一般には, $A \in O_n$ と $b \in \mathbb{R}^n$ が一意的に存在して $\forall p \in \mathbb{R}^n, \ f(p) = Ap + b$ が成り立つことを示せ.

(以上)