2016年度線型代数学(理I6,7,9,10組向け,足助担当) 演習問題 11 2016/10/28(金)

問 11.1. 講義の定義 3.2.18 の 1) において,条件「f の $\mathscr V$ に関する表現行列が対角行列である」を条件「f の $\mathscr V$ に関する表現行列が $\mathbb C$ 上対角化可能である」に置き換えても同値であることを示せ.また,2) の a) についても $\mathbb C$ を $\mathbb R$ に置き換えれば同様であることを示せ.

- - i) E_n, A, \ldots, A^{r-1} は線型独立である.
 - E_n,A,\ldots,A^r は線型従属である. が成り立つことを示せ.
 - 2) 任意の $A \in M_n(K)$ について $f \in K[t]$ が存在して $f(A) = O_n$ が成り立つことを 1) を用いて(ケーリー・ハミルトンの定理を用いずに)示せ.

ケーリー・ハミルトンの定理の一つの帰結に $I_A=\{f\in K[x]\mid f(A)=O_n\}$ とすると $I_A\neq\{0\}$ が成り立つ,ということが挙げられるが,これを示すだけならばケーリー・ハミルトンの定理は不要であることが分かる.この観点からは,ケーリー・ハミルトンの定理の「御利益」は I_A の元の一つが具体的に分かること,より詳しく,A の成分を用いて記述できる,ということになる.

問 11.3. $A \in M_n(K)$ とし, $\lambda_1, \ldots, \lambda_n$ を A の固有値全体とする(重複度が 2 以上の場合にはその数だけ同じものを並べる).

- 1) $\operatorname{tr} A = \lambda_1 + \cdots + \lambda_n$ が成り立つことを示せ .
- 2) $\det A = \lambda_1 \cdots \lambda_n$ が成り立つことを示せ.
- 3) $c_k(A) \in K$ を条件

$$\det(tE_n - A) = t^n + c_1(A)t^{n-1} + \dots + c_n(A)$$

により定める(左辺はAの固有多項式である). $c_1(A), \ldots, c_n(A)$ を $\lambda_1, \ldots, \lambda_n$ を用いて表せ(1), 2) は特別な場合である).

問 11.4. $A \in M_n(K)$ とし,A の相異なる固有値全体を $\lambda_1, \ldots, \lambda_r$, λ_i の重複度を α_i とする ($1 \le i \le r$).

1) $\lambda_1^k,\dots,\lambda_r^k$ のうち,重複を省いたものを $\mu(k)_1,\dots,\mu(k)_s$ とする.また,重複を省く際に重複度を足し上げて得られる数を $\beta(k)_1,\dots,\beta(k)_s$ とする.例えば $\lambda_1=1,\lambda_2=-1,\lambda_3=$

 $2,\alpha_1=1,\alpha_2=2,\alpha_3=4$ ならば, $\mu(2)_1=1,\mu(2)_2=4,\beta(2)_1=3,\beta(2)_2=4,$ $\mu(3)_1=1,\mu(3)_2=-1,\mu(2)_2=8,\beta(3)_1=1,\beta(3)_2=2,\beta(3)_3=4$ である.この時, A^k の相異なる固有値全体は $\mu(k)_1,\ldots,\mu(k)_s$ であって, $\mu(k)_i$ の重複度は $\beta(k)_i$ であることを示せ.

2) $A\in \mathrm{GL}_n(K)$ ならば $k\leq 0$ についても 1) と同様のことが成り立つことを示せ.但し,任意の $\lambda\in K,\ A\in M_n(K)$ について $\lambda^0=1,\ A^0=E_n$ と定める.

問 11.3 や 11.4 を用いると $\det A$ が $\operatorname{tr} A, \operatorname{tr} A^2, \dots, \operatorname{tr} A^n$ で表されることを示すことができるが,これらの外にも幾つか準備が要るのでここでは割愛する.

- 問 11.5. 直交行列はユニタリ行列であることを示せ.
- 問 11.6. 1) $A \in O_n$ とすると, $\det A = 1$ あるいは $\det A = -1$ のいずれかが成り立つことを示せ.また,それぞれの場合について,例を一つずつ挙げよ.
 - (2) $A \in U_n$ とすると, $|\det A| = 1$ が成り立つことを示せ.また, $\alpha \in \mathbb{C}, \ |\alpha| = 1$ について, $\det A = \alpha$ が成り立つような例を一つ挙げよ.

問 11.7. $O_n\subset \mathrm{GL}_n(\mathbb{R}),\ U_n\subset \mathrm{GL}_n(\mathbb{C})$ が成り立つことを示せ . また , $A\in O_n$ について $A^{-1}={}^tA$ が , $A\in U_n$ について $A^{-1}=A^*$ がそれぞれ成り立つことを示せ .

問 11.8. $W\subset V$ を部分線型空間とし, $\pi\colon V\to W$ を正射影とする.このとき, $\pi\circ\pi=\pi$ が成り立つことを示せ.

問 $11.9.\ v_1,\ldots,v_r$ はいずれも o でなく,互いに直交するとする.このとき, v_1,\ldots,v_r は線型独立であることを示せ.

問 11.10.
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \in K^3$$
 とする.

- 1) $\{v_1, v_2, v_3\}$ は K^3 の基底であることを示せ.
- 2) K^3 の正規直交基底 $\{u_1,u_2,u_3\}$ であって, $\langle u_1\rangle=\langle v_1\rangle$, $\langle u_1,u_2\rangle=\langle v_1,v_2\rangle$ が成り立つ物を一組求めよ.また, $(v_1\ v_2\ v_3)=(u_1\ u_2\ u_3)R$ が成り立つように $R\in M_3(K)$ を定めよ.
- 問 $\mathbf{11.11}$. 1) $A\in \mathrm{GL}_n(\mathbb{C})$ とすると, U_n の元 Q と n 次の上三角行列 R が存在して A=QR が成り立つことを示せ.また,R の対角成分は全て正の実数であるようにできて,この条件の下で Q,R は一意的であることを示せ.
 - $(A) \in \mathrm{GL}_n(\mathbb{R})$ とすると, $(A) \in \mathrm{GL}_n(\mathbb{R})$ とすると、 $(A) \in \mathrm{GL}_n(\mathbb{R})$ とない、 $(A) \in \mathrm{GL}$

ヒント:A=QR が成り立つならば,R は正則である.従って A=QR=Q'R' が成り立つならば, $Q^{-1}Q'=RR'^{-1}$ が成り立つ.左辺と右辺はそれぞれどのような行列なのか,考えてみよ.

問 $\mathbf{11.12.}$ $V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \ \middle| \ x_1 + x_2 + x_3 = 0 \right\}$ と置く. \mathbb{R}^3 に標準的なユークリッド計量を入れ,V にはそれから自然に定まる計量を入れる.V の正規直交基底と,それの拡大となっているような \mathbb{R}^3 の正規直交基底を一組ずつ求めよ.

問 11.13. $V=\{f\in\mathbb{R}[x]\mid f=0$ あるいは $\deg f\leq n\}$ とする $f,g\in V$ について $f(x)=a_0+a_1x+\cdots+a_nx^n,\ g(x)=b_0+b_1x+\cdots+b_nx^n$ と表わして

$$\langle f \mid g \rangle = a_0 b_0 + a_1 b_1 + \dots + a_n b_n$$

と定める.

- 1) $\langle \cdot | \cdot \rangle$ は V のユークリッド計量であることを示せ.
- 2) $(1, x, x^2, \dots, x^n)$ からグラム-シュミットの方法により正規直交基底を構成せよ.

問 11.14*. $f,g\in\mathbb{R}[x]$ について, $f=a_0+a_1x+\cdots+a_nx^n,\ g=b_0+b_1x+\cdots+b_mx^m$ と表わして

$$\langle f \mid g \rangle = a_0 b_0 + a_1 b_1 + \dots + a_{\min\{n,m\}} b_{\min\{n,m\}}$$

と置く $.\langle\cdot|\cdot\rangle$ は $\mathbb{R}[x]$ のユークリッド計量であることを示せ.

- 問 11.15. 1) $A\in M_n(\mathbb{C})$ とする.A の固有値の重複度が全て 1 である 1 ならば A は対角化可能であることを示せ.
 - $(A) \in M_n(\mathbb{R})$ とする.(A) の (C) の範囲での固有値が全て実数であるとし,また,重複度は (A) であるとする.このとき,(A) は (B) 上対角化可能であることを示せ.

問 $\mathbf{11.16.}$ $A,B\in M_n(\mathbb{C})$ について $\langle A\mid B\rangle=\operatorname{tr} A^*B$ と置く . $\langle \cdot\mid \cdot \rangle$ は $M_n(\mathbb{C})$ のエルミート計量であることを示せ . また $,M_n(\mathbb{R})$ についても同様にユークリッド計量が定まることを示せ .

問 11.17. $M_n(K)$ には問 11.16 のように計量を入れる.

1) $A \in M_n(K)$ とする. $\forall \epsilon > 0, \exists B \in \operatorname{GL}_n(K), \ \|A - B\| < \epsilon$ が成り立つことを示せ. ヒント:例えば $P,Q \in \operatorname{GL}_n(K)$ を用いて $PAQ = E_r \oplus O_{n-r}, \ r = \operatorname{rank} A$ として話を進めることができる.あるいは $P^{-1}AP$ が上三角行列であるとしても良い(外にも方法はある).

¹重複していない,とも言う.以下同様.

2) $A \in \mathrm{GL}_n(K)$ とする . $\exists \, \delta > 0, \, \forall \, B \in M_n(K), \, \|A - B\| < \delta, \, B \in \mathrm{GL}_n(K)$ が成り立つことを示せ .

ヒント: 行列式に着目すると良い.

3) $A \in M_n(\mathbb{C})$ とする.

 $orall \epsilon>0,\exists\, B\in M_n(\mathbb C),\; B$ の全ての固有値の重複度は1であって,かつ $\|A-B\|<\epsilon$ が成り立つ

が成り立つことを示せ.

このとき, B は対角化可能である.

ヒント:三角化を考えるのが恐らく一番簡単である.

 $A \in M_n(\mathbb{R})$ とし,固有値は(複素数の範囲で考えても)全て実数であるとする.このとき,

 $orall \epsilon>0, \exists\, B\in M_n(\mathbb{R}),\ B$ の全ての固有値は実数であり,また重複度は1 であって,更に $\|A-B\|<\epsilon$ が成り立つ

が成り立つことを示せ.

このとき B は \mathbb{R} 上対角化可能である .

- 5) $A \in M_n(\mathbb{C})$ とする.
 - a) A の固有値の重複度が全て 1 だとする(従って A は対角化可能である). ある $\delta>0$ が存在して, $B\in M_n(\mathbb{C})$ が $\|A-B\|<\delta$ をみたせば B の固有値の重複度も全て 1 であることを示せ、特に B は対角化可能である.
 - b) A のある固有値の重複度が 2 以上だとする.このとき,任意の $\epsilon>0$ について,ある $B\in M_n(\mathbb{C})$ が存在して $\|A-B\|<\epsilon$ かつ B は対角化不可能であることを示せ. ヒント:A が対角化不可能なら B=A とすればよいので,A が対角化可能な場合を考えれば良い.ところで, $\begin{pmatrix}\lambda&1\\0&\lambda\end{pmatrix}$ は対角化不可能である.

(以上)