以下では特に断らなければ K で \mathbb{R} あるいは \mathbb{C} を表す.

問 2.1. 以下に挙げる \mathbb{R}^2 の部分集合がそれぞれ \mathbb{R}^2 の部分線型空間であるかどうか理由と共に答えよ.

1)
$$W_1 = \left\{ \begin{pmatrix} x_1 \\ 0 \end{pmatrix} \middle| x_1 \in \mathbb{R} \right\}.$$
 2) $W_2 = \left\{ \begin{pmatrix} x_1 \\ 1 \end{pmatrix} \middle| x_1 \in \mathbb{R} \right\}.$

3)
$$W_3 = \left\{ \begin{pmatrix} t \\ t^2 \end{pmatrix} \middle| t \in \mathbb{R} \right\}.$$
 4) $W_4 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| x_1 \in \mathbb{Z}, \ x_2 \in \mathbb{R} \right\}.$

問 2.2. $V=K^3$ とする. 以下に挙げる部分線型空間 W_1,W_2,W_3 の組について, $W_1+W_2,W_3+W_3,W_2+W_3,W_1+W_2+W_3$ をそれぞれ求めよ.また,それぞれが直和であるかどうか調べよ.

$$1) \ V = K^3, \ W_1 = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle, \ W_2 = \left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle, \ W_3 = \left\langle \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle$$

2)
$$V = K^3$$
, $W_1 = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle$, $W_2 = \left\langle \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle$, $W_3 = \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle$

問 2.3. 1) $f: K^{n+1} \to K_n[x] = \{ f \in K[x] \mid f は高々 n 次 \}$ を

$$f\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = a_0 + a_1 x + \dots + a_n x^n$$

により定めると f は K-線型同型写像であることを示せ. また, f の逆写像を求めよ.

2) $g: K^{n+1} \to K_n[x] \not \simeq$

$$g\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = a_0 + (a_0 + a_1)x + (a_0 + a_1 + a_2)x^2 + \dots + (a_0 + \dots + a_n)x^n$$

により定めると g は K-線型同型写像であることを示せ、また、g の逆写像を求めよ、

問 2.4. $V=\{f\in K[x]\,|\,f$ は高々 n 次 $\}$ とする。 $m\in\mathbb{N}$ とし, $\varphi\colon V\to K^{m+1}$ を $\varphi(f)=\begin{pmatrix}f(0)\\f(1)\\\vdots\\f(m)\end{pmatrix}$ により定める。 φ が線型同型写像になるような m を求めよ。また,そのとき φ が線

型同型写像であることを示せ.

問 2.5. 線型写像 $\varphi: K^2 \to K^3, \psi: K^3 \to K^3$ をそれぞれ

$$\varphi \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 3y \\ -x + y \\ y \end{pmatrix}, \quad \psi \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + z \\ 2x + y - 3z \\ x - y \end{pmatrix}$$

により定める.

- 1) $\psi \circ \varphi \begin{pmatrix} x \\ y \end{pmatrix}$ を具体的に計算し、表現行列を求めよ.
- 2) $\psi \circ \varphi$, φ , ψ の表現行列をそれぞれ A,B,C とする. A,B,C を求め, A=CB が成り立つことを確かめよ.

問 2.6.
$$a_1, \ldots, a_n \in K^n$$
 とし. $f: K^n \to K^n$ を $f(v) = \begin{pmatrix} \det(v \ a_2 \ a_3 \ \cdots \ a_n) \\ \det(a_1 \ v \ a_3 \ \cdots \ a_n) \\ \vdots \\ \det(a_1 \ \cdots \ a_{n-1} \ v) \end{pmatrix}$ により定める. f は K -線型写像であることを示し、表現行列を求めよ.

問 2.7.
$$K^3$$
 の部分線型空間 V_1, V_2 を $V_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \middle| x_1, x_2 \in K \right\}$, $V_2 = \left\{ \begin{pmatrix} x_1 \\ 0 \\ 0 \end{pmatrix} \middle| x_1, x_2 \in K \right\}$ により定める.

- 1) K^3 の K-線型変換 1f であって, $f(V_1) \subset V_1$, $f(V_2) \subset V_2$ をみたすようなものの表現行列となりうる行列を全て求めよ.
- 2) K^3 の K-線型変換 fであって, $f(V_1) \subset V_2$, $V_2 \subset \operatorname{Ker} f$ をみたすようなものの表現行列となりうる行列を全て求めよ.
- **問 2.8.** 1) n > m とする. 任意の線型写像 $f \colon K^n \to K^m$ について f は単射でないことを示せ.
 - 2) n < m とする. 任意の線型写像 $f: K^n \to K^m$ について f は全射でないことを示せ.

 $^{^{1}}$ 一般に、V から V 自身への K-線型写像を V の K-線型変換(一次変換)とも呼ぶ.

問 **2.9.** 1) $f: K^8 \to K^3$ を

$$f\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_8 \end{pmatrix} = \begin{pmatrix} x_2 + 3x_4 + x_7 + 3x_8 \\ x_3 + 2x_4 + x_6 - x_8 \\ x_5 + 2x_6 + x_8 \end{pmatrix}$$

により定め,

$$V = \text{Ker } f = \left\{ v \in K^8 \mid f(v) = 0 \right\},$$

$$W = \text{Im } f = \left\{ w \in K^3 \mid \exists v \in K^8, \ w = f(v) \right\}$$

と置く. このとき, Vと W を簡潔に表し, それぞれの次元を求めよ.

2) $g: \mathbb{C}^5 \to \mathbb{C}^3 \not \simeq$

$$g \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} x_1 + \sqrt{-1}x_3 + x_5 \\ x_2 - 2x_3 \\ x_4 - 3\sqrt{-1}x_5 \end{pmatrix}$$

により定め, V, W も 1) と同様に定める. このとき, V と W を簡潔に表し, それぞれの次元を求めよ.

問 2.10. V,W を線型空間とし、 U_1,U_2 を V の部分線型空間とする. また、 $f_1\colon U_1\to W$ 、 $f_2\colon U_2\to W$ をそれぞれ線型写像とする.

1) $V = U_1 \oplus U_2$ と直和分解されているとする. $v \in V$ の時 $v = u_1 + u_2$, 但し $u_1 \in U_1$, $u_2 \in U_2$ と表して

$$f(v) = f_1(u_1) + f_2(u_2)$$

と置けば f は V から W への写像としてきちんと定まっていて (well-defined であるなどという), さらに線型写像であることを示せ.

2) 単に $V = U_1 + U_2$ であるとしても、必ずしも上の式で f をきちんと定めることができない。そのような例を挙げよ。

定義. f を \mathbb{R} 上定義された実数値函数とする. f が奇函数であるとは任意の $x \in \mathbb{R}$ について f(-x) = -f(x) が成り立つことをいい、また、f が偶函数であるとは任意の $x \in \mathbb{R}$ について f(-x) = f(x) が成り立つことをいう.

- 問 2.11. $V = \mathbb{R}[x]$ とし、 $W = \{f \in V \mid f \text{ は奇函数 }\}, U = \{f \in V \mid f \text{ は偶函数 }\}$ と置く.

 - 2) $\mathbb{R}[x] = W \oplus U$ が成り立つことを示せ.
 - 3) $\mathbb{R}[x] = W \oplus U$ であるから, $f \in \mathbb{R}[x]$ の時, $g \in W$ と $h \in U$ がそれぞれ唯一つ存在して f = g + h が成り立つ.g と h を f を用いて簡潔に表せ.

注:2)の解き方によってはこちらも同時に解ける.

4) $V = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ it } C^{\infty} \text{ 級} \}$ として W, U を同様に定義すると $V = W \oplus U$ が成り立つことを示せ.

注: V の元はテーラー展開可能とは限らないので、あまり安直に考えるわけにはいかない。

- 問 2.12. V, W を K-線型空間, U を V の, X を W のそれぞれ K-部分線型空間とする. また, $f: V \to W$ を K-線型写像とする.
 - 1) $f^{-1}(f(U)) = U + \text{Ker } f$ が成り立つことを示せ.
 - 2) $f(f^{-1}(X)) = X \cap \operatorname{Im} f$ が成り立つことを示せ.
- 問 2.13. V を K-線型空間とする. また、f を V の K-線型変換とする. $f \circ f = f$ が成り立つとき、以下が成り立つことを示せ.
 - 1) $g = id_V f$ と置くと、 $g \circ f = f \circ g = 0$ が成り立つことを示せ.
 - 2) $g \circ g = g$ が成り立つことを示せ.
 - 3) $\operatorname{Ker} f = \operatorname{Im} g$ が成り立つことを示せ.
 - 4) $V = \text{Im } f \oplus \text{Ker } f$ が成り立つことを示せ.
- **問 2.14.** $V \in K$ -線型空間, $W, U \in V$ の K-部分線型空間とし, $V = W \oplus U$ が成り立つとする. $v \in V$ について, v = w + u, $w \in W$, $u \in U$ と表して $f \colon V \to W$ を f(v) = w, $g \colon V \to U$ を g(v) = u として定める.
 - 1) f, g は K-線型写像であることを示せ.
 - 2) W,U は V の部分線型空間であるから,f,g は自然に V の線型変換とみなせる.このとき $f\circ f=f,\ g=\mathrm{id}_V-f$ がそれぞれ成り立つことを示せ.また, $\mathrm{Im}\,f=W,\ \mathrm{Ker}\,f=U$ がそれぞれ成り立つことを示せ.

(以上)