2010年度数学 II 演習(理 I 向け) 第1回

以下では K で \mathbb{R} あるいは \mathbb{C} を表す.

'10/4/13(火)4限 '10/4/19(月)4限 '10/4/16一部訂正 '10/4/26再修正

定義. K^n の部分集合 V が K^n の K-部分線型空間であるとは

- i) $V \neq \emptyset$.
- ii) $\forall v, w \in V, v + w \in V$.
- iii) $\forall v \in V, \ \forall \lambda \in K, \ \lambda v \in V$.

が成り立つことである(まだ講義していないかもしれないが,すぐに扱う).

問 1.1. 次に挙げる \mathbb{R}^n の部分集合 V が \mathbb{R}^n の \mathbb{R} -部分線型空間であるかどうか調べよ.

- 1) $V = \{v \in \mathbb{R}^n \mid Av = 0\}$. ただし, $A \in M_{m,n}(\mathbb{R})$ とする.
- 2) $V = \{v \in \mathbb{R}^n \mid Av = w\}$. ただし, $A \in M_{m,n}(\mathbb{R})$, $w \in \mathbb{R}^m$ とする.
- 3) $n = 2 \ge 0$,

$$V_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid 2x_1 + x_2 = 0 \right\},$$

$$V_2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 + 2x_2 = 0 \right\}$$

と置く.このとき

- i) $V = V_1 \cup V_2$ とするとどうか.
- ii) $V=\{v_1+v_2\mid v_1\in V_1,\ v_2\in V_2\}$ とするとどうか(これは少し省略した記法である.より正確に表すのであれば $V=\{w\in\mathbb{R}^2\mid \exists\,v_1\in V_1,\ \exists\,v_2\in V_2\ \mathrm{s.t.}\ w=v_1+v_2\}$ などとすべきである.)

問 1.2. 次に挙げる集合 V_i (i=1,2,3) が , 最初の定義と同様の性質

- i) $V_i \neq \emptyset$.
- ii) $\forall v, w \in V_i, v + w \in V_i$.
- iii) $\forall v \in V_i, \ \forall \lambda \in K, \ \lambda v \in V_i$.

を持つことを示せ.

1) $V_1=\{K$ の元を係数とする x に関する多項式全体 $\}$. ただし , $f_1,\ f_2\in V_1$ のとき , f_1+f_2 は多項式の和として定め , $f\in V_1$, $\lambda\in K$ のとき , λf は多項式の定数倍として定める .

考えにくければ最初は $K = \mathbb{R}$ としても良い.

(2) $K=\mathbb{R}$ とし, $V_2=\{f\colon\mathbb{R}\to\mathbb{R}\mid f$ は連続 $\}$ と置く. ただし, $f,g\in V_2$ のとき f+g (という名前の函数)は

$$(f+g)(x) = f(x) + g(x)$$

により定め, $f \in V_2$, $\lambda \in \mathbb{R}$ のとき λf (という名前の函数)は

$$(\lambda f)(x) = \lambda f(x)$$

により定める. なお, 連続の定義は高校までの定義でも構わない.

3) $K = \mathbb{R} \succeq \mathbf{U}$,

$$V_3=\left\{f\colon\mathbb{R} o\mathbb{R}\;igg| egin{array}{c}f$$
 は連続であり,かつ,充分大きな実数 M が存在して, $|x|>M$ であれば $f(x)=0$ が成り立つ

と置き, V_3 の元同士の和, V_3 の元の実数倍は2)と同様に定める.

一般には f ごとに M は異なることに注意せよ.また,連続の定義は高校までの定義でも構わない.

注(今は「お話」と思っていればよい).

問 1.2 の記号をそのまま用いる . V_3 は V_2 の部分集合であって , V_2 と V_3 の関係は K^n とその部分線型空間との関係と同様である . 実は V_2 は後で扱う「 \mathbb{R} -線型空間」の例であり , V_3 はその \mathbb{R} -部分線型空間である .

問 1.3. $z\in\mathbb{C}$ とする . $f_z\colon\mathbb{R}^2 o\mathbb{R}^2$ と $g_z\colon\mathbb{R}^2 o\mathbb{R}^2$ を $x=\begin{pmatrix}x_1\\x_2\end{pmatrix}\in\mathbb{R}^2$ に対して

$$f_z(x) = \begin{pmatrix} \operatorname{re} z(x_1 + \sqrt{-1}x_2) \\ \operatorname{im} z(x_1 + \sqrt{-1}x_2) \end{pmatrix}, \quad g_z(x) = \begin{pmatrix} \operatorname{re} \bar{z}(x_1 + \sqrt{-1}x_2) \\ \operatorname{im} \bar{z}(x_1 + \sqrt{-1}x_2) \end{pmatrix}$$

と置くことにより定める.ここで $z(x_1+\sqrt{-1}x_2), \bar{z}(x_1+\sqrt{-1}x_2)$ は複素数としての積である.

- $A_z\in M_2(\mathbb{R})$ であって,任意の $x\in\mathbb{R}^2$ について $f_z(x)=A_zx$ が成り立つようなものがただ一つ存在する. A_z を z を用いて表せ.ここで $M_2(\mathbb{R})$ は実数を成分とする 2 行 2 列の行列全体のなす集合である.
- $z \neq 0$ であれば 1) で得られる行列 A_z は逆行列を持ち、しかもある $w \in \mathbb{C}$ について $(A_z)^{-1} = A_w$ が成り立つことを示せ.
- (3) $M_2(\mathbb{R})$ の元であって, (1) のようにして得ることができるものを全て挙げよ.
- 4) f_z を g_z に置き換えて 1) から 3) に答えよ.

問 1.4. 問 1.3 で得られる写像 f₂ は

- a) $\forall x_1, x_2 \in \mathbb{R}^2$, $f_z(x_1 + x_2) = f_z(x_1) + f_z(x_2)$,
- b) $\forall x \in \mathbb{R}^2, \ \forall \lambda \in \mathbb{R}, \ f_z(\lambda x) = \lambda f_z(x),$

という性質を持つことを示せ、また, q_z についてはどうか調べよ。

問 1.4 の二つの性質を持つ写像を (\mathbb{R} -)線型写像と呼ぶ . 線型写像はこの講義・演習での主題の一つであり , 後日扱う .

(以上)