2007年度数学 II 演習 (理 I)

問1. $F = \left\{ f: \mathbb{C} \to \mathbb{R} \left| \frac{x}{y} \in \mathbb{R} \right. (y \neq 0) \Rightarrow f(x) = \frac{x}{y} f(y) \right\}$ とする. (f は特に線型写像であるとか、連続函数であるとは仮定してしない。)

- 1) $f,g\in F, r\in\mathbb{R}$ に対して、函数 f+g,r.f をそれぞれ (f+g)(x)=f(x)+g(x), (rf)(x)=f(rx) として定める。すると F は + を和、. を実数倍として \mathbb{R} -線型空間であることを示せ。
- $f: \mathbb{C} \to \mathbb{R}$ が \mathbb{R} -線型写像であれば $f \in F$ であることを示せ.
- 3) F の元で ℝ-線型写像でないものの例を挙げよ.
- $z \in \mathbb{C}$ を $z = x + \sqrt{-1}y$, $x, y \in \mathbb{R}$ と表し, $\operatorname{Re} z = x$, $\operatorname{Im} z = y$ と定める. $\operatorname{Re}, \operatorname{Im}$ を \mathbb{C} から \mathbb{R} への写像とみなすとこれらは \mathbb{R} -線型写像であることを示せ.
- (5) 4) により Re , $\operatorname{Im} \in F$ であるが、これらは $\mathbb R$ 上一次独立であることを示せ、
- $6) \ lpha \in \mathbb{C}, \ lpha
 eq 0$ とする. 函数 f_1 を $f_1(z) = \left\{egin{array}{ll} z/lpha \in \mathbb{R} \ 0, & z/lpha
 otin \mathbb{R} \end{array}
 ight.$ として定めると、 $f_1 \in F$ であることを示せ.
- 7) 函数 g を g(z)= $\begin{cases} z, & z\in\mathbb{R},\\ \sqrt{-1}z, & \sqrt{-1}z\in\mathbb{R}, & \text{として定めると }g\in F\text{ である }0 & \text{その他のとき } \end{cases}$ ことを示せ.
- (z) 8) $n\in\mathbb{N}$ に対し、 f_n を $f_n(z)=\left\{egin{array}{ll} z/lpha^n, & z/lpha^n\in\mathbb{R} \ 0, & z/lpha^n
 otin\mathbb{R} \end{array}
 ight.$ として定める。 $F_n=(z)$ として定める。 $F_n=(z)$ というない。
- 9) $\dim F_5$ を求めよ (α によって異なる).

問2.
$$a,b,c \in \mathbb{R}$$
 とし、 $P = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| ax + by + cz = 0 \right\}$ とする.

- 1) P は \mathbb{R}^3 の部分線形空間であることを示せ.
- 2) P の基底を一組求め、次元を求めよ.
- $\pi:\mathbb{R}^3 \to \mathbb{R}^2$ を, $\piegin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} x \ y \end{pmatrix}$ で定める. $\pi(P)$ を決定し, $\dim \pi(P)$ を求めよ.

定義. $f:V \to W$ を写像とする. V の部分集合 U に対して, U の (f による) 像 f(U) を

$$f(U) = \{w \in W \,|\, \exists u \in U, w = f(u)\} = \{f(u) \,|\, u \in U\}$$

と定める. また, W の部分集合 X に対して, X の (f による) 逆像 $f^{-1}(X)$ を

$$f^{-1}(X) = \{ v \in V \, | \, f(v) \in X \}$$

と定める.

問3. f が全単射であると仮定し, f の逆写像を f' で表す. このとき上の定義による $f^{-1}(X)$ と, f'(X) は一致することを示せ.

したがって、f が全単射であろうが無かろうが $f^{-1}(X)$ という集合は混乱なく定まる.

問4. $f:V \to W$ を線型写像とする.

- 1) $U \subset V$ が部分線形空間であれば f(U) は W の部分線形空間であることを示せ.
- 2) $X\subset W$ が部分線形空間であれば $f^{-1}(X)$ は V の部分線形空間であることを示せ.
- 3) U を V の部分線形空間とする. $v_1, \dots, v_r \in U$ が U を生成するとき, $f(v_1), \dots, f(v_r)$ は f(U) を生成することを示せ.
- 4) f が単射であることと、一次独立であるような V の元の組 v_1, \dots, v_r について常に $f(v_1), \dots, f(v_r)$ が一次独立であることは同値であることを示せ.
- f が全射であることと、V の元の組 v_1, \dots, v_r であって $f(v_1), \dots, f(v_r)$ が W を生成するようなものが存在することは同値であることを示せ.
- $(v_1, \dots, v_r \in V$ は一次独立ではないが、 $f(v_1), \dots, f(v_r)$ は一次独立であるような f, V, W の例を挙げよ.
- $v_1, \dots, v_r \in V$ は一次独立であるが、 $f(v_1), \dots, f(v_r)$ は一次独立ではないような f, V, W の例を挙げよ.
- $v_1, \dots, v_r \in V$ はV を生成しないが, $f(v_1), \dots, f(v_r)$ はW を生成するような f, V, W の例を挙げよ.
- 9) $v_1, \dots, v_r \in V$ はV を生成するが, $f(v_1), \dots, f(v_r)$ はW を生成しないような f, V, W の例を挙げよ.

問5. $A \in M_n(K)$ のとき, $f_A: K^n \to K^n$ を

$$f_A(v) = Av, \ (v \in K^n)$$

で定める. $A,B\in M_n(K)$ が $A+B=E_n,\,{\rm rank}\,A+{\rm rank}\,B=n$ を満たすとき以下を示せ .

- 1) Ker $f_A = \operatorname{Im} f_B$.
- 2) AB = BA = O, $A^2 = A$, $B^2 = B$.

問6. 線型空間 V から V 自身への線型写像 P_1,\ldots,P_k が条件

- 1) $P_i^2 = P_i, j = 1, \dots, k$
- 2) $P_i P_k = 0, j \neq k$
- 3) $P_1 + \cdots + P_k = \mathrm{id}_V$

をみたすとき, $W_j=\operatorname{Im} P_j$ とすると, $V=W_1\oplus\cdots\oplus W_k$ が成り立つことを示せ. ただし,(3) の左辺は $f(v)=P_1(v)+\cdots+P_k(v)$ で定まる線型写像を表す.

(以上)