'12/10/23 誤植の訂正,

'12/10/30 問 7.3, 問 7.10 の 2) と対数函数に関する記述の誤植を修正

'12/11/30 問 7.11 の誤植の修正

'13/1/29 問 7.6の誤植の修正

問 7.1. $f: \mathbb{R}^n \to \mathbb{Z}$ を連続函数とする. このとき f は定数函数(定値函数)であることを示せ. $g: \mathbb{R}^n \to \mathbb{Q}$ を連続とすると, g についてはどうであるか調べよ.

問 7.2. $v_1, ..., v_n \in \mathbb{R}^n$ とし、これらは線型独立であるとする。ある $\delta > 0$ が存在して、 $w_1, ..., w_n \in \mathbb{R}^n$ が $\forall i, \|w_i - v_i\| < \delta$ をみたすならば $w_1, ..., w_n$ は線型独立であることを示せ。

ヒント: 行列式を考えてみよ.

問 7.3. $U \subset \mathbb{R}^n$ とし、 $f: U \to \mathbb{R}^m$ を函数とする.

- 1) f が U 上一様連続であるならば、f は U (至る所) 上連続であることを示せ.
- 2) $U = \mathbb{R}^n$ とし、f は U 上連続であるとする。f は必ずしも一様連続ではないことを 例を挙げて示せ。
- 3) $U = (-1,1) \times \cdots \times (-1,1) = \{(x_1,\ldots,x_n) \in \mathbb{R}^n | \forall i, x_i \in (-1,1)\}$ とし,f は U 上連続であるとする。f は必ずしも一様連続ではないことを例を挙げて示せ.

問 7.4. $P \subset \mathbb{R}^n$ を閉区間の直積, $f: P \to \mathbb{R}$ を可積分函数とする。 $c \in \mathbb{R}^n$ とし, $P_c = \{x \in \mathbb{R}^n \mid \exists y \in P \text{ s.t. } x = y + c\}$ と置き, $f_c: P_c \to \mathbb{R}$ を $f_c(x) = f(x - c)$ により定めると P_c も閉区間の直積であって, f_c は P_c 上可積分であることを示せ.

問 7.5. $P \subset \mathbb{R}^n$ を閉区間の直積, $f,g: P \to \mathbb{R}$ を可積分函数とする. fg(x) = f(x)g(x) に より $fg: P \to \mathbb{R}$ を定めると fg は P 上可積分であることを示せ.

問 7.6. $a,b \in \mathbb{R}, \ a \leq b$ とし、 $f: [a,b] \to \mathbb{R}$ とする.f が連続であるならば f は [a,b] 上可積分である(これは講義で後日示す). $n \in \mathbb{N}$ とし、 $t \in [0,1]$ について $\int_0^t x^n dx = \int_{[0,t]} f(x) dx$ と定める. $\int_0^t x^n dx = \frac{1}{n+1} t^{n+1}$ であることを定義に従って積分を直接計算することにより示せ.ただし、 x^0 は x によらず 1 と看做す.

問 7.7. $f: [0,1] \to \mathbb{R}$ を $f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q} \end{cases}$ により定める. f は [0,1] 上リーマン可積分でないことを示せ.

※ f は [0,1] 上ルベーグ可積分である。ルベーグ積分については伊藤清三、ルベーグ積分入門(裳華房)が詳しい入門書である。しかし、先に「集合と位相」について学んでおいた方が誤解が少ない。多少の背伸びは大切であるが、あせりすぎるのもよくない。

問 7.8. 次の不定積分を求めよ. ただし $a,b,c,d \in \mathbb{R}, k \in \mathbb{N}^+$ とする.

1)
$$\int \frac{dx}{(x-a)^k}$$
.
2) $\int \frac{dx}{(x^2+b^2)^k}$.
3) $\int \frac{xdx}{(x^2+b^2)^k}$.
4) $\int \frac{cx+d}{((x-a)^2+b^2)^k}dx$.

問 7.9. f,g を多項式とし、 $f \neq 0$ とする. $\int \frac{g(t)}{f(t)} dt$ は初等函数(指数函数、対数函数、定数、n 乗根(n > 1)から、有限回の四則演算と合成により得られる函数のこと、さしあたり高校までで習った函数と考えておけばよい)で表されることを示せ.

問 7.10. $a,b \in \mathbb{R}$, a < b とする. また, $f: [a,b] \to \mathbb{R}^2$ を C^1 級の函数とする. f のグラフで与えられる曲線 l の長さについて(まったく厳密でないが)次のように考えてみる. $t \in (a,b)$ とすると (t,f(t)) の近く(近傍)では l はおおよそ y = Df(t)(x-t) + f(t) のグラフで近似される. 右辺を g(t) と置く.

- 1) 上の文章の最後に与えられた直線のグラフに関して $(t-\delta,g(t-\delta))$ と $(t+\delta,g(t+\delta))$ の間の長さ L を求めよ、ただし、 $\delta>0$ であって、 $a\leq t-\delta< t+\delta\leq b$ とする、また、区間の幅が 2δ であることを踏まえて、区間の幅当たりの長さ $L/2\delta$ を求めよ、この値を t の函数と看做して h(t) と置く、
- 2) (さっぱりよくわからないが、)l の、(t,f(t)) における($t \in [a,b]$)「無限小」dt あたりの長さは h(t) であると考えて、f のグラフの (c,f(c)) から (d,f(d))(ただし $a \le c \le d \le b$)の長さを $\int_c^d h(t)dt$ により定める。 $f(x) = \sqrt{1-x^2}$ 、[c,d] = [-1,1] のとき、f のグラフの (c,f(c)) から (d,f(d)) ($a \le c \le d \le b$)までの長さを求め よ.必要であれば (d,f(d)) と原点を通る直線と、(c,f(c)) と原点を通る直線のなす 角を θ として用いてよい.
- 3) $f(x) = \sqrt{1-\alpha^2 x^2}$ と置く.ここで $\alpha > 0$ である.f のグラフの $\left(-\frac{1}{\alpha},0\right)$ から (t,f(t)),ただし $t \in \left[-\frac{1}{\alpha},\frac{1}{\alpha}\right]$,までの長さを積分で表せ.

最後の積分は楕円積分と呼ばれるものの一種で、一般には初等函数では表せないことが 知られている(示すのは難しい).

問 7.11. $a,b \in \mathbb{R},\ a < b$ とする.また, $l \colon [a,b] \to \mathbb{R}^2$ を C^1 級の正則な曲線とする.すなわち,l は C^1 級であって, $\forall t \in [a,b],\ Dl(t) \neq 0$ が成り立つとする. $a \leq c \leq d \leq b$ であるとき $L(c,d) = \int^d \|Dl(t)\| \, dt$ と置く.ここで $\|\cdot\|$ は \mathbb{R}^2 の通常のノルムを表す.

1) ある C^1 級の函数 $f:[a,b]\to\mathbb{R}$ について l(t)=(t,f(t)) が成り立つとする. このとき L(c,d) を f やその微分などを用いて表せ.

- 2) $[a,b] = [0,2\pi], \ l(t) = (\cos t, \sin t)$ とする. $0 \le c \le d \le 2\pi$ の時 L(c,d) を求めよ.
- 3) $[a,b]=[-2,2],\ l(t)=(\cosh t,\sinh t)$ とする. $-2\leq c\leq d\leq 2$ のとき L(c,d) を求めよ.

ここで話を変えて、複素数の対数函数について簡単に述べる. ここでは $t,s \in \mathbb{R}$ に ついて $e^{t+\sqrt{-1}s} = e^t(\cos s + \sqrt{-1}\sin s)$ (オイラーの公式) が成り立つことを認める. さて, 実数 x > 0 については $x = e^t$ なる唯一の実数を $\log x$ と定めた. 複素数についてもまねを して, $z \in \mathbb{C}$, $z \neq 0$ であるときに $z = e^u$ なる $u \in \mathbb{C}$ が存在するならば, それを $\log z$ として みる. $u=t+\sqrt{-1}s,\ t,s\in\mathbb{R}$ とすると、オイラーの公式から $t=\log|z|$ (この \log は実数に 関する対数函数である. $z \neq 0$ だからこの式で t は確かに定まる)である. $\left|\frac{z}{|z|}\right| = 1$ であるから, $\frac{z}{|z|} = \cos s + \sqrt{-1} \sin s$ と表すことができる. sには $2\pi \mathbb{Z}$ だけの任意性があるが, いずれのsについても $e^{t+\sqrt{-1}s}=z$ が成り立つ. |z|をzの絶対値、大きさ、sをzの偏角と それぞれ呼ぶ. sに $2\pi\mathbb{Z}$ だけの任意性があるという意味で、複素数について $\log z$ は**多価** 函数である.しかし、次のようにすると一意に値が定まった普通の函数(一価函数)と考える ことができる. \mathbb{C} の部分集合 $U = \{z \in \mathbb{C} | z \text{ th } 0 \text{ 以下の実数ではない} \}$ を考える. $z \in U$ と すると, $\frac{z}{|z|}$ は -1 にはならない(他の,任意の大きさが 1 の複素数は実際に取ることがある).従って $\frac{z}{|z|}=\cos s+\sqrt{-1}\sin s$ なる $s\in(-\pi,\pi)$ が唯一存在する.このように すると log: $U \to \mathbb{R} \times (-\pi, \pi) = \{(t, s) \in \mathbb{R}^2 \mid -\pi < s < \pi\}$ が通常の函数として定まり、 実解析的 (テーラー展開可能¹) である. t を実部, s を虚部と看做せば $\log: U \to \mathbb{C}$ と 考えることができる. このように複素数値函数と考えると log は**複素解析的**な函数(複素 特徴があり、特に $\log \phi$ \ln などで表すことがある. 上の定め方をよく見ると、 $\log s$ の 虚部を $(-\pi,\pi)$ の範囲(値域とした方がより正確である.以下では「範囲」は「値域」の 意味で用いる)で定める特別な理由はなく、たとえば $(\pi,3\pi)$ の範囲で定めてもよい. このように定めた $\log \log \log s = \log s + 2\pi$ をみたす. 特に $\log 1 = 2\pi$ である. このように, 一価であるように(定義域と)函数を定めることを枝を選ぶと呼ぶ、また、選んだ函数を枝 あるいは**分枝**と呼ぶ. さて,この方法だと負の実数については対数が定まらない(実数に 関する対数函数ではこれは仕方がないことであった. 従って負の実数はここでは本質的に 複素数であると考えている). そこで今度は $V = \{z \in \mathbb{C} \mid z \text{ は } 0 \text{ 以上の実数ではない } \}$ と して上と同様の作業をする. 今度は \log の虚部をたとえば $(0,2\pi)$ の範囲とすると $\log:V\to$ ℃ が定まる.これも複素解析的である.また,範囲は異なるが枝である.このように 定めた $\log: V \to \mathbb{C}$ と $\log: U \to \mathbb{C}$ を比較してみる. 意味があるのは $U \cap V = \{z \in \mathbb{C} \mid z \notin \mathbb{C} \mid z$ \mathbb{R} 上である. まず上半分 $H = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ を考える. H においては \log も \log も 同じ方法で虚部を定めるので $\log z = \operatorname{Log} z$ が成り立つ. 次に下半分 $H^- = \{z \in \mathbb{C} \mid \operatorname{Im} z < z \in \mathbb{C}$ 0} を考える. H^- においては $\log z$ の虚部は $(\pi, 2\pi)$ の範囲で、 $\log z$ の虚部は $(-\pi, 0)$ の 範囲でそれぞれ定めるから、 $\log z = \text{Log } z + 2\pi$ が成り立つ. \log の枝は様々なものを考え ることができるが、いずれも同様の関係にある.

 $^{^{1}}$ 厳密には、定義域の各点において収束半径が正であるようなテーラー級数に展開されるということである.

²複素解析的な函数は理想的に良く振る舞い、深い性質を持つ.

問 7.12. $z \in \mathbb{C}$, $z \neq 0$ の n 乗根 $\sqrt[n]{z}$ を指数函数と対数函数を用いて定義せよ. また、 $\sqrt[n]{z}$ を函数と考えようとすると枝が n 個生じることを確かめよ.

問 7.13. $a \in \mathbb{C}$, $a \neq 0$, $z \in \mathbb{C}$ とする. a^z を $a^z = \exp(z \log a)$ により定める. a^z は指数 法則 $a^z a^u = a^{z+u}$, $z, u \in \mathbb{C}$ をみたすことを確かめよ. また, どのような枝が生じるか考察せよ. ただし, $w \in \mathbb{C}$ について $\exp w = e^w$ とする.

問 7.14. $y = \sin x$ とする.

- 1) $\frac{dy}{dx}$ を x の函数, y の函数としてそれぞれ表せ.
- 2) $\sin x$ は $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上の函数としては、像への全単射であることを示せ、また、逆函数が連続であることを示せ(必要であれば前期で示した定理は用いて良い、また、実際には Arcsin は実解析的である).この逆函数を Arcsin で表すことにする.
- 3) 定義により x = Arcsin y である. $\frac{dArcsin y}{dy}$ を求めよ. $y \in [0,1)$ のとき Arcsin y を y の函数の積分として表せ.
- 問 7.15. 1) $\cos^{-1} y$ の, [-1,1] で定義された $\cos^{-1} 1 = 0$ をみたす枝を $\operatorname{Arccos} y$ で表す. $\operatorname{Arccos} y$ を上に倣って積分を用いて表せ.
 - 2) $\tan^{-1}y$ の \mathbb{R} 上定義された $\tan^{-1}0=0$ をみたす枝を $\arctan y$ で表す. $\arctan y$ を 上に倣って積分を用いて表せ.
 - 3) $\tan^{-1}y$ の \mathbb{R} 上定義された $\tan^{-1}0=2\pi$ をみたす枝を考える. $\tan^{-1}y$ を積分を用いて表せ.
- 問 7.16. $\mathbb{C}^* = \mathbb{C} \setminus \{0\} = \{z \in \mathbb{C} | z \neq 0\}$ と置く. $z \in \mathbb{C}$ について $\exp z = e^z$ とし、 $\exp : \mathbb{C} \to \mathbb{C}^*$ と看做す. Log を $\log 1 = 0$ をみたす対数函数の枝とする.
 - 1) $U = \left\{ w \in \mathbb{C} \middle| |w| < \frac{1}{100} \right\}$ と置く(100 は本当はもっと小さな値で良いが,ここではあまり意味がない). $V = \left\{ z \in \mathbb{C}^* \middle| \exists w \in U \text{ s.t. } z = \exp w \right\}$ と置く. Log は V 上では一価函数であることを示せ.
 - 2) U上の函数 f を $w \in U$ について $f(w) = \text{Log}(\exp w)$ により定める. f(w) をなるべく 簡単に表せ.
 - 3) $l: [0,1] \to \mathbb{C}^*$ を C^∞ 級の写像であって l(0) = 1 なるものとする. このとき C^∞ 級の写像 $\widetilde{l}: [0,1] \to \mathbb{C}$ であって, $\forall t \in [0,1]$, $\exp(\widetilde{l}(t)) = l(t)$ かつ $\widetilde{l}(0) = 0$ なるものが一意的に存在することを示せ. また,状況を図で説明せよ(これに関しては厳密でなくて良い).

 $\underset{\sim}{\widetilde{l}}$ を一価函数と看做せば、[0,1]上で $\log l$ が一価函数 \widetilde{l} として定まったことになる.

- 4) $n \in \mathbb{Z}$ とし、 $l: [0,1] \to \mathbb{C}^*$ を $l(t) = \exp(2\pi\sqrt{-1}nt)$ により定める、 $\frac{1}{2\pi\sqrt{-1}} \int_0^1 \frac{Dl(t)}{l(t)} dt$ を求めよ、また、 $\widetilde{l}: [0,1] \to \mathbb{C}$ を 3) で与えられる写像とするとき、 $\widetilde{l}(1)$ を求めよ、
- ※) (自習用. 講義の範囲からは著しく逸脱している.)

4) について、 $l:[0,1] \to \mathbb{C}^*$ を l(0) = l(1) = 1 なる C^∞ 級の写像とするとき、何が成り立つか調べよ.ここで、複素数値の函数の積分は実部と虚部にわけてそれぞれ行えばよい.この間についてはたとえばアールフォルス、複素解析(現代数学社)などで複素線積分と回転数について調べると良い.

(以上)