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(On a Riemann-Roch theorem for divisors on an infinite graph)

JE3 =, &+ £ (A. Atsuji and H. Kaneko)

1. Riemann-Roch theorem on a weighted finite graph

Let G = (Vg, Eg) be a connected graph consisting of finite set Vg of vertices and of finite set
E¢ of edges. We assume that weight C, , is given at every edge {z,y} € Eg.

For every vertex z € Vg, define N(z) = {y € Vo | {z,y} € Eg} andi(z) = min{| 3 c ) f(¥)Cayl €
(0,00) | f: Vg — Z}.

notions probabilistic materials
weight on edges conductance C , between x and y
weight at vertices i(x)
divisor D=3 ey, U)i(x)] 14
degree of divisor deg(D) = > ey, H(@)i(x)
canonical divisor Ke =% ev {2 yen(a) Coy — 21(2) H (1
Laplacian of f at x € Vg Af(x) = yen) Coy(f(@) — f(y))
Euler-like characteristic eV,0) = Dweve &) = Xiayrens Coy
A divisor D = ) v, l(2)i(z)1, is said to be effective, if £(x) > 0 for all z € V. We need

also the canonical divisor K¢ = -, cy {2 en() Coy — 2i(2)} (4} and the family of total orders

on Vg denoted by O. For each O € O, its inverted total order O is defined by z <g y for any
x,y € Vg satisfying y <o x. We introduce the divisor

vo(x) = Z Coy—i(z), z€Vg

yeN(z),y<ow

of degree —e(y,cy = > (wrere Coy — > wev, i(w) admitting only non-effective equivalent divisors.

We introduce an equivalence between divisors D and D’ and notation for the equivalence class
given by

D~ D' & D' =D+ Af for some Z-valued functionf,
|D| = {D"| D’ is effective and equivalent with D}.
For any divisor D and non-negative integer k, we take
Ey(D) = { effective divisors E | deg (E) = i(v,ck satisfying D — E| # 0}

to define the dimension r(D) of the divisor D by

r(D) = —iv,c), if Eo(D) =0,
max{iy,c)k | E(D) consists of all effective divisors of degree i(y,c)k}, otherwise.



Theorem (Riemann-Roch theorem on weighted finite graph). For any divisor D,
r(D) —r(Kg — D) = deg(D) + ¢y,

Similarly to M. Baker and S. Norine’s article [1], we can prove this assertion, the corner stones of
which are the following assertions:

(RR) For each divisor D, there exists an O € O such that either |D| or |vp — D] is empty.

Proposition 1  (RR) implies r(D) = (mianD,oeo deg™ (D’ — 1/0)) —i(q,c) for any divisor
D, where i(g,cy = min{| >, cy,, {(2)i(z)] € (0,00) [ £: Vi — Z} and deg™ (D) = 2 o(@)y>o L(@)i(z)
for divisor D =} v l(2)i(2)1(}.

2. Riemann-Roch theorem in an infinite graph

Throughout this section we consider an infinite graph G = (Vg, E¢) with locally finiteness and
finite volume, namely, the function #N(z) given by N(z) = {y | {z,y} € Eg} is integer valued
and the total volume m(V) = }_ y, m(z) given by m(z) = 3_, c n(y) Ca,y is finite.

For any pair {z,y} of distinct elements in Vi, we define the graph metric d(x,y) between x, y by
d(z,y) = min{k € N | {z0,21},{21,22},...,{2k-1, 2k} € E¢ for some z1,...,25_1 € Vg with zg =
x,zr = y}. We fix a reference vertex vy € Vi and take the sphere Sy = {y € Vi | d(vo,y) = k}
centered at the reference vertex vy with radius & € N with respect to the graph metric d.

We consider a divisor D = 3y, £(2)i(x)l,y on Vg satisfying > oy [(2)]i(2)1{z) < oo.
We take an exhaustion sequence G; C Gy C --- of subgraphs of G = (V, Eg) determined by
Vi ={a € Vg | d(v,,a) <n}, E, ={{a,b} € Eg | a,b € V,} and G,, = (V,,, E,,) for each n € N.

We make an attempt to extend the Riemann-Roch theorem on finite graphs to one on an infinite
graph by finding such sufficient conditions that sequence {r,, (D)} consisting of so-called dimension
of D on each G, converges as n tends to oo for any divisor D =3y, £(2)i(x)1,} with finiteness
of its support supp[D] = {z € Vg | {(x) # 0}. We will propose several conditions on the infinity
of G for controlling the dimensions of the divisor by closely looking at the Laplacian naturally
associated with {C, ,}.

As a result, after redefinitions of the dimension (D), the canonical divisor K¢ and Euler-like
characteristic ey, c), we can assert the same identity as in Theorem as a Riemann-Roch theorem
for divisor D = . l(2)i(z)1(z) on Vg with > i [€(7)]i(z)1{;; < oo on an infinite graph
satisfying specific conditions.
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Let T:={z€ C: |zl =1} and D := {z € C : |z| < 1} be the unit circle and
the closed unit disk, in C, respectively. Let d € N. In this talk, a d-variate ARMA
(autoregressive moving-average) process { Xy : k € Z} is a C-valued, centered, weakly
stationary process with spectral density w of the form

w(e?) = ne)h(e?)", 0 € [-m7) (1)
with h : T — C%¥? satisfying the following condition:
the entries of h(z) are rational functions in z that have

(C)

no poles in D, and det h(z) has no zeros in D.

It is known that there exists hy : T — C%? that satisfies (C) and

w(e”) = h(e”)h(e”)" = hy(e”) hy(e”), 0 € [-m ), (2)

and hy is unique up to a constant unitary factor. We may take hy = h for the univariate
case d = 1 but not so for d > 2, and this is one of the main difficulties when we deal
with multivariate processes. Let D := {z € C : |z| < 1} be the open unit disk in C.
We can write h(z)™! in the form

K my mo
h(z)~ :—PO—ZZ Puj—zszo,j, (3)
=1 j=1 j=1
where
K e NuU{0},
pp €D\{0} (p=1,....K), p.#p (n#v),
m, €N (p=1,...,K), myeNU{0}, (4)

puj ECHT (u=0,1,...,K, j=1,...,m,), py€ C™
{ Py, # 0 (b=0,1,..., K).
Here the convention $°)_, = 0 is adopted in the sums on the right-hand side of (3).

The next theorem shows that hy L of a vector ARMA process has the same mg and
the same poles with the same multiplicities as h~1.

Theorem 1. For mgy, K and (p1,m1),...,(pr,mr) in (3) with (4), hﬁ_l has the form

K my mo
hy(2)™ = —pf — ZZ p,” > b (5)
p=1 j=1 J=1

where

{pi’jECdXd (p=0,1,....K, y=1,...,m,), pgeCdXd, (6)

pfhmu#o (b=0,1,..., K).



We are concerned with the finite predictor coefficients ¢, ; € C*? (j =1,...,n) of
a d-variate ARMA process { X}, defined by

P[*n,fl}XO = ¢n,1X71 +oeee ¢n,ann> (7)

where, for n € N, P_, _1j X stands for the best linear predictor of the future value Xy
based on the finite past {X_,,..., X _1}.
The next theorem gives a closed-form expression for ¢, ;.

Theorem 2. Suppose that m, =1 (un=1,...,K) and mg = 0. Then, forn > 1 and
7=1,...,n, we have

Pn,j = Coaj + COpOT(]dM - GnGn)_l(Hn@)*{ATHn@EjP + En—j—f—lﬁ}a (8)

where a; = fo:l ﬁf;p,hl forj>1,pf =y,...,1;) € C*EK

* 0
plhﬁ(Pl)PLl
pzhﬁ(pz)/)z,l
O = ' c CdKXdK,
*
O prhy (pK)pK,l
L_J L. ... L7
I-pip, ¢ T-pip, @ T—pipg 4
L7, L, ... Ll
A= 1—p2py d 1—p2ps d 1-poPk d c CdKXdK
- . . . )
1 7 1 7. ... 17
1-pKDy d 1-pKDPo d 1-prPK d
Pila O
pyla
Hn: . E(CdKXdK, nZO,
O Picla
I [ S Pk g
1—137}171 d 1—7107}1732 d 1-p1Pg d
1—1;71zﬁ La 1_1;221) Iy - I—Z;Iz{p AK xdK
=, = o : K eC , n>1,
P g [ S Pk g
1-pkDy d 1-pKDPo d 1-prPx d
T T T T dK xd
p:(pl,hpZ,l?"'apK,l) E(C )

p~ = <p§,17 Pg,p s 7pﬂ[(,1> € CdKXd

and G,, = I1,0A, G,, = (I,0)*AT € CIK*IK,

The assumptions in Theorem 2 are just for simplicity of presentation. For the general
result, see [1].
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Percolation & triangle condition
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1 Percolation
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Denote by X the set of all one-sided infinite sequences over the set N of positive
integers, namely X = {z = (z1,22,...): ; € N, i € N}, endowed with the product
topology of the discrete topology on N. Define the left shift 0: X — X by (ox); = zj41
(1 € N). For each x € X and n € N define an n-cylinder by

[Z1,...,zp] ={y= (i) € X: & =y; for every i € {1,...,n}}.
Let ¢: X — R be a function. A Borel probability measure p4 on X is Bowen’s Gibbs

measure for the potential ¢ |1, 4, 5] if there exist constants ¢p > 0, ¢; > 0 and P € R
such that for every z € X and every n € N,

polTis ..., xn)]
exp (—Pn + Z?;Ol (al(x))>

Let M denote the space of Borel probability measures on X endowed with the weak*-
topology. We are concerned with the following three sequences {A,}, {E,}, {Tyn} of
Borel probability measures on M:

For each x € X and n € N define 07 = %E?:_ol Ogigy, With 6., the unit point mass
at o'z. Denote by A,, the distribution of the M-valued random variable z + 67 on the
probability space (X, pg);

For each integer n € N define

1
n:< Z eXpSn¢(l’)) Z eXPSnﬁb(z)(ségga

rEPer, o xEPer, o

co <

<.

[1]

-1

Tyn=| D expSuo(x) > exp Sn(x) sy,

r€o~ "y o "y

where Perp,o ={z € X: o"z =z}, o0 "y={zr € X: 0"z =y} and y € X is fixed.

Theorem A. (|6, Theorem Al). Let ¢: X — R be a measurable function and pg a
Bowen’s Gibbs measure for the potential ¢. Then {A,}, {E,}, {YTyn} are exponentially
tight and satisfy the Large Deviation Principle with the same convex good rate function
I. All their weak*-limit points are supported on subsets of the set I~1(0).

Under the hypotheses and notation of Theorem A, we call v € M a minimizer if
I(v) = 0. We give a sufficient condition for the uniqueness of minimizer. For a function
¢: X — R put

1 n—1 ‘
P(¢p)= lim —1o sup ex oo’
(¢) = lim — gzgn S e ; ¢
where the sum runs over all n-cylinders. For v € (0,1] we introduce a metric d, on
X by setting d(x,y) = exp (—yinf{i € N: x; # y;}), with the convention e™> = 0. A
function ¢: X — R is Hélder continuous if there exist C' > 0 and 7 € (0, 1] such that for
every k € Nand all z,y € [k], |¢(x) — ¢(y)| < Cd(x,y).
1
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Theorem B. Let ¢: X — R be a Hélder continuous function such that B := inf{f €
R: P(B¢) < oo} < 1. Then there exists a unique shift-invariant Bowen’s Gibbs measure
for the potential ¢. It is the unique equilibrium state for ¢, i.e., the unique measure which
attains the supremum

sup {h(v) + / pdv: v e M is shift-invariant and /(;de > —oo}

(h(v) being the entropy of v with respect to o)), and it is the unique minimizer of the
rate function I in Theorem A. The {An}, {E,}, {Yyn} converge in the weak*-topology
to the unit point mass at the minimizer.

We apply Theorem B to the Gauss map G: (0,1] — [0, 1) given by G(z) = 1/x—[1/z].
For x € (0,1) \ Q, define (a;(z))ien € NN by a;(z) = L@%@J , and put

1
[a1(x); a(z); -+ s an(z)] = .
ai(x) + .
ag (l‘) + -+ m
Then x = lim,, ,o0[a1(7);az(z); - ;an(z)]. Themap 7: x € (0,1)\Q — (a;(z))ieny € NV
is a homeomorphism, and commutes with G and the left shift. Hence, the study of the
behavior of aj(x),az(x),az(zx),... translates to that of the dynamics of G.

Define ¢ := —log|DG| o7~ L. Then S, = 1/2 [3]. For each 8 > 1/2 the potential S¢
satisfies the conditions in Theorem B. Denote by pg the G-invariant Borel probability
measure which corresponds to the unique shift-invariant Bowen’s Gibbs measure for the
potential B¢.

Corollary. (Equidistribution of weighted periodic points). For every f > 1/2 the fol-
lowing convergence in the weak*-topology holds:

1
S— IDG™(z)| 7762 — pg  (n — o0).
erPern(G) |DG (l‘)| o zGP%;(G)

The convergence for = 1 was first proved in [2] by directly showing the tightness of

the sequence of measures. The p; is the Gauss measure: dy; = 1022%'
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Resolution of sigma-fields for multiparticle
finite-state evolution with infinite past
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Let us consider the stochastic recursive equation
Xk = Nka,1 P-a.s. for k € Z (1)

with the observation process X = {Xj}rez taking values in a set V' and with the noise
process N = {Nj}rez doing in a composition semigroup ¥ consisting of mappings from
V to itself, where we write fv simply for the evaluation f(v). For a given probability law
on X, we call the pair {X, N} a u-evolution if the equation (1) holds and each Ny has law
1 and is independent of .7-",5(_]1\7 = 0(X;,N; : j < k—1). Our problem here is to resolve
the observation X = o(X; : j < k) into three independent components as

FX .7:13/ V ]:i(oo Vo(Uy) P-as. for k € Z, (2)

where, for each k, the first component F) is a sub-o-field of the noise F}Y, the second
F2e = iez Fii is the remote past, and the third Uy is a random variable which is
independent of .7:,3/\/}"2(00. For o-fields Fy, Fa, ... we write F1 VFoV- - - for o(FiUFU- -+ ).

If we assume that the product N;Nj;--- N converges P-a.s. as j — —oo to some
random mapping NV, and that X, does to some random variable X_.,, then we obtain

Frc f,ﬁv vVFY  Pas forkeZ (3)

with FX = o(X_,), P-a.s. We notice that, in typical cases, these a.s. convergences fail
but the resolution (2) holds with the third random variable Uy being uniform in some
sense.

Motivated by Tsirelson’s example [2] of a stochastic differential equation without strong
solutions, Yor [7] studied this problem in the case V=T = {z € C : |z| = 1}, the one-
dimensional torus, and ¥ = T by identifying z € T with the multiplication mapping
w +— zw. By means of the Fourier series and the martingale convergence theorems, he
obtained a complete answer to the resolution problem. Akahori-Uenishi-Yano [1] and
Hirayama—Yano [3] generalized Yor’s results to compact groups; see also Yano—Yor [6] for
a survey on this topic.

We now consider the resolution problem when the state space is a finite set V =
{1,2,...,#V} and ¥ = Map(V) is the finite composition semigroup of all mappings from
V to itself. In Yano [5] we gave a partial answer in the sense that the inclusion

FrcFYVvFY, Pas forkelZ (4)

holds if and only if Supp(u) is sync, i.e., the image g(V) is a singleton for some g €
(Supp(p)), where (Supp(u)) denotes the subsemigroup of ¥ consisting of all finite com-
positions from Supp(u). Unfortunately, we have not so far obtained a general result nor
a counterexample for the resolution of the form (2).

1



We thus focus on the resolution problem for multiparticle evolutions. For a probability
law p and for m € N, we mean by an m-particle p-evolution the pair {X, N} of a V'™-
valued process X = {Xj}rez with X = (X},...,X/") and a X-valued process N =
{ Ny }kez such that the stochastic recursive equation

X =NX] |, Pas fork€Zandi=1,...,m (5)
holds and each Ny has law p and is independent of F,igﬂf. Choosing

m = inf{#g(V) : g € (Supp(p))}, (6)
we shall give a complete answer to the resolution problem of the form
Fr=F ' VvF*_Vvo(U,) P-as. forkcZ. (7)

For this purpose, we utilize the Rees decomposition from the algebraic semigroup theory,
which has played a fundamental role in the theory of infinite products of random variables
taking values in topological semigroups; see, e.g., [4] for the details.
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Denote by S the Banach spaces of weighted real [P, 1 < p < 00, spaces and the space of di-
rect product RY (with R and resp. N the spaces of real numbers and resp. natural numbers),
which are understood as Fréchet spaces. Let p be a Borel probability measure on S. On the
real L*(S; 1) space, for each 0 < o < 2, we give an explicit formulation of a-stable type (cf.,
e.g., section 5 of [Fukushima,Uemura 2012] for corresponding formula on L*(R%), d < o0)
non-local quasi-regular (cf. section IV-3 of [M,R 92]) Dirichlet form (&,,D(&,)) (with a
domain D(&,)), and show an existence of S-valued Hunt processes properly associated to
(€0 D(EL)).

As an application of the above general results, we consider the problem of stochastic
quantization of Euclidean free field, ®; and @3 fields, i.e., field with (self) interaction of
4-th power. By using the property that, for example, the support of the Euclidean @3
field measure p is in some real Hilbert space H_3, which is a sub space of the Schwartz
space of real tempered distributions S'(R3 — R), we define an isometric isomorphism 7_3 :
H_3 — "some weighted [? space”. By making use of 7_3, we then interpret the above general
theorems formulated on the abstract L?(S;u) space to the Euclidean @3 field, L*(H_3;u),
and for each 0 < a < 1 we show the existence of an H_z-valued Hunt process (Y;);>0 the
invariant measure of which is .

(Y;)¢>0 is understood as a stochastic quantization of Euclidean @3 field realized by a Hunt
process through the non-local Dirichlet form (&,,D(&,)) for 0 < a < 1.
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1) As far as we know, there has been no explicit proposal of general formulation of non-
local quasi-regular Dirichlet form on infinite dimensional topological vector spaces ( for the
local case, i.e., the case where the associated Markov processes are (continuous) diffusions,
much have been developed and known), which admits interpretations to Dirichlet forms on
several concrete random fields on several Fréchet spaces.

2)  Though there have been derived several results on the existence of (continuous) dif-
fusions (i.e., roughly speaking, which associated to quadratic forms and generators of local
type) corresponding with stochastic quantizations of ®3 or ®3 Euclidean fields (cf., the quota-
tion given below), as far as we know, there exists no explicit corresponding consideration for
non-local type Markov processes, which is performed through the Dirichlet form argument.

Hence, the present result is a first development that gives answers to the above mentioned
open problems 1) and 2).
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