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Excursion theory � Itô [16] �������������	�����������	 "!	#%$'&�(	)	*+��,�-	-����	./	0+1�2�3	1�4+5 �	6	7�8')��	�:9���;	.=<	> 1 !	# 1�?�@ ��AB*	)=C	DE8'F	*�,

1.1. G	H�I�J	K
LNMPORQTSVUXWZY\[N]N^R_a`

S $cbNd _e`gf 8c. {(Xt)t≥0, (Px)x∈S} $chNikjRl ( mNnpo Okq j
lB� càdlàg rsA:tNuBv ` �:�si:wkx:ya "zg$|{kA ; cf. [5])

f~} �s, (Xt)t≥0 �s�:hkj:l f 8|)�g� , S
1 9��T�e��$ 0

f���� .��e� fc�p� ,�- 1 fp� .����\�N� Z = {t : Xt = 0 or Xt− = 0}
�	�=�	���	9���.	� 1�� �	� Zc � disjoint  ��	� ` 1 ( �	� )

Y��	� ���	��� :

Zc = {t : Xt 6= 0 and Xt− 6= 0} =
⋃

l∈D

(g(l), d(l)). (1.1)

� � 1 (g(l), d(l)) $�G�H� �¡ (excursion interval)
f'��¢ . ζ(l) := d(l) − g(l) $¤£=¥+¦�¡

(lifetime)
f���� ,B-	-��	. ∆ $ cemetery point

f 8')

p(l)t =

{

Xt+g(l) for 0 ≤ t < ζ(l),

∆ for t ≥ ζ(l)
(1.2)

f 7�§g� f .��g�g$ ^�¨ )�*g� ` 1 nNo O�q j�l 1 z (Xt)t∈Zc � YN��© 1eªN«g1 �g�X�
(p(l))l∈D � [�¬®­T¨ �N,�- 1 ��Ag¯ f A 1 p(l) $\G�H (excursion)

fT° ± ,�G�HVINJ�K
(p(l))l∈D

1�²:³ ��´Eµ } �=, Itô [16]
1�¶	· �:¸+��¹�º 1�» ± �:9���,

�¼�=½	¾¼v�¿�$ T0 = inf{t > 0 : Xt = 0} fÀ� � ,¤����;	I¤Á	Â+Ã (point recurrent) �
9�� f �	.�Ä�Å 1 x ∈ S �"ÆÇ8 Px(T0 < ∞) = 1  B��- f $ °�± ,	��È+�	.=�����	��É�Ê+Ëf�Ì 7 } ��,��+�:;	Í�Î (regular for itself)

f �	. P0(T0 = 0) = 1  +�:- f $ °Ï± ,
(i) ���	;"Ð�Ñ��	 	* f=� , Blumenthal

1
0-1 law

» � P0(T0 > 0) = 1 ,ÓÒ�ÔN):.�Ð 1 �B�:�ÕBÖ � 1"× {tn} �:9Ø�Ù. ¶:· � ` (tn, tn+1) � �BÚ � ¶:· $ p(n)
f�� Ú"Û . {p(n)} � iid �:9

��, � p(n)
1=Ü ÑB������$�Ý=!E8��B��½	¾ f	f�Þ �"ß	à } �'j	l 1"Ü Ñ f �	á } �",

(ii) �B�	;�Ð�Ñ 1 f�� , (L(t))t≥0 $TâaIsãkäB¦k¡ ( ÐkåNxkykæ Ü Ësç�èséa�s�a�N� 1kêsë æ }
� Þ 1 ; cf. [5])

f 8ì.�� 1sí xkyRîkjklP$ (η(l))l≥0

f�� � f . ¶N·�1sïkðNñ Ú D = {l : η(l) >

η(l−)} ;¤òEó ¨ . ¶	· ��j	l (p(l))l∈D ��ô	õ _+` E ��å�$ f � Poisson I=J:K f  ���,

-�-��	.�ô	õ _�` E
f �	.�z e : [0,∞) → S ∪ {∆} �	9�Ô	) � $'ö+F }�Þ 1	1=÷	ø : 9+�

ζ(e) ∈ (0,∞] ;su:�ù8|):. ζ(e)
» �~úB�:��� S $ìû � càdlàg  szB�:9Ø�Ù. ζ(e) ¹aü:� ∆ �så

$ f ��,

î+�	. ¶	· �=j:l (p(l))l∈D r�ó��B�	Ý�! 1 h	ý	õØ$'É�þ	ÿ�� � �=,����	.

Xt =

{

p(l)t if η(l−) ≤ t < η(l) for some l ∈ D,

0 otherwise
(1.3)

∗web: http://www.math.kyoto-u.ac.jp/~kyano/



;�ÿÇ� Ö Ô	)	*+�",

�+�	;�É	Ê�Ë��: 	* f�� ���	ÐB;�������9���, Blumenthal [4] �����ùó ¨ )	*���,

1.2. G	H���	

����;�Ð	Ñ 1 f=� . ¶	·�1  } Poisson � j	l (p(l))l∈D

1�Ü Ñ���
 ²���� n � » Ô	)

�� ñÚ ó ¨ ��,�- 1 E � 1
��� n $�G	H���	 (excursion measure, - law)
f'�"� , n ��¹�º 1²	³ $'{	A :

(n1) n[ζ ∧ 1] < ∞ ,�
B��. t > 0
1 f"�

n(ζ > t) < ∞ ��9Ø�Ù. n �����"n���6�,
(n2) n[Ft(X)G(θtX)] = n

[

Ft(X)P 0
Xt

[G]
]

. -	-=�	. Ft(X) � σ(Xs : s ≤ t) ��è%8') Y �  ��� ç+è�é�. G(X) � Y �  �� � ç+è�é�, θt ��� qùW �	9���,
(n3) S \ {0} �:��7�� ­�¨ � ��� j(·) = n(X0 ∈ ·) $�������	 (jumping-in measure)

fÓ�
� , ?�� ��$�Ý=! } � ¶	·�1=Ü ÑB�

n(·; X0 ∈ B) =

∫

B

j(dx)P 0
x , B ∈ B(S \ {0}) (1.4)

�����+ó ¨ �=,� E8'. P 0
x � x $=Ý�!Ç8����	��ß�à } �'j�l 1 [�! ��9���,�- 1=²	³ � » �Ù.

n � � 1�» ± � [	¬E­�¨ � :

n = n0 +

∫

S\{0}

j(dx)P 0
x . (1.5)

-	-=�	. n0 = n|{X0=0} �=�B��$�Ý�! } �
¶:·�1�Ü Ñ%$'� } ,

¶:·"�"�
n
1 ºk� 1 Xt

1 ["! $ µt = n(Xt ∈ ·) f~�Ø� .$#"�&%:Î (entrance law)
f|�s� ,

�¼�=ß	à�j	l 1�'�(�)�* $ (P 0
t )t≥0

fÙ� Ú�Û . µtP
0
s = µt+s $�ö¼F�8')�*��=,B- 1 - f » �Ù.+�, Ü Ñ f ���=ß:à	j	l f � » Ô	) ¶	·���� ��-B���	- f ��´	Å } �=,

1.3. .�/�	
L	M v ` 1 î	j�l (η(l))l≥0 � ë æ	æ Ü j�l��	9��Ù. ζ(l) = ζ(p(l))

f 8|)

η(l) = rl +
∑

s≤l

ζ(s) (1.6)

1�0 � � Ú ��,�7"é r ≥ 0 $1.�/�	 (stagnancy rate)
f'��� ,�2�3 � �

∫ t

0

1{Xs=0}ds = rL(t) (1.7)

$|öBF } ," � . n(E) < ∞
1 fp� .|jklB�s�B�N�"Ð 1 .4/:¦k¡ (holding time) $ì{65s."�1 [�! ��7�8 r/n(E)

1�9 é ["! �=Ò ± ,



2. ������������� 	�
���
��������
càdlàg  ¤z�$|{	A	j	l X = (Xt)t≥0 ��ÆE8'."���=ß	à	j	l X0 = (X0

t )t≥0 $

X0
t =

{

Xt if t < T0,

∆ if t ≥ T0

(2.1)

�:7	§B�",\�B��ß:à:j:lB;:� ¨���� �:9�� » ±  Þ 1 $|<��:j	l f|�"� , � �Bó ¨ F=<��:j
l Y = (Yt)t≥0 ��ÆE8'. X0 = Y $'ö�F } » ±  �j	l X $ Y

1����
(extension)

f���� ,��
�Bó ¨ F"<��:j:l Y �"Æù8|. Y��  ���� 1"÷:ø ���BrB$� ±  "!B��#�$�%�& f|� Û ¨ �", ¶·���� r�ó�h�ý	õ�$'þ	ÿ+� � ��r�ó (Watanabe [52], [53]) .�')(� *!¼�	. ¶	·���� 9���*��+�, Ü Ñ�$������� *!��*+� %ó' :*	,
,�-�. Q0/ û 1�1 � (cf. Ikeda–Watanabe [15], Revuz–Yor [40], Knight [26], Yor [71]) ,324)56,�-). Q7/ û 1�¶	·���� nRBM ��¹�º 1�» ±  ��)8%$'{	A�,

(nRBM0) nRBM[Ft] = lim
x→0+

1

x
P 0

x [Ft].

- 1:9 �=�<;+��� ° �= �*	;�. nRBM[Ft ◦ θTx
] = nRBM

[

P 0
X(Tx)[Ft]; Tx < ∞

]

= 1
x
P 0

x [Ft] �» �ÀÐ�=*>�� � � 1 ��;	9��=,
(nRBM1) nRBM[Ft; t < ζ] = P 3B

0

[

Ft · 1
Xt

]

.

 E8'. {(Xt)t≥0, (P 3B
x )x≥0} �)? �)@)ACBED o�j	l��	9��=,

(nRBM2) nRBM[F ] =

∫ ∞

0

P 3B
0 [F | Xt = 0]p3B(t, 0, 0)dt ,

 E8'. P 3B
0 (Xt ∈ dy) = p3B(t, 0, y)y2dy.

(nRBM3) nRBM[F ] =

∫ ∞

0

(

P 3B
0;Tx

• P̌ 3B
0;Tx

)

[F ]
dx

x2
.

 Ç8 P 3B
0;Tx

• P̌ 3B
0;Tx
��.�F Ö �<G�A 1 ? �H@)A�BID o	j�l%$=� x ��½�¾ } ���	�<J�óÀ�+. «K $02)L ­ ��)�MB(	)	� � ��j	l 1 [�! ��9���,

ÐHN�� ��Ú ���B�)O*P 5�,6-). Q7/ û 1 ���	�:. Feller Q:#)$)R)S ([8])

p1f(0) − p2f
′(0) +

1

2
p3f

′′(0) −
∫ ∞

0

{f(0) − f(x)}p4(dx) = 0 (2.2)

TVUHW6X�Y[Z)\V]H^�_<`�a�b*ced7f
p1, p2, p3 g:h)i6j:k f p4 g (0,∞) lHm hHiHnHo _)`qpIf

∫ ∞

0
(x ∧ 1)p4(dx) < ∞ r�s*t

p2 > 0 or p3 > 0 or p4(0, 1) = ∞ (2.3)

T7u6v�wyx m _)`�a*b Itô–McKean [18] g f*z){H|�}�~)�)�V�)� m*�H�)� T7���<�)�)���H�]�^�_����Hw�a����7_�f�� m��H��� T7����d�v)b"����f3�����)��� s a���f ���)� g��6� msy� �*�)�C�E [a :

n0 = p2n
RBM, r = p3, j = p4 (2.4)

�)d0¡
(p(l))l≥0

f
(η(l))l≥0

f
(Yt)t≥0

T7�)�Cd0f�¢*£
1/p1 m ���)��¤ k�¥*¦ σ

T7§�¨*©)ª ¥�«¬ l)­ a�����®�_�¯�°���±�a)����_�²�³E �a�b"�´�H����� s a7����µ g f3��¶�·�¸�¹H]�^�T



��� �����)���	��
)_
Itô [17]

� s�� ¡���
6³E �v�b)����_ g p2 = 0
w���������� m 
 m��� ���y³� �¡���v�¬�f

Rogers [42] g �� �T7��� m�� � ��¸���d�v�b���� g��� f"!�#�$ « �r �<¡�%�&�� Feller m�' #	(	)yT+*Hw � � m��H�)��m �H�)µyT��,
*v [63]
b � lHm �)�H�H�� s a0�)�)µ g f Itô–McKean [18] m �)µC�.- � ¡�f*z){)|H])^6¬�/	0Cd7��� � � ��x+!	1_)`6a*b

R
n m3254 « {(xi)n

i=1 | xn ≥ 0}
� r76 a ¸�¹´]´^ �58 d f ' #:9 {xn = 0}

� r:6 a �3� m5'#�(�) g Wentzell ;�<�=�>@? ([57])
�BA�C� �a�b0������� � s a ������m � � g Watanabe

[50], [51], Takanobu–Watanabe [48]
� s p ² ³   v (cf. Ikeda–Watanabe [15], Watanabe

[55])
b

8ED ¸<¹ ]<^ ��8 w a
Fukushima–Tanaka [13] mGFEH T�IKJ � ±6¡ f Chen–Fukushima–

Ying [7] g�L�M�N T�x7WC�+� �PO�Q ¡*������RH])^���8�d7f�§�¨�S�T��yd m ¸���T7��U,���V j d7v)b	W�W m R<])^6¬ L�M	N � g f�8	XHw[a�Y[Z7Y�\[�^]`_�a�b (Gα)α>0, (Ĝα)α>0

¬)f
`�a n)o m

��8Cd7¡
∫

S

Ĝαf(x)g(x)m(dx) =

∫

S

f(x)Gαg(x)m(dx) (2.5)

TVu6v�wq�6�:T�c � b Chen–Fukushima–Ying [7]
�

Fitzsimmons–Getoor [10] g � �H�)f�d�)µ	e m�f�g�hi6Bj�k
∫ ∞

0

e−αtn[f(Xt)]dt =

∫

S

f(x)P̂x[e−αT0 ]m(dx) (2.6)

T7²6¡���a*b ' #�l�m m �)³0��aBI�J��*W,�)¡)f �� Chen–Fukushima [6]
¬Kn�oC�E �vHb

zH{)|�}�~)���7��� m ��� n�o�g�p ¶�·�\rqts�Y)]�^�� su� ¡�v�w �� �v�b"�	� g [62]
�

r �H¡)f�x�¨)¬�y�e���z�{}|�~��+������8Hwya7��� n)o T+����f ��� m�j�k T7²6v�b
(nsL0) n[Ft] = lim

x→0+

1

h(x)
P 0

x [Ft].c d7f
h g §6¨*¯<°H])^ ��8Hwya����,���6b�� m[k g �K��� g ci
*�K�)¬Hf n[Ft ◦ θTx

] =

n
[

P 0
X(Tx)[Ft]; Tx < ∞

]

= 1
h(x)

P 0
x [Ft] s p.y,����_��)a � � ¬)`�a (cf. [65])

b
(nsL1) n[Ft; t < ζ] = P h

0

[

Ft · 1
h(Xt)

]

.cCd7f
{(Xt)t≥0, (P h

x )x≥0} g h
�	�*wya

{(Xt)t≥0, (P 0
x )x>0} m Doob

�K������b
(nsL2) n[F ] =

∫ ∞

0

P h
0 [F | Xt = 0]ρ(t)dt + κP h

0 [F ]
b

c�d�f
ρ(t) g ` aB�����u��� k f κ g ]������ � � ���3��a j�k _ Px(T0 = ∞) = κh(x) �u�v�w

.

3. ���r�r���r�
}�~H�)���)� m y����	0 ¥)« m� �¡ � k6g�¢ y�£�� k � su� ¡�v��E ya����7¬ Lévy ;[¤�¥¦K§K¨

(Lévy’s arc-sine law)
�Hd0¡ sª©¬« ³  6¡K� a:b�� m[FKH g Barlow–Pitman–Yor

[2]
� s�� ¡�­,®�¯�°�±���� (skew Bessel process)

�:¸����E �f�� m� �¡ g Lamperti [29]

m[ 	¡ _<`�aH���V¬�² �  6v)b Watanabe [54] g f��H�<�)�6��³ h}© Williams ;[´,µ���¶



� d7f3§�¨�S�T m ������¶�·)¸�¹�]�^ m y�����0 ¥H« ��8�w�a O � j � � ²�v�b���� g�M�����
Watanabe–Yano–Yano [56]

_)f�� o � k m�O � j � � ²�v)b Kasahara–Watanabe [21],

[22], [23] g O �)¬	�	��`�a�� g�

� � � � m�� p���
 O � j � � ²�¡��6a*b
� � _�f

Williams m�j@k � g ¶ m x m _ `�a b (X(t))t≥0 � §�¨uS@T m �@�"��¶ · ¸ ¹�] ^�<d0f�y	�	�	0 ¥<« � A+(t) =
∫ t

0
1{X(s)>0}ds

f i ���K0 ¥H« � A−(t) =
∫ t

0
1{X(s)<0}ds

_[v
w<b

X+(t) = X(A−1
+ (t)), X−(t) = X(A−1

− (t))
� j Q a � f (X+(t))t≥0

�
(X−(t))t≥0 g ��� _ f�" ��" 3y � r s3t i � m z´{�|�]�^ � � a"b (X+(t))t≥0 m © ª ¥�« � (L+(t))t≥0, (X−(t))t≥0m ©Hª ¥)« m ¢ ]�^ � (η−(l))l≥0

��� © �7f Williams m�j	k
A−1

+ (t) = t + η−(L+(t)) (3.1)

¬*�6�*wya*b

Fujihara–Kawamura–Y. Yano [12] g�� ¹ ¥:¦ ])^ ��8)w[a Williams mGj�ki��¶ � d7f�y�@�@0 ¥´« muO � j � � ² v b �@ _ g f Kajino–Kumagai–Kwaśnicki–Watanabe–Yano [19]¬
(
%������

)Sierpiński gasket l<m }�~)���0�)����8�wya�������0 ¥)«  �¡�m�O � j � �²�¡���a�b���v�f
Y. Yano [70] g�� ±���|
� l�m ¸�¹)]�^���8Cd�¡�x Williams m�j�k ¬����wyaH��� � ²Cd0f Barlow–Pitman–Yor [2] m�F�H�m ���	� � ²�¡���a�b

� �@
 � f"} ~��´� � m y@�3�@0 ¥ « g �"!  @¡ _�` a � � x Lévy m�F@H � d ¡ s © « ³  ¡�� a b"� m�F3H m ¸ � ��d ¡ ¸ ¹ ] ^ m bridge process
��8´w aBy@�@�@0 ¥ « � Y. Yano

[69] r6s*t Yano–Yano [64]
_����6¡���a*¬)f	# �)g �)�)�H��_ g � © f Kac ´�µ ��³ h}© b

Getoor–Sharpe [14] g Y�$&%7])^ m yK����0 ¥<« m�O � j � � �K��f Spitzer >�?�m � _
O �<¬[\('*)  E¡ _H` aH� � � ² d v ( ¢ �<f�+�,*-[³ Spitzer

(K) ¬/. � �6�:x�²ed0¡E�a
)
b�# � m �10 g/213 �G8Hw a Sparre–Andersen ´ µ _<` a:b Fitzsimmons–Getoor [9]

g Fluctuation theory � a��H¡ Y�$�%5416 m yK�	�	0 ¥H« m ~�76~/8*�H� j�ki�:9 nydVf
bridge process m y��@��0 ¥´« ¬ �;!  @¡ �<. � � � � ² d�¡@� a�b � r f Getoor–Sharpe m
j �6��=��)¡ g Bertoin [3]

x5>@?[�E �v��)b

4. ACBEDCF
�<¶H·)¸<¹�4&6 g f�G�H�I1J (natural scale)

�:w[a��7f�K&L�M1J
(speed measure)

��A
C: [a n<o m m 
)� s�� ¡ V � a�b�yKe�� � � g f Krein ;&N1O�PRQ ±&S1T � aª�6aH�6�_)f��)¶)·H¸H¹�4�6 m�U d+��V&W6¬�X�YC�7�6a (cf. Kotani–Watanabe [28], Kasahara [20])

b
Z � m v Q f*§�¨:zH{)|14&6 m 
�[ 
<aH���V��wya:b�zH{<|6}�~<�H�7�<� (B(t))t≥0

�0� m©)ª ¥)« (`(t, x))t≥0,x≥0 � [ 
*f�\  
Am(t) =

∫ ∞

0−

`(t, x)dm(x) (4.1)

� s�� ¡;]�^���_ (time-change) �:` d7¡*²C³  [a54�6 Y (t) = B(A−1
m (t))

¬/a Q a7�)¶H·¸)¹&4�6C�7��a�b
m
¬/����b@c�y	e)�)��f*w6�����*f

0 < α < 1
��d7¡

m(x) ∼ x
1
α
−1K(x) as x → ∞ (4.2)



c��������
(K(x) ���
	�� ) � 4�6 ��

����� (null recurrent)

c���� � mλ(x) = m(λx)

λ
1
α

−1K(λ)

�
����� �������
� (invariance principle)

1

λ
Y

(

λ
1
α K(λ)t

)

d
= B

(

A−1
mλ

(t)
)

−→
λ→∞

B
(

A−1
m(α)(t)

)

(4.3)

��� �"!#�%$'&(&%) � m(α)(x) = x
1
α
−1
)(�*� �,+.-'��/'0 d = 2− 2α 1�24365(798(: )'�.�%$

;'< ��=?>'@BA (positive recurrent) C ; /90'D'E(8':B�9F(1'G'G ) �%H9	(I'J �%K.LNM
C'O $PM,Q#M �SRUT.1 Kasahara–Watanabe [22] �U�SV'W'X �ZY'[(\']B^'_ 19`'a(b%7'+.-'cd O'eU�fF'1'g �%h 1?+P-'ijJNk �BlU$fm'^?n c'� Kotani [27] � Krein 19`%oqpsrt7'u*kZDBvM � Krein 19`%oNpwrt79J'uNkx+B-PyZz string c?{ M e%DBv M,l9$}|'~ � Kasahara–Watanabe

[24], [25]
�j��~ JUuqk�� LqMxlU$���� ��� ;U� 1?��� Yano [59], Fitzsimmons–Yano [11], Yano

[60] c � O(e'�����(�'�(�(�(�NkS�(�9X#� &.�,) � Y �'�.��D(E'8(:.1%�(�(�(� (meander)

1�H
	�I�J���� Feller 1��
������kS� d D�E�8�:�1�H
	�I�J�k ��l�$
;�� W� 
¡
¢�£��¤/�1�¥4¦§c
i¤¨ )ª© � (Fitzsimmons–Yano [11])

$�«
¬
­ª®�¯�°�±f² �
1� (¡(¢'£ nRBM 1(³ ) 1�´(µ'8(: (Xt)t≥0 c�{ M �·¶(¸ ^'_ (`(t, x))t≥0,x≥0

� {(¹(XN� ([4])
$

µ(º�¢(£ m c�{ M e�»(¼ (4.1) c.¥%½(e ^(_ 	.¾�kS¿ M e � �}! �S8�: Y (t) = X(A−1
m (t)) kÀ�Á � � ��F�1�Â(Ã nm

��Ä�Å ��Æ�1 )�Ç � $ nm È�É ³
1�¥�¦}C�Ê
Ë#k·� d $
(nGE0) nm[F ] = lim

x→0+

1

x
P 0

x [F ].

& 1�Ì È ;�� c È�Í Á C�O � � nm[F ◦ θTx
] = nm

[

P 0
X(Tx)[F ]; Tx < ∞

]

= 1
x
P 0

x [F ] ¥ �§Y�Î
W )�© �·Ï�Ð �
Ç � $
(nGE1) nm[Ft; t < ζ] = P h

0

[

Ft · 1
Xt

]

.ÑÒM � {(Xt)t≥0, (P h
x )x≥0} ÈÔÓÖÕ�× £ x c
Ø�XÔ� {(Xt)t≥0, (P 0

x )x>0} 1 Doob Ù
Ú���Û $
(nGE2) nm[F ] =

∫ ∞

0

P h
0 [F | Xt = 0]ph(t, 0, 0)dt

$
ÑÒM � P h

0 (Xt ∈ dy) = ph(t, 0, y)y2dy
)�Ç�� � &·!���Ü�] X�� ��© c(-�� (cf. [59])

$
(nGE3) nm[F ] =

∫ ∞

0

(

P h
0;Tx

• P̌ h
0;Tx

)

[F ]
dx

x2
.

;'� W' '¡U¢'£ È �fF ! kZÝ9Þ'¢'£ � XN� Poisson ß�8':*kZàN� &P� È )B© � � ���'� (n1)

kâá l�ã C�O (nm[ζ ∧ 1] = ∞)
l�Å � (η(l))l≥0

��ä E M e M GÒ¦ $�å ½�e��� �¡�¢�£ ��M e
1�æ�ç È �.½'e�O(C(O $qMSQ#M C �#� �jè(é(8(:��?X.C(ê�ëS�(ì�¢(£ nm(· | ζ > 1) kZ¼(í �
X��f8�: È æ�ç�kS� d (Fitzsimmons–Yano [11])

$ G l ��î�� QÔ� C��S �¡�¢
£�k
∫ ∞

0

j(dx)P 0
x [F ] =

∫ ∞

0

j(dx)x · 1

x
P 0

x [F ] =

∫ ∞

0

j(dx)x · nm[F ◦ θTx
] (4.4)

1�ï�c�ð ©�ñ X &.�S) �j+B-�i�J#kSò(ó�ô.i�J.c��
õ ãÖö e(÷�ø M ¥.ùÖú�u ).© ��� � O ¦û�ü ��C�ý�þ�ÿ �(Ç � (Yano [60])
$



5. �������

Roynette–Vallois–Yor(cf. [45],[46]) cª¥ ���
	 c���� ã§!ªl���
���� (penalisation prob-

lem)
� È�� ��ì(8�: {(Xt)t≥0, (Px)x∈ � } c���ÿ (Γt)t≥0 k�� � e Y�� W M·l Æ�1
1�+�-

Γt

Px[Γt]
· Px −→

t→∞
Qx (5.1)

��Ü�] X#� Q�� ¦ Q � Æ MÖÜ(] X ! � +�-�8(: {(Xt)t≥0, (Qx)x∈ � È � 1.¥#¦ÖC.Æ�1 Q � k��
¦���� )�Ç � $�&�&�) È�� Px[Γt] → 0 C��·Ï�Ð�c���ç ��Ç � $� Á � Γt = 1{St<0}

� X�� �! ^
_�)#"�[ c \�] X��â����$ � k·Ê�X $�Ç �¤O È�� Kac %'& Γt = exp
(

−
∫ t

0
V (Xs)ds

) �
X�� � ! ^�_�) %(& ��)�&�� C�O�����$ � k·Ê�X $

Roynette–Vallois–Yor(cf. [45],[46]) È ®B¯U°'±,²+* c d O9e � �Bÿ �?|-,-. 8':B1UØ0/ � ¶
¸ ^(_ 1'Ø�/ � Kac %1&.1'F !32%! 1�Ï'ÐBc d O'e�4-5Bc�u76 � +B-'i�J*k �.l'$ Najnudel–

Roynette–Yor [32] È'�(8
9�: ý�-�¢�£
W =

∫ ∞

0

du√
2πu

(

Π(u) • P s3B
0

)

(5.2)

kS���(X#� &.�S) �<;(= ����1�+.-�¢(£.c�> ; ��C(÷ < k�? Á l($ &(&�) � Π(u) È I.ß QÔ�
I�ß�@�1�A ã u 1 ®�¯(°�±�B � P s3B

0 È(C /�0
2Ò3}5(7�8�:�1�{�D�W )�ÇÔ� � • È�E d 1�F L
C�8�:#kHG3I
e ).© �S8(:.1�Â(Ã#k·Ê(X $P& 1�J(u�13J�K � C.��1 È(�  (¡(J(u Q#�Ö� �Ö!
�·/�1�L�M�¼�N�O(Ì )�Ç � :

P [Ft] =

∫ t

0

du

π
√

u(t − u)

(

Π(u) • M (t−u)
)

[Ft]. (5.3)

&�&�) � M (s) = n(·|ζ > s) È è(é�8�:�1�Â�Ã )�Ç � $
�
� 1�P m �
� Yano–Yano–Yor [66], [67]

� ¥�Q Y. Yano [68] È�R iTS�U�V·8
:�c�{
XÔ�W(X 1����#kHN(Y MSl
$ R iZS�U-V,8(: ) È(� �.ÿ � ¶�¸ ^(_ 1(Ø�/.G l È Kac %-&.1�Ï(Ð
(YYY [66])

� � |�,(. 8�:.1
Ø�/�1�Ï�Ð (YYY [67],Y. Y [68])
�·)�[�\.��Q C�]_^.C�� $ R� È W 1�Ê�Ë (5.2) 1 ;�� W )�Ç ��1�c�{ M ��` � È W 1 "(a ¼

W− =

∫ ∞

0

du√
2πu

(

Π(u) • P̌ 3B
0

)

(5.4)

c�{
X���5�1�Ê
Ë
W− =

∫ ∞

0

dx
(

PBM
0↗x • PBM

x↓

)

(5.5)

1 ;
� W )�Ç � $�&�&�) � PBM
0↗x È I�ß�k�b äÒM e x c�c(d�X���G ) 1 ®�¯�°
±·²�* 1�Â
Ã �

PBM
x↓ È “x :�e
f ` C /(0�2s3Ö5(7�8(: ” 1�Â(Ã )(Ç � $ O
Ì (5.4)

�
(5.5)

�·� ;(g X#� &��
È�� ;�� 1 ; /�0(D�E(8�:�c�{�X#� Pitman–Yor [38] 1 agreement formula

Q4�}� �}! � :

∫ ∞

0

dtp(t, 0, 0)P0(·|Xt = 0) =

∫ ∞

0

dx

x2

(

P0,Tx
• P̌0,Tx

)

. (5.6)



Ñ M � P0(Xt ∈ dy) = p(t, 0, y)dm(y)
��M·l�$�& 1�O
Ì È�� «
¬
­�®�¯�°�±·²�* 1� 
¡�¢�£

c�{
X�� E d 1�Ê(Ë (nRBM2)
�

(nRBM3)
�f� ;(g X�� � O ¦ [�� 1�D�v )�Ç � $

G l � ����� [61] c��
O�e�Ë Mâl�&������ � ° V�b f b�¢�£�c�{ M e K ] L d Cameron–

Martin 1�O
Ì�1 W�X � W c���O�e�Æ K�L X#� &�� c���æ M e���ù $

6. �
	��
 (¡(J(u.c d O(e ��
 ^(_ : 7���� ��� Q#�����#MSl Æ�1(c � Rogers–Williams [44], Rogers

[43]
��Ç � $ G l ��É ³
1#N � Æ�� À c�C�� : Salminen–Vallois–Yor [47], Pitman–Yor [39],

Yor [72].

É ³ È�� ������� ³����
J�1�Æ�1�1���ð ©�)�Ç � $

(1) Virág [49] È��� �!�" H = {(x, y) | y ≥ 0} 1�#�$�%�&·�
� (Brownian excursion) c
{ M e� �¡�ß¤8�:�1 W'X k À(' M � F ! k Brownian beads

�*)�	�) O�� $�®�¯�°�±  
¡� È x + <�, c ®.¯(°(±S²(* y + <�, c�F L C C /(0(2w3"5(7(8(: )�* ù E /(0(8(: (Xt)t≥0

k.-(X $0/�1�2 (cut point)
) 1(ÿ43�5'X#�S¶(¸ ^(_ kS�(� M �*6�7�849�: H \ {Xs : s ≤ t};

H < 84=�>�?.:(� Brownian beads @ Poisson ACB�D�E4F
G�H�I ?�J�K�L.M�N I4OQP4R�< 6
7�S�T�U E�V ?�W I�X�@ ?�L�M�Y SLE (Schramm Löwner evolution) Z[G]\�^�A�B�D ;
F[I�_�`[X�a�b :�c I : cf. Lawler–Werner [31], Lawler [30], Werner [58].

(2) Picard [36] d Y�e�f�g�h�i�j @�\�^�k�l ;�m N�M�Y�n�o�p�q�r�s�o�t�u�v�w�x ; F M
N I4Ozy�{�|
G�H M�N I Clark–Ocone t�w�x d Malliavin }�~ ;.m N I4���4�����4� U @��� ;�� {�E Y Picard @�����d�������� :�c I������ N ��� :����[?�J�K�L�M�N I�O

(3) ����G�H��Q�(���z�(���(��<C� L�Y�e�f�g�h0i�j ; c I*�z �¡£¢ :  ��z��X£@z@C�
��E(¤£H ?�W I(y¦¥ W �� §¡C¢§@£¨�© ;£ª ¥ ª�« d Skorokhod ¬§­£®�¯�°�± ?�²�³ H´ICO
Azema–Yor [1] d ezfµgµh¶i·j¸?º¹µ»Q¼ BµD ;¾½�¿ M �µ z¡À¢ ;¾ÁµÂ L � (cf. [40]) E Y Rogers

[41] d�\�^�Ã�Ä ;�m N�M ¤�@4Å�Æ W�Ç�È ; ������O�É�Ê�ËÍÌÏÎ�Ð�ÑÍÒ�ÓµÔ�B�D W[Õ�Ö @�× K
E Ob lój [33], [34], Pistorius [37], Ob lój–Pistorius [35] <§y�ØÙFÍGÙH M�N I�O
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31(1):76–89, 1994.

[15] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes, volume 24
of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second
edition, 1989.
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[19] N. Kajino, T. Kumagai, M. Kwaśnicki, S. Watanabe, and Y. Yano. Asymptotic behavior of the
law of the occupation time for Brownian motion and random walk on fractals. in preparation.

[20] Y. Kasahara. Spectral theory of generalized second order differential operators and its appli-
cations to Markov processes. Japan. J. Math. (N.S.), 1(1):67–84, 1975/76.

[21] Y. Kasahara and S. Watanabe. Occupation time theorems for a class of one-dimensional
diffusion processes. Period. Math. Hungar., 50(1-2):175–188, 2005.

[22] Y. Kasahara and S. Watanabe. Brownian representation of a class of Lévy processes and
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