Excursion theory & % ® )i H
REFFER  (ARHE)

Excursion theory (% 1t6 [16] IZ38F D BIEICE D F THA BB ZZT TW\WD. T2 Tid,
%%@@%@%@Kmibfﬁmbéﬁ,%ﬁ@%@@ﬁ@KOmf%ﬁbtw.

1.1. B85

ST Ky NS EEBEZER S A RREZER & Ly {(X))in0, (Po)ocs} 2 TEHERTER (S L2 73
F2C cadlag AR TP E THEAS B B H0; of. [5]) & 5. (Xo)o I HEEMGBRE L LT
B SObD—EROLEX, FEREIER “OLE, BEEAZ = {t: X, —=0or X,_ = 0}
EEEATH Y, ZOMES 701X disjoint 2K O (754 ) TERICEES:

Z¢={t: X, #0and X,_ # 0} = J(g(1),d(1)). (1.1)
leD
&% D (g(1),d(1)) % 88X (excursion interval) &FEY, ((1) := d(l) — g(l) % EFFHFHE
(lifetime) & FES. 22T, A% cemetery point & LT

X for 0 <t < ((1),
p(l) :{ t+g(1) 10T U > C()

A for t > ¢(1) (12)

LEDD L, RAEMNLTWAMO~La 7BEOE (X,)ez EAEFEOKFDEEY
(P(D)iep CAREND . Z D=2V L0 p(l) & Bl (excursion) & & 5. il AiliE
(p())icp PHEEICERT 5. 1to [16] OJEEERIIUTO L 5 TH 5.

JRREIERZZ Ty = inf{t > 0: X, =0} L EL. KAPREIFH (point recurrent) T
HoHEX, EEDre SITKRLP(Ty <o) =1225Z %59, T, FAITRFRY
ERET D, FUEHMER] (regular for itself) L1, Py(Tp=0)=125Z¢%5 5.

(i) JRADIERI T2\ E . Blumenthal ® 0-1 law £ ¥ Py(Ty > 0) = 1. > T, IEOFERIT
ISLRDF{t,} THY, JAEXME (¢, th) (BT DEEE p(n) EFEFIE, {p(n)}iLid TH
5. % pn) OEANIFEAZHETE URAZES & HISHET 2@BROEA L —BT 5.

(ii) RS ERO L X, (L(1))iz0 % R A BETFR (EfEEHINEATLBIE CRUAR COZHIINS
56 D;cf. [5]) &L, ZOAEEREL (n(])>0 L EL &, BEORFST D ={l:n() >
n(l—)} 864, JEERERE (p(l))ep 1FREH2EH E 2B % & 2 Poisson RiBRE L 72 5.

T, REEME £1X, BEe:[0,00) = SU{A} ThHoTREZRIZTHLOOEK: 5D
C(e) € (0,00 BFFEL T, ((e) LVATETIES ZE< cadlag 2B TH Y, ((e) ABRIZ AITME
LD

WZ, JEEERTR (p(1))iep D OJRAHFEOEARK 2 FHER TE 5. EE,

X, — {p(l)t if n(l—) <t <n(l) for some [ € D, (1.3)

0 otherwise

*web: http://www.math.kyoto-u.ac.jp/ kyano/



DI D SL> TV D,

FRPEIFBP TRV E ZIHMEERLETH 5. Blumenthal [4] IZBEXHTWS.

1.2, B8R E

JFRREBIER|D & &, EiED 729 Poisson maBHE (p(1))iep PIERNIRFERIE n 12 X > THHRS
Fond. ZOFE EORIER % EEAE (excursion measure, - law) & FES. nlILL T O
MHE Z R0

(1) n[¢ Al <oo. HRIZ, t>0DEL&En(( >t) <ocoTHY, niv 7 ~HR.

(n2) n[F(X)G(0,X)] = n[F(X)PY[G]]. 22T, F(X)iZo(X,:s<t)IZBL TAflZedE
APLBIEL, G(X) IXTRIZRERILBEE. 0,137 FTH 5.

(n3) S\ {0} ECERINDHUE j(-) = n(X, € -) ZBEABE (jumping-in measure) &
L. RER & HFET 5 JREDIERNE

n(iXoe B) = [ jldn)Pl, B eB(S\{o}) (1.4)

TEHE2bNS. HL, PHiTz ZHBELERTHE T 2BROSMTHDS. ZOMHEICLY,
nFRD X DTS 5:

n:%+/“ i(da) PO, (1.5)
S\{o}

22T no = ey B R 156 B SR ORI & R

JEEERIEn O FTO X, DRAi % = n( X, € -) £ EZX, RAZER (entrance law) & FES.

BRI DR IR (PO) o & BT, 1P = s ZWIZ LTS, ZOZL LD,
FEATRE & B MIRRIR & 12 & o CRBREIL IR E B & & IR B,

1.3. (ZEE
JRETIRE R D AEFE (n(1)) 10 ITEMIMERETH Y, (1) =((p(l)) & LT
n(l) =rl+ Zé(s) (1.6)

s<l

DRICET B, Er > 0% FFE (stagnancy rate) & M5, (ERFEIX

t
/ lix,—0yds = rL(t) (1.7)
0

W79, 2B, n(E) <oco®& &, WEIIFEA TEDCEERME (holding time) ZFH, £
DoANE L) r /n(E) DFBEGIARITHES .



2. AR EDRTR ER/BEDILER
cadlag 721 ZFFOWFE X = (X))o (TR L, FARTHEREERE X0 = (X))o &

X, ift < Ty,
XtO: t 1 0
A ift> Ty

(2.1)

TEDD. FAHBRENENEE THDLLIRbDERE/NMNER LS. 52 bivici/MNE
BY = (Y)o L, X0=Y &%/ d L5l X Y DLk (extension) & FES. 5
RO HR/MBRRY (TR L, FIRERILROBRIIM %R O FBEIXIEREE L FFEh 5. 8
WERI BE s HIEARRE 2 AR C& 205 (Watanabe [52], [53]), BERREIL, BERED 500X
MAIERNZ 5 2 2 IR B 720,

75 7 BEEOSE (of. Tkeda-Watanabe [15], Revuz—Yor [40], Knight [26], Yor [71]). KX
WEET T U L EBOEERE n"PMIZLI T O X SRR .

(mman%Wﬂng&%ﬂwn
:@ﬁig%’iiiﬁwﬁ,ﬁm%ﬁﬁdzanP%mwﬁﬂ<aﬂ:iﬂwm:
KV IEXTE DGR D 5.

(ﬂman%Wﬂ¢<qu¥Vy%}

BL, {(X0)0, (PP E=ZK TNy BLVBRTHD.

(nRBM2) %Mw%:/wpwuwx;=m3auama.
HL, PB(X,edy) =p®B(t0,y)y*dy.

(m&mB)IBWFp:A uﬁ%.fﬁiﬂﬂgg

fBL P35 e P3B 43, MSTIC “o0 SRENy L BRE A BT 5 ETELE, K
% RGBS ETRFTTE 2 BRONTH .

ERNCB T 2 R RWRINEET Z v @B OYERIE, Feller DIEREH ([8])

Puf(0) = paf () + p (0 / {£(0) = £(@)}pa(dz) = 0 (2.2)

RO N ATWETHD. HL, p1,po,p3 1 $IHFATER, pild(0,00) LOFFARETH D,
I~ (@ A D)py(dz) < cod KT

pe>0 or p3>0 or p40,1) =00 (2.3)

AT O THD. Ito-McKean [18]1%, SHEET T & L BB O AR SRR T Vo
WRECTEHRTDHI LT, TOERKEME L. —F, FEERICELS &, EARKIILLTO
IR S5

no = pan™™M  r=ps, j=ps (2.4)

ELTOD))z0, n0)iz0, (YVi)imo ZHERR L, 181 /py DML/ FEEIEL o & [ RUR FTHREH]
BEFEDEZATHRSEDL Z L THOND. JAEHRIC X DMEEL, —RiiEuREZz



Ble AR PHHA T 1T ICL 2 TEX DILZ. £EZTiEp =0T RO LEADH DY
BIZR BTV, Rogers [42/ 1T E —KOHEICHLR Uiz, EF 35T, ARXKHEIC
BN THNEIZ Feller DEER RN 2R T 5 G DERROWBIEL 5 272 [63]. L L0 JEEERGR
I L AHERIEIE, Tto-McKean [18] D 1L L E - T, FBEERENFE LRWEAICH AR
Thb.

R™ D22/ { (o), | 2™ > 0} IZIBT DHLHuRRRICx L, fzﬁ@ {z" = 0} IR 5 - HRDE
REM1E Wentzell DIEFREH ([57]) & D? iﬁ’bé JE BRI & D AEAEE OHERKIE Watanabe
[50], [51], Takanobu-Watanabe [48] {2 & V& H 472 (cf. IkedafWatanabe [15], Watanabe
[55]).

KEFRILBORFRIZ% 9 % Fukushima-Tanaka [13] DR %2 %R ST, Chen-Fukushima—
Ying [7) 13553 2 b2 & W 5 R T—MRAARRICKH L, JRAUEE L LOYREZ —ErIZ
WE Lz, ZOoOAMBBENTHERE L IE, ST 5 LY ARy MEAZE (Go)aso, (Ga)aso 25,

& BB m Tk LT
/S Gaf (x)g(@)m(dz) = /S f(@)Gag(z)m(dz) (2.5)

il dZ & %5 9. ChenFukushima-Ying [7] & Fitzsimmons-Getoor [10] IZMIZIZ, it
NERIOFES 1T 2

/ ot [f(X,)]dt = / f(z)Pyle *™)m(dx) (2.6)
0
ZHTVD. BRMED X 5 53BICONT, &I Chen-Fukushima [6] 23 HAR S 47z,

PUREBET T 0 @B O FERIEIZI =Ry BVIBRIC K > TRIA SN2, FEHIT62]1C
BNWT, FRPERZRMIRL T 1 BRI 2 HENEZR~, SLTFOAXZGT.
(nsL0) n[F}] = hm+ %PO[E].

BL, RIZFRAERRREICKT 2RMEHR. ZoRT RITITE X RV, n[F o] =

n[PX(TI)[Ft],TJC < oo] = S POR) kW EN{ETE 2B H B (cf. [65)).
(nsL1) n[Fy;t < (] = PP [Ft : W] .

{EL’ {(Xt)tZ()a (th)120} IXh KF;QTE) {(Xt)tZ(b (Pg?)m>0} @ Doob aﬁ*ﬂ%m.
(nsL2) n[F] = / PUF | X, = 0)p(t)dt + P {F).

B, p(t) I3 B MRBENE, « I BIER A BT AT B BT P (Th = o0) = rh(z) %
.

3. IERIFH7E R

77 U @B O IERTRAER O3 BB IEIXBEBIC K> TR END Z L3 Lévy DFIE
3%ER| (Lévy’s arc-sine law) & LTI HHILTWA. Z OFERIT Barlow Pitman—Yor
[2]12 £ o> TEA v t)LiBFE (skew Bessel process) [ZHLIE S 4L, £ D441 Lamperti [29]
DRAATHDHZ BRI, Watanabe [54] 1%, JEEEGHICHE S < Williams D2 % B



fEL, JFRIEE DRV —RITTILBOB R O IEANEER NI T 2 BIREH 257, FEF TR
WF7E Watanabe-Yano—Yano [56] T, #EBEBOMIRERZ1G72. Kasahara-Watanabe [21],
[22], [23] 1TARFR2NIB(L & 2 WNIT B ARG E DRV AR EH 25T\ D,

ZZC, Williams DARE RO D TH S, (X(1))is0 ZFAEE D72\ —RITILHGEEE
LU, ERMERRZ AL () = [ Lixesads, BRIBERRZ A (1) = [ 1xe<onds TR
T.X ()= X(A), X () = X(AZH (1) LD D L, (X (1)im0 & (X (1)) ITMSLT,
ZFNENEMB ZOCARORFEERTRE 25, (X (1))mo PRFTIEEZ (Ly ()0, (X_(1))=0
DRPTREE OWEFEZE (n-(1))>0 £ EL &, Williams DA

AT () = t+ - (L4 (1)) (3.1)
PRILT .

Fujihara-Kawamura-Y. Yano [12] IZBE# LR (2% 5 Williams DARZBRE L, 1E
PNETERF R OB REFE 21572, HIE T, Kajino-Kumagai-Kwasnicki-Watanabe—Yano [19]
28 (M HERR) Sierpinski gasket LD 7 F 7 BB 5 F IR AERER 4347 O R E 2L %
BTWD. £z, Y. Yano [70[ 1R ILF LA EOILHGEFRICKT LT H Williams DARDS AL
352 L%/ L, Barlow Pitman-Yor [2] DFERO—{LEH TN S.

HLRHZ, 7TV AEOIEMARERMII RO TH L2 & b Lévy DFERE LTI HD
T3, ZOREROILEE L TIEHIAFED bridge process {2 x4 5 IEIER %2 Y. Yano
[69] 3 & O} Yano—Yano [64] THNTWH A, FEHITEERER TII2 <, KacaRizEkES<.

Getoor—Sharpe [14] 1% L 7 « 1@#2 O IERIAERE ] OFRIR E B 2 FH -, Spitzer FHD T T
RRIRNR—Z 3 ThH D Z & &R Uiz (W, IHD D Spitzer MBS Z & HRLTW
%). FERADFEHEELAR kT D Sparre—Andersen A TH 5. Fitzsimmons-Getoor [9]
IZ Fluctuation theory AW T LV 1 BREOIEMMERM O T 77 AEHBAXEZEHEH L,
bridge process D IEARIFERFI A — DI D T & ZRLTWA. 728, Getoor-Sharpe D
FEHIZ 2OV TIE Bertoin [3] &I L7200,

4. FERE

—WILirEaEfEX, BARRE (natural scale) (29 % &, 1#ZEZERIE (speed measure) &
ENDHEm DRI L > TRE S, EAIREAIX, Krein DANRY MLERZHWSZ &
T, —RITCILBORFRDFE LWFEIT A ATHE & 72 5 (cf. Kotani-Watanabe [28], Kasahara [20]).
DD, FURKHEERBROAEZEZ D Z LT 5. KT T 7 V&8 (B(t)se & D
JRETRER (0(t, @) )is0250 B X, FESD

Ap(t) = / " 0t 2)dm(x) (4.1)

(2 &> THRMEZE (time-change) Z i L TR LN 2BRR Y (1) = B(A,!(t)) 23K 25—t
PRHOERE L 72 % . m S ERRE CIERIZS), 372bb, 0<a<1l&LT

m(z) ~ xéflK(x) as r — 00 (4.2)



THD L E (K (o) THEEH), WRRITFFFR (null recurrent) TH Y, my(z) = 7>\£ri(l>\;)(>\)
BIFIX, FZRE (invariance principle)

ly(AéK(A)t) L B(A;L (1) — B(AZL,(®) (4.3)

A X A—00

BEBND. 22T, m@(z) =2 THY, HRITKTd =220 DRy EVBRTH 5.

—J7, IEBImE (positive recurrent) 72— RITILBORRILE O F F TIIAEFERD LI L
72vN. L L, fifko Kasahara-Watanabe [22] 1%, 1B{b9 2 IERIIFEREE O R 7 — ABRRIZ
DT, 20w b EOMREHE LG, FREHIZ, Kotani [27]) 1% Krein D A7 MLan& L7k
L, Krein A7 hVERG A MRIR 7 string 126F L CHEBE L7-. BT, Kasahara-Watanabe
[24], [25] AEMEERRZ ML L2, FEE1E, —HEOMZE Yano [59], Fitzsimmons—Yano [11], Yano
(60 IZBWT, —MRIERERAEZEAT S Z & T, ERRILEBuEEDTHEETE (meander)
DAEFER, Feller DEEFR G 2 R HLBOBR DO RN EFE 21572

—RACSEIFR EE IR D K 9 IZEFE T E % (Fitzsimmons—Yano [11]). KHEET T 7 L EEH)
O JE BRI EE nRBM DR T D FEEFEIRFE (X )10 (KT L, JRFTIRERH] (¢, 2)) 10,250 DSRIET 5 ([4]).
FEAERNEE m Tkt U CRESY (41) IS ko CIRIEE 20 L TR LN Y (1) = X (A4, (1) &
Ex5&, ZOEAIN, BRDODLEDTHD. ny, (FELTFD X 5 RFREF O,

(nGEO) n[F] = lim ~PO[F).

z—0+ T

ZORIT AITIEZRVD, nulF 0 07,] = 1y | Py [F: Ty < 00| = LPY[F] & 0 I
bTELHERHD.
(GE1) n[Fist < () = By [F- £]

L, {(X)is0,(PMaso} XERRE 2 1ZBIT 2 {(Xt)0, (P)2s0} @ Doob FAFNZEH#E.
(nGE2) n,,[F] = / PIMF | X, = 0]p"(t,0,0)dt.

0
L, PMX,edy)=p"(t0,y)y’dy THY, ZNHBFETDEXITRD (cf. [59)]).
>0 . d

(0GES) o (F) = [ (Rl Pl 1155

— AR R X, A RIS & 3% Poisson OB ZED Z LT TEX 528, &4 (nl)
BTSN (¢ A1) = 00) 728D, (n(1))mo DR LTLES. #oT, MilEHEL LT
DEWRITFF - TRV, L LR G, iR, TR0 EE, (| (>1)2h7me
T A BERRITER Z £ (Fitzsimmons—Yano [11]). F£72, BKAN D722 2 EFERIE %

| anpeir) = [ jana P = [ idna P o] @)

DRIZEEET Z LT, MREHELENRERIIFESETRABLEISERTED, LD
Bifiny 72 B #EAH DB 5 (Yano [60]).



5. ARSI

Roynette—Vallois—Yor(cf. [45],[46]) \Z & 0 BEAIZHIFE S 72 AL EifERE (penalisation prob-
lem) (‘: &i, %%]‘@*ﬁjﬁ {(Xt)tzo, (Pz):vER} LC@%‘ (Ft)tz() %%H‘f'fﬂffﬁﬂj Lf: ?E) @@*ﬁﬁﬁ

L op
Px [Pt] t—o0

DFETH0E DD, b LIFETIUIRRIBRE {(X)) 0, (Qu)zer (T ED L I 72 b DD, %/
SMETHD. TITTiE, Py — 0R225BEICHKLEH L. BIZIET, = 1gx & TDE
éﬁﬁ?ﬁwuﬁﬁﬁé%ﬁﬁﬁ%%f.%5mm,K%%ﬁrpqm(—ﬁvgym)&
5% & R TTHBSE Z DA WRIETHT 2R T

Qs (5.1)

Roynette-Vallois—Yor(cf. [45],[46]) 17 7 7 @B OWT, BEAVNRKNEBREOREE, /K
AT DBAEL, KacBIEDENENDH A OV TERIC R T, MREHE 272, Najnudel-
Roynette-Yor [32] 1%, ¥ 7~ RHIE

= T
BEAT DI LT, LFIREORRREICHK R R 2527, 22T, HWIERAND
FRADRESuDT I UG, PPPIE=Ray B/VBROMIETH Y, oid = >DHsL

IBREAPERITCTXABREOEAEET. ZoEBZOFLLERADIE, BEERZNILEON
BIR DB RN TH D!

o 5 (5.2)

) o M=) [F]. (5.3)

PIR = /Mm(

ZIZT, MO =n(|¢ > s) IIEBEBEOEINTHS.

%3 O HL[FHFFE YanoYano-Yor [66], [67] 38 L TVY. Yano [68] ITRE LV UV 4 @BRIZKT 5
BRI OMBEMRI Lz, ZEVY BRTIE, EANRATRERE OB E 7213 Kac HIROHE
(YYY [66]) &, EAMEBEOBEEOEHE (YYY [67,Y. Y [68]) & THEIEFENNRY Bid. A
FHIIWDER(52) D—ILTHHDIZx L, %7RE\EITW OAE S

W~ / du (T1) o P3B) (5.4)
27Tu
(23 DRI DORR
W~ / dz (b, e PEY) (5.5)

DAL THS. 22T, PP IRREZHEL CoIlBES D2 ETOT T v BB OIEA,
PIMIZ oA T AZRTENy BB OEAITHD. A (54) & (5.5) EB8—KTD &
— X D—IRICILBOEFR X5 Pitman—Yor [38] D agreement formula 2> 5556415

| a0 rex =0y = [7 5 (B, 0 Pun). (5.6)



BL, Py(X; edy) =p(t,0,y)dm(y) & L. ZOARIE, KHEET T v L EB) 0 B E
IZX4 5 Z2>DFKR (nRBM2) & (nRBM3) &3 —F$ 5 LW FEDIHETHD.

Fro, EEPOLICRBWWORLEZ LR, U —F—RIEIZx LT Y 32> Cameron—
Martin DARDOEFELB WIZEB W THENTH Z L IcER L TEL.

6. TDth

JEFER R I DV CEfe e~ L o 7S DA L 72 b DIZ, Rogers—Williams [44], Rogers
43| 3 BD. Fio, LLTOM#HHBEI272%: Salminen—Vallois-Yor [47], Pitman-Yor [39],
Yor [72].

LITiE, EEPETHRTOLODORTEE THD.

(1) Virdg [49] 1% FEFEH = {(z,y) | y > 0} © T 572 Ui (Brownian excursion) (&
xT L CEERBROBELIZEL L, 1% Brownian beads EFEFATWS. 75 7 v JElE

XIS T T U BB y BiF AN 72 =R B VIR FE CE) < ZRITIERE (X))o
69, YR (cut point) TOHMIMNT HFATRMZEAL, FAEHTH\ {X, s <t}
% HIZE94 Z & T, Brownian beads ® Poisson MIBFEX(SF O D & FELTWS. [EIFRIZE
AREMENGEL DD L LT, SLE (Schramm Lowner evolution) 7> 5 J& il Rl %
BAWIHELEEA TH S of. Lawler—Werner [31], Lawler [30], Werner [58].

(2) Picard [36] 1%, 77 v EBORENEZHNT, JILFUF— wwiﬁ“ﬁ%ﬁf
W3, E<H5TW5 Clark—Ocone D AR X Malliavin #43 & 5 72 D353 AT REME D
IREZEL D, Picard DARIIBHEBRTH D7 OFVMEE THTe & Tk L’Cb\é.

(3) BAONTE—RILHERPMIIKL, 77U EHE HDIFILRZR TIED DD
MRENEL 2D XD IRF IR OFF/E % [ 5 REIX Skorokhod A fERE & -5 .
Azema-Yor (1137 T v L &EH) & i RIEETR 2 > TIF IEREZI 2 ARk L 72 (cf. [40]) 2%, Rogers
[41] 13 A EERR 2 W T E OBARRGEEZ 5 2 7. AT RMAVRAILV U ¢ i@t E~DILik
2% Obtoj [33], [34], Pistorius [37], Obtsj—Pistorius [35] 12 L VW HFHI TN 5.
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