
Ginibre点過程の Palm測度：絶対連続性と特異性

長田博文 (九州大学)・白井朋之 (九州大学)

Polish空間上の点測度の可算和からなるラドン測度を配置といい、その全体に漠位相を入れたものを配置
空間という。点過程とは配置空間上の確率測度であり、可算無限個のラベルを付けない粒子系を表現する。

Ginibre点過程とは複素平面 Cの点過程で、Lebesgue測度に対する n点相関関数 ρn が

ρn(x1, . . . , xn) = det[K(xi, xj)]1≤i,j≤n (1)

で与えられる確率測度 μである。ここでK :C × C→Cは

K(x, y) =
1
π

e−
|x|2
2 − |y|2

2 · exȳ (2)

で定義される核関数である。定義から、Ginibre点過程は (K, dx)で生成される行列式測度である。
Ginibre点過程は平行移動および回転不変であり、平行移動に関してエルゴード的である。また、直感的

には、2次元 Coulomb potential
Ψ(x) = −2 log |x|

によって、互いに干渉しあう無限粒子系の平衡分布を表す。つまり、非常に形式的には、

μ̄ = const.
∞∏

i<j

|xi − xj |2
∞∏

k=1

dxk (3)

と表現することができる。また、標準的な有限粒子系による近似からは、次の形も形式的表現の候補となる。

μ̄ = const.
∞∏

i<j

|xi − xj |2
∞∏

k=1

e−|xk|2dxk (4)

通常、Ruelleクラスのポテンシャルに対しては、(3)や (4)の表示は、その条件付き確率に対するDLR方
程式によって正当化される。しかし 2次元 Coulomb potentialは、無限大で可積分性がない（それどころか
非有界である）ため、Ruelleクラスのポテンシャルにはならず、DLR方程式による正当化はできない。最
近、[1]において、対数微分の概念を用いて、(3)の正当化がなされた。この対数微分を用いた定式化は、あ
る意味、DLR方程式の微分形であり、一般の Coulombポテンシャルに対しても意味を持つ可能性がある。
また、[2]おいて Ginibre点過程が準 Gibbs測度であること、つまりその条件付き確率が、局所有界な密度
関数を持つことが示された。このように、Ginibre点過程はDLR方程式は満たさないものの、DLR方程式
が果たす２つの役割、「ポテンシャルとの関係」と、「局所有界な密度の存在」を、対数微分と準 Gibbs性
という 2つの概念を導入することで証明することができる。そして、その応用として対応する拡散過程が
構成され、無限次元確率微分方程式X = (X i)i∈N

dX i
t = dBi

t + lim
r→∞

∑
|Xi

t−Xj
t |<r, j �=i

X i
t − Xj

t

|X i
t − Xj

t |2
dt (X0 = (xi)i∈N) (5)

が解かれている。この解は同時に、

dX i
t = dBi

t − X i
t + lim

r→∞

∑
|Xj

t |<r, j �=i

X i
t − Xj

t

|X i
t − Xj

t |2
dt (X0 = (xi)i∈N) (6)

[1] という SDEを満たす。これら二つの方程式から、上記 (3)と (4)の形式表現はともに合理性がある。
この講演では、Ginibre点過程のPalm測度：絶対連続性と特異性を論じる。まず、x = (x1, . . . , xm) ∈ Cm

で条件づけた μの (reduced)Palm測度 μx

μx(·) = μ(· −
m∑

i=1

δxi |s(xi) ≥ 1 (i = 1, . . . , m)) (7)
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を考える。尚、m = 0のとき、μx = μと約束する。

一般に、μがRuelleポテンシャルをもつGibbs測度の場合、μxは常に、元の測度 μに対して、絶対連続

になる。これはRuelleクラスポテンシャルの可積分性から直ちに従う。しかし、Coulombポテンシャルで
は、全く異なる現象が生じる。

Theorem 1. Let x ∈ C
m and y ∈ C

n, where m, n ∈ {0} ∪ N. Then the following holds.
(1) If m = n, then μx and μy are mutually absolutely continuous.
(2) If m �= n, then μx and μy are singular each other.

更に, m = nのとき、Radon-Nikodym densityは次の表示を持つ。

Theorem 2. For each x,y ∈ Cm, the Radon-Nikodym density dμx/dμy is given by

dμx

dμy
=

1
Zxy

lim
r→∞

∏
|si|<br

|x − si|2
|y − si|2 (8)

compact uniformly in x ∈ Cm for μy-a.s. s. Here s =
∑

i δsi and {br}r∈N is an increasing sequence of
natural numbers. We use a convention such that |x − si| =

∏m
m=1 |xm − si| for x = (x1, . . . , xm)。

Moreover, Zxy is the normalization given by Zxy = limn→∞ Zn(x)/Zn(y), where

Zn(x) =
∫

Cn

n∏
i=1

|x − si|2
n∏

j,k=1
j<k

|sj − sk|2
n∏

l=1

g(sl)ds1 · · · dsn. (9)

The convergence in (8) takes place compact uniformly in C × C\{si}i for μy-a.s. s =
∑

i δsi .

特異性を証明する鍵になるのは次の関数である。Dq = {z ∈ C ; |z| <
√

q} q ∈ N、

Fr(s) =
1
r

r∑
q=1

(s(Dq) − q). (10)

Theorem 3. Cの配置空間を Sとおく。x = (x1, . . . , xm)に対して、

lim
r→∞Fr(s) = −m weakly in L2(S, μx) (11)

Remark 1. (a) (11)の右辺の極限は、Poisson点過程では存在しない。これが存在するのは、Ginibre点過
程が「small fluctuation」を持つという、確率幾何的構造が重要な役割を果たしている。
(b) mは、条件付けた粒子の個数を表す。つまり、「∞− m」に意味を付けることができる。これは周期構

造では当たり前で、逆に、Poissonではあり得ない。（Poissonでは Palmと元の測度は同一である）。そう
いう意味で、Ginibre点過程は結晶構造に近い性質も持つ。Ginibre点過程は、「ランダムな結晶構造」をも
ち、この mという指数の存在は、その反映と考えることができる。

(c) m = 1とする。(8)において、 絶対値の 2乗をとる前の関数

lim
r→∞

∏
|si|<br

x − si

y − si

は yを固定すると、x = xの整関数（無限積）となる。この積も条件収束である。解析関数としての構造

も興味深いと思われる。
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