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Theorem 1. Let x € C™ and y € C", where m,n € {0} UN. Then the following holds.
(1) If m = n, then pux and py are mutually absolutely continuous.

(2) If m # n, then pux and py are singular each other.
OO0, m=n0000Radon-Nikodym density OO0 O OO0 O00O0O0

Theorem 2. For each x,y € C™, the Radon-Nikodym density dux/duy is given by
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Moreover, Zyxy is the normalization given by Zxy = lim,_.o Z"(x)/Z"(y), where
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The convergence in (8) takes place compact uniformly in C x C\{s;}; for py-a.s. s =>",0s,.
D000000000000000000000D, ={z€C;|z|<g}qeND

Fi(s) = - D(6(D,) — a). (10)

Theorem 3. COO0O0U0OO SOO0O0x = (x1,...,2m) 00000
lim F.(s) = —m  weakly in L*(S, ux) (11)
rT—00
Remark 1. (a) (11)D0000000Poisson 00 0000000000000 0O00OOOOGinibred O
00 O0small fluctuation0 000 0000000000000 0O0O0DOO0OOODOOO0O
(bymOIOOOOUOOOUCOOOOOOUO0O0DMc—mOUOO0OO0OOOOOODOOOOOOOOOO
0000000000 0OOPoisson 0000000 Poisson00 PAlmOOOOOOOODOODOODOO
000000Gmibre 0000000000000 00O0O0GImibre0 000 OO0OO0OO0ODOOODOOOOO
o mooooobbbboooobobbboooooobo
()m=10000(8) 00000 D000 200000000

OyOobOOOO0OOx=oc000000000C0CO0O00O0O0DOOOOOOCOOOOOOODOODOODOOO
oooooooooboo

oood

[1] Osada, H., Infinite-dimensional stochastic differential equations related to random matrices, Probability The-
ory and Related Fields (on line first).

[2] Osada, H., Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials,
(preprint) available at “http://arxiv.org/abs/0902.3561” (arXiv:0902.3561v2 [math.PR]).



