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Stochastic ranking processes are a model of a ranking system, such as the sales ranks found at
online bookstores. We consider N particles each of which are exclusively located at 1, 2, . . . , N .
Each particle jumps to 1 according to its Poisson clock. When a jump of the particle at position
i occurs, the particle moves to position 1 and the positions of the particles at 1, 2, . . . , i − 1 are
sifted by +1. Particles whose Poisson clocks rang recently are at positions with small numbers,
and the others are at positions with large numbers. We regard the number for each particle as the
particle’s rank. This system enables us to give ranks to N particles, and we call the time evolution
of the particles given by this ranking system the stochastic ranking process.

In this work, we consider the case that the jumping rates of stochastic ranking processes depend
not only on time, but also on the positions of particles. This is an extension of the results that
have ever existed. Now we give the precise formulation of the stochastic ranking process which
we consider in this paper. Let (Ω,F , P ) be a probability space, and let {νi(dξds)}i=1,2,3,... be
independent Poisson random measures on [0,∞)× [0,∞) with the intensity measure dξds.

Let W be a set of functions in C1,0([0, 1]× [0,∞); [0,∞)) such that for each T > 0
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Let wi, i = 1, 2, . . . be a sequence in W , and for a positive integer N , put

w
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)
, k = 1, 2, . . . , N, t ∈ [0,∞), i = 1, 2, . . . , N.
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(N)
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2 , . . ., x

(N)
N be a rearrangement of 1, 2, . . . , N . Define a process X(N) =(
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)
by, for i = 1, 2, . . . , N, t ≥ 0,

X
(N)
i (t) = x

(N)
i +

N∑
j=1

∫
s∈(0,t]

∫
ξ∈[0,∞)

I{X(N)
i (s−)<X

(N)
j (s−)}I{ξ∈[0,w

(N)
j (X

(N)
j (s−),s))}νj(dξds)

+

∫
s∈(0,t]

∫
ξ∈[0,∞)

(1−X
(N)
i (s−))I{ξ∈[0,w

(N)
i (X

(N)
i (s−),s))}νi(dξds).

X(N)(t) is a rearrangement of 1, 2, . . . , N for all t ≥ 0, which we regard as ranks or positions of
particles 1, 2, . . . , N at time t.

Before considering the scaling limit of X(N), we prepare a theorem on the existence and unique-
ness of the solution of an inviscid Burgers-like integral-partial differential equation with evapora-
tion. Let Γb := {0} × [0,∞), Γi = [0, 1] × {0}, Γ = Γb ∪ Γi , and Γt = {(y0, t0) ∈ Γ | t0 ≤ t} for
t ≥ 0.

Theorem 1. Let λ be a Borel probability measure on W , and Define a Borel measure U0(dw, y)
on W by

U0(dw, y) = ρ(w, y)λ(dw), y ∈ [0, 1], w ∈ W,

where ρ : W × [0, 1] → [0, 1] is a non-negative Borel measurable function such that for (w, y) ∈

W × [0, 1],
∂ρ

∂y
(w, y) exists and continuous, and

∂ρ

∂y
(w, y) ≤ 0, ρ(·, 0) = 1, and ρ(·, 1) = 0. Assume

also

U0(W,y) =

∫
W

U0(dw, y) = 1− y, 0 ≤ y ≤ 1.

Then there exists a unique pair of functions

yC : {(γ, t) ∈ Γ× [0,∞) | γ ∈ Γt} → [0, 1],

and U = U(dw, y, t) on [0, 1]× [0,∞) taking values in the non-negative Borel measures on W , such
that,



(i) yC(γ, t) and
∂yC
∂t

(γ, t) are continuous,

(ii) for each t > 0, yC(·, t) : Γt → [0, 1] is surjective,

(iii) for all bounded continuous h : W → [0,∞), U(h, y, t) :=

∫
W

h(w)U(dw, y, t) is Lipschitz

continuous in (y, t) ∈ [0, 1]× [0, T ] for any T > 0, and non-increasing in y, and

(iv) the followings hold:

yC(γ, t0) = y0, U(dw, y0, t0) = U0(dw, y0), γ = (y0, t0) ∈ Γ,

U(h, yC(γ, t), t) = U0(h, y0)−
∫ t

t0

V (h, yC(γ, s), s) ds, t ≥ t0, γ = (y0, t0) ∈ Γ,

for all bounded continuous function h : W → [0,∞), where U(h, y, t) :=

∫
W

h(w)U(dw, y, t),

V (h, y, t) =

∫
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h(w)w(y, t)U(dw, y, t) +

∫ 1

y

∫
W

h(w)
∂w

∂z
(z, t)U(dw, z, t) dz,

and
∂yC
∂t

(γ, t) = V (IW , yC(γ, t), t), t ≥ t0, γ = (y0, t0) ∈ Γ.

□
By using Theorem 1, we have the scaling limit of X(N). Let

Y
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N
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i (t)− 1), U (N)(dw, y, t) :=
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N
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Then, we have the following theorem.

Theorem 2. Assume that with probability 1,

lim
N→∞

sup
y∈[0,1)

||U (N)(·, y, 0)− U0(·, y)||var = 0,

where U0(dw, y) satisfies all the assumptions in Theorem 1. Then the following hold.

(i) With probability 1, for all T > 0, lim
N→∞

U (N)(dw, y, t) = U(dw, y, t), uniformly in y ∈ [0, 1)

and t ∈ [0, T ], where U is the solution claimed in Theorem 1.

(ii) Assume in addition that,
lim

N→∞

1

N
x
(N)
i = yi , i = 1, 2, . . . , L,

for a positive integer L and yi ∈ [0, 1), i = 1, 2, . . . , L. Then, with probability 1, for all T > 0,
the tagged particle system (

Y
(N)
1 (t), Y

(N)
2 (t), . . . , Y

(N)
L (t)

)
converges as N → ∞, uniformly in t ∈ [0, T ] to a limit (Y1(t), Y2(t), . . . , YL(t)). Here, for
each i = 1, 2, . . . , L, Yi is the unique solution to

Yi(t) = yi +

∫ t

0

V (IW , Yi(s−), s)ds−
∫
s∈(0,t]

∫
ξ∈[0,∞)

Yi(s−)I{ξ∈[0,wi(Yi(s−),s))}νi(dξds),

where V is as in Theorem 1. □
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