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次のRd 上の飛躍のある非定常確率微分方程式を考える.

dξt = b(ξt−, t)dt + σ(ξt, t)dW (t) +
∫
Rm

0

g(ξt−, t, z){N(dtdz) − dtν(dz)}.(1)

ここで W (t) は m-次元標準ブラウン運動, N(dtdz) は W (t) と独立な Rm
0 =

Rm−{0} 上のポアソンランダム測度, ν はそのレビー測度である. 係数 b(x, t) =
(bi(x, t)), σ(x, t) = (σij(x, t)), g(x, t, z) = (gi(x, t, z)) は xに関して滑らかでそ
れらの xに関する微分は有界関数であるとする. 本講演ではレビー測度 ν は任意
の次数のモーメントを持ち, かつオーダー条件を満たすことを仮定する.
方程式は唯一解を持つ. 解は飛躍のある拡散過程であり, その生成作用素は

A(t)ϕ =
1
2

∑
i,j

aij(x, t)ϕij +
∑

i

bi(x, t)ϕi(2)

+
∫
Rm

0

{ϕ(x + g(x, t, z)) − ϕ(x) −
∑

i

gi(x, t, z)ϕi(x)}ν(dz)

と書ける. ただし aij(x, t) =
∑

k σik(x, t)σjk(x, t).
本講演では方程式 (1) が非退化ならば準楕円性を持つこと及び, ある種の

Hörmander 条件を満たす方程式は非退化であることを示したい. まず非退化
な方程式を定義しよう. 時刻 sに点 xを出る方程式の解を ξs,t(x)とする. s < t
を固定したとき, 任意の N > 0に対し確率ベクトル系 {ξs,t(x); |x| ≤ N}が一様
に非退化, すなわち ξs,t(x)のMalliavin covariance Π(x)が可逆かつ

sup
|x|≤N

sup
v∈Sd−1,u∈A(1)k

E[(vT Π(x)v)−p ◦ ε+u ] < ∞, ∀p > 1

を満たすとき, 方程式は非退化であるという ([1],[2]).
つぎに準楕円性の定義を与える. 確率微分方程式 (1)（またはその生成作用素

(2)) が次の性質 1,2を持つとき, 準楕円性を持つという.
1. 任意の有界滑らかな関数 c(x, t)に対して, 重み付き推移作用素

P c
s,tϕ(x) := E

[
exp

{∫ t

s

c(ξs,u(x))du
}

ϕ(ξs,t(x))
]

は緩増大滑らかな関数ϕより Schwartzの緩増大超関数Φにまで拡大できる. 拡大
した関数 u(x, s) = P c

s,tΦ(x)は (x, s)に関して C∞,1-級であり,つぎのKolmogorov
の後ろ向き方程式を満たす.

(
∂

∂s
+ A(s) + c(x, s))u(x, s) = 0.(3)

2. T > 0を固定する. f を連続な緩増大関数とすると, 終期条件

lim
s↑T

u(x, s) = f(x)
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を満たす方程式 (3) の緩増大 C∞,1-級解はただ一つ存在する. 解は u(x, s) =
P c

s,T f(x)で与えられる. さらに関数 p(s, x; t, y) := P c
s,tδy(x)はコーシー問題の基

本解, すなわち次の性質を持つ.
i) 任意の t, yに対し, それは (x, s)の C∞,1-関数で

(
∂

∂s
+ A(s)x + c(x, s))p(s, x; t, y) = 0, 0 < s < t, x ∈ Rd

をみたす.
ii) 任意の x, s < tに対し, それは yに関して急減少な C∞-関数で, 任意の有界連
続関数 f に対して P c

s,tf(x) =
∫

p(s, x; t, y)f(y)dy を満たす.

定理 1. 非退化確率微分方程式は準楕円性を持つ.

次にどのような方程式が非退化となるかを調べる. ρ > 0 にたいし Bρ =
(
∫
|z|≤ρ

zizjν(dz)/
∫
|z|≤ρ

|z|2ν(dz))とおく. Bはある ρ0 > 0にたいしB ≤ Bρ, 0 <

ρ < ρ0 をみたす非負対称行列とする. gに対応して σ̃ij(x, t) = ∂zj g
i(x, t, z)|z=0,

σ̃(x, t) = (σ̃ij(x, t)) (d × m-行列)とおいて行列

C(x, t) := σ(x, t)σ(x, t)T + σ̃(x, t)Bσ̃(x, t)T

を定義する.

定理 2. すべての x, tで C(x, t)が正定値ならば方程式は非退化である.

C(x, t) が必ずしも正定値でなくても準楕円性を持つ場合がある. σ(x, t) と
σ̃(x, t)に対し時間に依存するベクトル場を

Vj(x, t) = σ·j(x, t), j = 1, ...,m,

Ṽj(x, t) =
∑

k

σ̃·k(x, t)τkj , j = 1, ..., m,

によって定義する. ただし (τkj)は行列 B の非負対称平方根行列. さらに時間に
依存するベクトル場を

V0(x, t) = b(x, t) − 1
2

∑
l,j

∂σ·j(x, t)
∂xl

σlj(x, t) − lim
δ→0

∫
|z|>δ

g(x, t, z)ν(dz)

によって定義する. Σ0 = {Vj , Ṽj ; j = 1, ..., m}とおき, k = 1, 2, ... にたいして

Σk = {Vt(t)+[V0(t), V (t)], [Vj(t), V (t)], [Ṽj(t), V (t)]; j = 1, ..., m, V (t) ∈ Σk−1},

とおく.
（時間に依存する）強 Hörmander条件：すべての点 x, tで ∪n0

k=0Σk はRdを
張るような n0 ∈ N が存在する.
定理 3. 強Hörmander条件をみたせば非退化である.
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