

LARGE DEVIATION PRINCIPLES FOR GENERALIZED FEYNMAN-KAC FUNCTIONALS AND ITS APPLICATIONS

Daehong Kim, Kazuhiro Kuwae, and Yoshihiro Tawara
(Kumamoto University and Nagaoka National College of Technology)

In this talk, we mainly focus on the large deviation theory for non-local Feynman-Kac functionals which do not necessarily admit bounded variation (namely, generalized Feynman-Kac functionals) in the framework of symmetric doubly Feller or strong Feller processes. As applications, we deduce the L^p -independence of the spectral bound of our generalized Feynman-Kac semigroup under our conditions.

Let E be a locally compact separable metric space and m a positive Radon measure on E with full topological support. Let $\mathbf{X} = (\Omega, X_t, \mathbf{P}_x, \zeta, x \in E)$ be an m -symmetric Hunt process on E and $(\mathcal{E}, \mathcal{F})$ the associated symmetric Dirichlet form on $L^2(E; m)$. We always assume that $(\mathcal{E}, \mathcal{F})$ is irreducible and \mathbf{X} has doubly Feller property. For a symmetric bounded function F on $E \times E$ vanishing on the diagonal set, define the discontinuous AF $A_t^F = \sum_{0 < s < t} F(X_{s-}, X_s)$. Let \mathcal{F}_e be the extended Dirichlet space of $(\mathcal{E}, \mathcal{F})$. For $u \in \mathcal{F}_e \cap C_\infty(E)$, let N^u be the CAF of zero energy in the strict sense of the Fukushima decomposition of $u(X_t) - u(X_0)$. Set an AF $A := N^u + A^{\mu, F}$ with $A^{\mu, F} := A^\mu + A^F$. Here $A_t^\mu := A_t^{\mu+} - A_t^{\mu-}$, and $A_t^{\mu+}$ (resp. $A_t^{\mu-}$) is the PCAF in the strict sense associated with μ_+ (resp. μ_-) as its Revuz measure. Let (N, H) be a Lévy system for \mathbf{X} and put $N(F)(x) := \int_{E_d} F(x, y)N(x, dy)$. We consider the following multiplicative functional of the form:

$$(1) \quad e_A(t) := \exp(N_t^u) \text{Exp}(A^{\mu, F})_t, \quad t \geq 0,$$

where $\text{Exp}(B)_t$ stands for the Stieltjes exponential of B . Define the associated Feynman-Kac semigroup by $Q_t f(x) := \mathbf{E}_x[e_A(t)f(X_t)]$ for $x \in E, f \in \mathcal{B}_+(E)$. Let $\mathcal{P}(E)$ denote the space of all Borel probability measures on E . Define a rate function $I_Q(\nu)$ on $\mathcal{P}(E)$ by

$$I_Q(\nu) := \begin{cases} \mathcal{Q}(\phi, \phi) & \text{if } \nu \ll m \text{ and } \phi := \sqrt{d\nu/dm} \in \mathcal{D}(\mathcal{Q}) \\ +\infty & \text{otherwise} \end{cases}$$

Here $\mathcal{Q}(f, g) := \mathcal{E}(f, g) + \mathcal{E}(u, fg) - \mathcal{H}(f, g)$ with

$$\mathcal{H}(f, g) := \int_E f(x)g(x)\mu(dx) + \iint_{E \times E \setminus d} f(x)g(y)F(x, y)N(x, dy)\mu_H(dx).$$

For $\omega \in \Omega$ with $t < \zeta(\omega)$, consider the following normalized occupation time distribution $L_t(\omega) \in \mathcal{P}(E)$ by

$$L_t(\omega)(A) := \frac{1}{t} \int_0^t \mathbf{1}_A(X_s(\omega))ds \quad \text{for } A \in \mathcal{B}(E).$$

Theorem 1. Suppose $\mu_{\langle u \rangle} \in S_K^1$ (Kato class in the strict sense), $\mu = \mu_+ - \mu_-$ and $F = F_+ - F_-$ with $\mu_+ + N(F_+)\mu_H \in S_{LK}^1 \cap S_{EK}^1$ (local and extended Kato classes in the strict sense), $\mu_- + N(F_-)\mu_H \in S_{LK}^1$.

(i) For any open set $G \subset \mathcal{P}(E)$ and $x \in E$,

$$(2) \quad \lim_{t \rightarrow \infty} \frac{1}{t} \log \mathbf{E}_x[e_A(t) : L_t \in G, t < \zeta] \geq - \inf_{\nu \in G} I_Q(\nu).$$

(ii) Assume $\mu_- + N(F_-)\mu_H \in S_{LK}^1 \cap S_D^1$ (local Kato and Dynkin classes in the strict sense). Then for any compact set $K \subset \mathcal{P}(E)$,

$$(3) \quad \overline{\lim}_{t \rightarrow \infty} \frac{1}{t} \log \sup_{x \in E} \mathbf{E}_x[e_A(t) : L_t \in K, t < \zeta] \leq - \inf_{\nu \in K} I_Q(\nu).$$

(iii) Assume further $m \in S_{K_\infty^\pm}^1$ (positive order Green-tight Kato class in the strict sense) and $\mu_- + N(F_-)\mu_H \in S_{LK}^1 \cap S_D^1$. Then for any closed set $K \subset \mathcal{P}(E)$, we have (3). In particular,

$$(4) \quad \lim_{t \rightarrow \infty} \frac{1}{t} \log \mathbf{E}_x[e_A(t) : t < \zeta] = \lim_{t \rightarrow \infty} \frac{1}{t} \log \sup_{x \in E} \mathbf{E}_x[e_A(t) : t < \zeta] = - \inf_{\nu \in \mathcal{P}(E)} I_Q(\nu).$$

We use the convention that $F = F_+ - F_- \in J_*^1 - J_{**}^1$ means $N(F)\mu_H = N(F_+)\mu_H - N(F_-)\mu_H \in S_*^1 - S_{**}^1$. If we assume $\mu_{\langle u \rangle} \in S_K^1$, $\mu_\pm \in S_K^1$ and $F_\pm \in J_K^1$, then we can obtain the same conclusions as in Theorems 1 without assuming the Feller property of \mathbf{X} . For $p \in [0, \infty]$, let $\lambda_p(u, \mu, F)$ be the L^p -spectral radius of our Feynman-Kac semigroup $\{Q_t\}_{t>0}$.

Theorem 2. Suppose $\mu_{\langle u \rangle} \in S_{K_\infty^\pm}^1$, $\mu = \mu_+ - \mu_- \in S_{K_\infty^\pm}^1 - S_{LK}^1 \cap S_D^1$ and $F = F_+ - F_- \in J_{K_\infty^\pm}^1 - J_{LK}^1 \cap J_D^1$. Then the spectrum radius $\lambda_p(u, \mu, F)$ ($1 \leq p \leq \infty$) is independent of p if $\lambda_2(u, \mu, F) \leq 0$. Moreover, suppose that \mathbf{X} is conservative, $\mu_- \in S_{K_\infty^\pm}^1$ and $F_- \in J_{K_\infty^\pm}^1$. Then $\lambda_2(u, \mu, F) > 0$ implies $\lambda_\infty(u, \mu, F) = 0$.

Corollary 1. Suppose $\mu_{\langle u \rangle} \in S_{K_\infty^\pm}^1$. Assume $\mu = \mu_+ - \mu_-$ with $\mu_+ \in S_{K_\infty^\pm}^1$, $\mu_- = 0$, and $F = F_+ - F_-$ with $F_+ \in J_{K_\infty^\pm}^1$, $F_- = 0$. Then $\lambda_2(0, 0, 0) \leq 0$ implies $\lambda_2(u, \mu, F) \leq 0$, in particular, $\lambda_p(u, \mu, F)$ ($1 \leq p \leq \infty$) is independent of p if $\lambda_2(0, 0, 0) \leq 0$. Moreover, if \mathbf{X} is transient, $\mu_{\langle u \rangle} \in S_{K_\infty^\pm}^1$, $\mu = \mu_+ - \mu_- \in S_{K_\infty^\pm}^1 - S_{K_\infty}^1$ and $F = F_+ - F_- \in J_{K_\infty^\pm}^1 - J_{K_\infty}^1$ then the same conclusion holds. Here $S_{K_\infty}^1$ denotes the 0-order Green-tight Kato class in the strict sense.

REFERENCES

- [1] Z.-Q. Chen, *L^p -independence of spectral bounds of generalized non-local Feynman-Kac semigroups*, preprint, (2011).
- [2] G. De Leva, D. Kim and K. Kuwae, *L^p -independence of spectral bounds of Feynman-Kac semigroups by continuous additive functionals*, J. Func. Anal. **259** (2010), no. 3, 690–730.
- [3] D. Kim, K. Kuwae and Y. Tawara, *Large Deviation principle for generalized Feynman-Kac functionals and its applications*, preprint, (2011).
- [4] M. Takeda, *L^p -independence of spectral bounds of Schrödinger type semigroups*, J. Funct. Anal. **252** (2007), no. 2, 550–565.
- [5] M. Takeda, *A large deviation principle for symmetric Markov processes with Feynman-Kac functional*, J. Theoret. Probab. **24** (2011), no. 4, 1097–1129.
- [6] M. Takeda and T.-S. Zhang, *Asymptotic properties of additive functionals of Brownian motion*, Ann. Probab. **25** (1997), no. 2, 940–952.
- [7] Y. Tawara, *L^p -independence of spectral bounds of Schrödinger type operators with non-local potentials*, J. Math. Soc. Japan, **62** (2010), no. 3, 767–788.