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In this talk, we mainly focus on the large deviation theory for non-local Feynman-
Kac functionals which do not necessarily admit bounded variation (namely, generalized
Feynman-Kac functionals) in the framework of symmetric doubly Feller or strong Feller
processes. As applications, we deduce the LP-independence of the spectral bound of
our generalized Feynman-Kac semigroup under our conditions.

Let E be a locally compact separable metric space and m a positive Radon measure
on E with full topological support. Let X = (2, X, P,,(,x € E) be an m-symmetric
Hunt process on E and (&, F) the associated symmetric Dirichlet form on L?(E;m).
We always assume that (£, F) is irreducible and X has doubly Feller property. For
a symmetric bounded function F' on E x E vanishing on the diagonal set, define the
discontinuous AF A = >, F(X,_, X,). Let F, be the extended Dirichlet space
of (§,F). For u € F.N Cx(E), let N* be the CAF of zero energy in the strict sense
of the Fukushima decomposition of u(X;) — u(Xy). Set an AF A := N* + A*F with
AmE = Ar 4+ AF. Here A} := A" — A}~ and A}'* (resp. A}") is the PCAF in the
strict sense associated with ,u+ (resp ) as its Revuz measure. Let (N, H) be a Lévy

system for X and put N(F = f By N(z,dy). We consider the following
multiplicative functional of the form
(1) elt) = exp (N Bxp (A7), >0,

where Exp(B),; stands for the Stieltjes exponential of B. Define the associated Feynman-
Kac semigroup by Q. f(z) := E.lea(t)f(X;)] for x € E, f € B.(FE). Let P(E) denote
the space of all Borel probability measures on E. Define a rate function Ig(r) on P(E)

by
To(v) = { Q(p,¢) if v < m and ¢ := \/dv/dm € D(Q)

400 otherwise
Here Q(f,9) := g) +E(u, fg) —H(f,g) with

H(f.g) /f ul(de) + /Aww VF (2, 5)N (2, dy) s ().

For w € Q with ¢ < ((w), consider the following normalized occupation time distribu-
tion Li(w) € P(E) by

Li(w)(A) == %/0 14(Xs(w))ds for A € B(E).

Theorem 1. Suppose p.y € Sk (Kato class in the strict sense), p = py — p— and
F=F, —F_ with uy + N(Fy)ug € St NSt (local and extended Kato classes in

the strict sense), pu_ + N(F_)ug € S}k
1



(i) For any open set G C P(E) and x € E,

1
(2) lim —logE, [ea(t) : LtEGt<C]>—1n£IQ( v).
t—o00 ve
(i) Assume p_ + N(F_)uy € St NS} (local Kato and Dynkin classes in the
strict sense). Then for any compact set K C P(E),

(3) lim — logsupE$[eA( ): L€ Kt < (] <—inf Ig(v).

t—oo zcE veK

(iii) Assume further m € S + (positive order Green-tight Kato class in the strict

sense) and pi_ + N(F_)MH € St NSL. Then for any closed set K C P(FE),
we have (3). In particular,

(4)  lim 1logEgg[eA( t)y:t<(]= hm —logsupE lea(t):t < (] =— inf Ig(v).
t—oo { ot 2€E vEP(E)

We use the convention that F = F, — F_ € J! — JL, means N(F)uyg = N(F,)ug —
N(F_)ug € S; — Si,.. If we assume p(,) € Sk, ps € Sk and Fy € Jj, then we can
obtain the same conclusions as in Theorems 1 without assuming the Feller property
of X. For p € [0,00], let \,(u, p, F') be the LP-spectral radius of our Feynman-Kac

cemigronp Q1) 0.
Theorem 2. Suppose i, € SK+, U=y —j_ € S}(jo—SiKﬂSb and F=F,—-F_¢€
Jyy = Jig N JL. Then the spectrum radius \y(u, p, F) (1 < p < 00) is independent

of p if Xa(u,u, F) < 0. Moreover, suppose that X is conservative, u_ € S;ﬁ and
F_e Jfl{+. Then Xo(u, p, F) > 0 implies Aoo(u, p, F) = 0.

Corollary 1. Suppose pi,) € S . Assume pp = py — ph— with py € Sll@c, p— =0, and
F=F,—F_ withF, € J1+, F_ = 0. Then X3(0,0,0) < 0 implies Ay(u, u, F) <0, in
particular, \,(u, u, F) (1 < p < 00) is independent of p if A2(0,0,0) < 0. Moreover, if
X is transient, pi,) € SK+, = fy— [ € S}(oo SKoo and F =F,—F_ € Jll(oo Jic..

then the same concluszon holds. Here S k.. denotes the 0-order Green-tight Kato class
in the strict sense.
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