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In this talk, we mainly focus on the large deviation theory for non-local Feynman-
Kac functionals which do not necessarily admit bounded variation (namely, generalized
Feynman-Kac functionals) in the framework of symmetric doubly Feller or strong Feller
processes. As applications, we deduce the Lp-independence of the spectral bound of
our generalized Feynman-Kac semigroup under our conditions.

Let E be a locally compact separable metric space and m a positive Radon measure
on E with full topological support. Let X = (Ω, Xt,Px, ζ, x ∈ E) be an m-symmetric
Hunt process on E and (E ,F) the associated symmetric Dirichlet form on L2(E; m).
We always assume that (E ,F) is irreducible and X has doubly Feller property. For
a symmetric bounded function F on E × E vanishing on the diagonal set, define the
discontinuous AF AF

t =
∑

0<s≤t F (Xs−, Xs). Let Fe be the extended Dirichlet space
of (E ,F). For u ∈ Fe ∩ C∞(E), let Nu be the CAF of zero energy in the strict sense
of the Fukushima decomposition of u(Xt) − u(X0). Set an AF A := Nu + Aµ,F with
Aµ,F := Aµ + AF . Here Aµ

t := A
µ+

t − A
µ−
t , and A

µ+

t (resp. A
µ−
t ) is the PCAF in the

strict sense associated with µ+ (resp. µ−) as its Revuz measure. Let (N,H) be a Lévy
system for X and put N(F )(x) :=

∫
E∂

F (x, y)N(x, dy). We consider the following
multiplicative functional of the form:

(1) eA(t) := exp (Nu
t ) Exp

(
Aµ,F

)
t
, t ≥ 0,

where Exp(B)t stands for the Stieltjes exponential of B. Define the associated Feynman-
Kac semigroup by Qtf(x) := Ex[eA(t)f(Xt)] for x ∈ E, f ∈ B+(E). Let P(E) denote
the space of all Borel probability measures on E. Define a rate function IQ(ν) on P(E)
by

IQ(ν) :=

{
Q(φ, φ) if ν ¿ m and φ :=

√
dν/dm ∈ D(Q)

+∞ otherwise

Here Q(f, g) := E(f, g) + E(u, fg) −H(f, g) with

H(f, g) :=

∫
E

f(x)g(x)µ(dx) +

∫∫
E×E\d

f(x)g(y)F (x, y)N(x, dy)µH(dx).

For ω ∈ Ω with t < ζ(ω), consider the following normalized occupation time distribu-
tion Lt(ω) ∈ P(E) by

Lt(ω)(A) :=
1

t

∫ t

0

1A(Xs(ω))ds for A ∈ B(E).

Theorem 1. Suppose µ〈u〉 ∈ S1
K (Kato class in the strict sense), µ = µ+ − µ− and

F = F+ − F− with µ+ + N(F+)µH ∈ S1
LK ∩ S1

EK (local and extended Kato classes in
the strict sense), µ− + N(F−)µH ∈ S1

LK.
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(i) For any open set G ⊂ P(E) and x ∈ E,

(2) lim
t→∞

1

t
log Ex[eA(t) : Lt ∈ G, t < ζ] ≥ − inf

ν∈G
IQ(ν).

(ii) Assume µ− + N(F−)µH ∈ S1
LK ∩ S1

D (local Kato and Dynkin classes in the
strict sense). Then for any compact set K ⊂ P(E),

(3) lim
t→∞

1

t
log sup

x∈E
Ex[eA(t) : Lt ∈ K, t < ζ] ≤ − inf

ν∈K
IQ(ν).

(iii) Assume further m ∈ S1
K+

∞
(positive order Green-tight Kato class in the strict

sense) and µ− + N(F−)µH ∈ S1
LK ∩ S1

D. Then for any closed set K ⊂ P(E),
we have (3). In particular,

(4) lim
t→∞

1

t
log Ex[eA(t) : t < ζ] = lim

t→∞

1

t
log sup

x∈E
Ex[eA(t) : t < ζ] = − inf

ν∈P(E)
IQ(ν).

We use the convention that F = F+ −F− ∈ J1
∗ −J1

∗∗ means N(F )µH = N(F+)µH −
N(F−)µH ∈ S1

∗ − S1
∗∗. If we assume µ〈u〉 ∈ S1

K , µ± ∈ S1
K and F± ∈ J1

K , then we can
obtain the same conclusions as in Theorems 1 without assuming the Feller property
of X. For p ∈ [0,∞], let λp(u, µ, F ) be the Lp-spectral radius of our Feynman-Kac
semigroup {Qt}t>0.

Theorem 2. Suppose µ〈u〉 ∈ S1
K+

∞
, µ = µ+−µ− ∈ S1

K+
∞
−S1

LK ∩S1
D and F = F+−F− ∈

J1
K+

∞
− J1

LK ∩ J1
D. Then the spectrum radius λp(u, µ, F ) (1 ≤ p ≤ ∞) is independent

of p if λ2(u, µ, F ) ≤ 0. Moreover, suppose that X is conservative, µ− ∈ S1
K+

∞
and

F− ∈ J1
K+

∞
. Then λ2(u, µ, F ) > 0 implies λ∞(u, µ, F ) = 0.

Corollary 1. Suppose µ〈u〉 ∈ S1
K+

∞
. Assume µ = µ+−µ− with µ+ ∈ S1

K+
∞
, µ− = 0, and

F = F+ −F− with F+ ∈ J1
K+

∞
, F− = 0. Then λ2(0, 0, 0) ≤ 0 implies λ2(u, µ, F ) ≤ 0, in

particular, λp(u, µ, F ) (1 ≤ p ≤ ∞) is independent of p if λ2(0, 0, 0) ≤ 0. Moreover, if
X is transient, µ〈u〉 ∈ S1

K+
∞
, µ = µ+−µ− ∈ S1

K+
∞
−S1

K∞ and F = F+−F− ∈ J1
K+

∞
−J1

K∞

then the same conclusion holds. Here S1
K∞ denotes the 0-order Green-tight Kato class

in the strict sense.
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