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1 Introduction

Let (X, g) be a d-dimensional compact Riemannian manifold and let f be a Morse function
on X. That is, the set of critical points of f is a finite set {c1, . . . , ck} and the Hessian there
are nondegenerate. Let dλ = e−λf/2deλf/2. Here d denotes the exterior differential operator
on X. Taking an adjoint of dλ on L2(∧T ∗X, dx) (dx is the Riemannian volume), we see
d∗λ = eλf/2d∗e−λf/2 explicitly. dλ defines an elliptic complex which is called a Witten complex.
Let ¤λ = d∗λdλ + dλd

∗
λ. Then we see that

¤λα = ¤α+
λ2

4
|∇f(x)|2α+

λ

2

d∑

i,j=1

[
ext(e∗i ), int(e∗j )

]∇ei∇ejf(x)α, (1.1)

where ¤ = dd∗ + d∗d and {ei}n
i=1 denotes an orthonormal system on TxX. Let ¤λ|p denote the

restriction of ¤λ on p-form. Let σ(¤λ|p) be the spectral set of ¤λ|p. By using the semiclassical
analysis, we see that

lim
λ→∞

inf σ(¤λ|p)
λ

= inf
j,I


 ∑

i∈I,ξi(j)>0

|ξi(j)|+
∑

i/∈I,ξi(j)<0

|ξi(j)|

 , (1.2)

where {ξi(j)}d
i=1 denotes the eigenvalues of ∇2f at the critical point cj (1 ≤ j ≤ k) and I

runs all subset of {1, . . . , d} with |I| = p. This is not stated explicitly but it is not difficult
to check it by the result in [28], [19]. See also [8]. In [8], the Riemannian metric is taken to
be flat near critical points, but this is not necessary as noted in [28]. If there are no critical
points whose indices are p, then the right-hand side in (1.2) is positive. Therefore p-th Betti
number should be 0 by Hodge-Kodaira’s theorem. Further consideration implies the Morse
inequality. We refer the reader to [8] for the detail. Now let us consider an unitary transformation
Φλ : L2(∧T ∗X, e−λfdx) → L2(∧T ∗X, dx) as Φλα = e−λf/2α. We write dµλ = e−λfdx. Then
by using this unitary transformation, ¤λ is unitarily equivalent to the differential operator
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¤µλ
= d∗µλ

d+ dd∗µλ
on L2(∧T ∗X, e−λfdx). Here d∗µλ

denotes the adjoint of d with respect to the
inner product of L2(∧T ∗X, dµλ). Therefore the semiclassical behavior of the spectrum of ¤µλ

is the same as ¤λ. Under some condition on the curvature and the Morse function f , (1.2) still
holds for noncompact Riemannian manifolds.

Now let us consider a pinned path space over a compact Riemannian manifold M . That is,
let X = Px,y(M) which is a space of continuous path γ from [0, 1] to M with γ(0) = x and
γ(1) = y. Let E(γ) = 1

2

∫ 1
0 |γ̇(t)|2dt forH1-path γ ∈ Px,y(M). Then by taking x, y appropriately,

E is a Morse function on the subset consisting of H1-paths and the critical points (=geodesics)
are isolated. Let νλ be the pinned Brownian motion measure on X such that

νλ (γ(t1) ∈ dx1, . . . , γ(tm) ∈ dxm)

= p(λ−1, x, y)−1

(
m+1∏

i=1

p
(
λ−1(ti − ti−1), xi−1, xi

)
)
dx1 · · · dxm. (1.3)

Here t0 = 0, tm+1 = 1, x0 = x, xm+1 = y, p(t, x, y) = et∆/2(x, y) and ∆ is the Laplace-Beltrami
operator. Then formally, it is often written as

dνλ(γ) = Cλe
−λE(γ)dγλ. (1.4)

Here dγλ denotes the fictitious Riemannian volume element which may depend on λ. Pinned
measure νλ does exist although dγλ does not exist. We have differential calculus based on the
pinned measure which is an extension of the Malliavin calculus on the classical Wiener space.
Then taking the unitary equivalence between ¤λ and ¤νλ

into accounts, one may consider
¤νλ

on L2(∧T ∗X, dνλ) as the mathematically well-defined Hodge-Kodaira-Witten Laplacian.
Motivated by this, the author [2], [3] studied semiclassical behaviors of spectrum of Schrödinger
type operators on Wiener spaces. Note that this problem is related with semiclassical problems
in Euclidean field theory [7]. We note that this view point was used by Eberle [11] to study
the spectral gap problem of the Ornstein-Uhlenbeck operator acting on functions on loop space.
Even if in such a heuristic level, we have to think what is the Riemannian metric on X since
the Riemannian volume is defined by the Riemannian metric. In probability theory, the tangent
space at the path γ is defined by choosing a Riemmanian connection. We refer the reader to
[9], [26] for the tangent space and the Riemannian metric. Andersson and Driver [6] takes the
infinite dimensional Riemmanian volume into accounts and give a rigorous meaning to the formal
expression (1.4) for the path space Px(M) which consists of continuous paths starting at x. Let
us recall their results. The Riemannian metric on Px(M) which is defined by the Levi-Civita
connection induces the Riemmanin metric on a finite dimensional approximate submanifold Xn

and it defines the Riemmanian volume dxn on Xn. Let us consider the restriction of E(γ) to
submanifold Xn and consider the weighted probability measure dµn = Cn · e−E(x)dxn on Xn.
Then µn converges to the Brownian motion measure. Eberle [11] studied the asymptotics of
the gap of spectrum of the finite dimension version of the Ornstein-Uhlenbeck operator acting
on functions on Xn and consider the limit n → ∞. However, the change of the limit was not
studied.

Next serious problem is in the definition of the exterior differential operator d. The def-
inition of d depends on the choice of the tangent space at each γ and on the choice of the
Riemannian connection. Different Riemannian connection defines nonequivalent Hilbert space
structure at each tangent space. If the Riemannian curvature of the connection is not zero, then
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the commutator of the vector field [X,Y ] is not in the tangent space. Consequently we can-
not define exterior differential operator d in this case. Concerning this difficulty, Léandre ([22],
[23],[24],[21]) defined a regularized exterior differential operator and a Witten Laplacian and gave
many conjectures on them. Also he computed an operator which is obtained by the semiclassical
limit of the Witten Laplacian. Also we note another approach of Elworthy and Li [12] for the
exterior differential operator on path spaces. Here we consider the case where M is a compact
Lie group G with bi-invariant Riemannian metric and consider the right-invariant trivial connec-
tion. Then the curvature tensor is 0 and this connection defines a right-invariant Riemannian
metric on the pinned path space. This Riemannian metric and its Levi-Civita connection on the
space of H1-loops are studied by Freed [15]. We refer the reader to [25], [5],[16],[17], [29],[13],[1]
for analysis based on the connection and the Brownian motion measure on continuous path
spaces over G. Since the curvature is 0, for the Hilbert (Riemannian) structure at each tangent
space, the Lie bracket of the vector field is well-defined and so is the definition of the exterior
differential operator. But the Riemannian metric is different from the metric which is defined by
the Levi-Civita connection on G. Thus the result in [6] cannot be applied directly in this case.
Andersson and Driver’s finite dimensional approximation may converge to the pinned measure
but this is not studied yet to the author’s knowledge. In this paper, we give a heuristic expla-
nation on the expression (1.4) in Section 2 based on Malliavin calculus and coarea formula [4],
[14]. Note that the “Riemannian volume element” dγλ does not depend on λ in the argument.

After introducing the Riemannian metric, we can calculate the eigenvalues of the Hessian of
the energy functional E(γ) at critical points. Note that the calculation at critical points does not
need the connection on the pinned path space differently from that at general points. Hence, we
do not discuss about the connection on path spaces. The main aim of this paper is to calculate
the eigenvalues and prove the strict positivity of the quantity corresponding to the right-hand
side in (1.2) when p is odd number in the case of G = SU(n). By this, one may expect that the
bottom of spectrum of ¤νλ

diverges when λ → ∞ and there are no harmonic p-forms for odd
p. Bott’s theorem [27] tells us that the index of the energy functional is even at each critical
points and so

∑
i∈I,ξi(j)>0 |ξi(j)|+

∑
i/∈I,ξi(j)<0 |ξi(j)| > 0 for fixed I and j. Therefore, our task

is to prove a uniform lower bound on them.

2 Right invariant Riemannian metric and heuristic explanation
of (1.4)

Let G be a compact Lie group and g be a bi-invariant Riemannian metric on G. g is defined by
the Ad-invariant inner product (·, ·) on g = TeG. We denote the Lie bracket on g by [·, ·]. Set

X = H1(G) = H1([0, 1] → G | γ(0) = e), (2.1)
Xa = H1

a(G) = H1([0, 1] → G | γ(0) = e, γ(1) = a). (2.2)

Then X and Xa are Hilbert manifolds modeled on the Hilbert space H, H0 respectively. Here

H = H1(g) = H1([0, 1] → g | h(0) = 0) (2.3)
H0 = H1

0 (g) = H1([0, 1] → g | h(0) = h(1) = 0). (2.4)

The norm of h ∈ H is given by ‖h‖2 =
∫ 1
0 |ḣ(t)|2gdt. The tangent vector at γ is a vector field

along γ(·). The tangent space as the Hilbert manifold at γ is given by

TγX =
{
k : [0, 1] → TG | k(t) ∈ Tγ(t)G and (Rγ(·))−1∗ k(·) ∈ H}

, (2.5)
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where Rab = ba for a, b ∈ G. TγXa is the subset of TγX with k(1) = 0. Thus, the tangent
bundles of X and Xa are trivial and we identify the tangent spaces with H and H0 respectively.
The vector field Zk corresponding to k ∈ H (or H0) acts on the function f by

Zkf(γ) = lim
ε→∞

f
(
eεk(·)γ(·))− f(γ)

ε
, (2.6)

where eεk(t) is defined by the exponential map, exp : g → G. Let us define a Riemannian metric
on X by

(k, k)TγX = ‖(Rγ(·))−1
∗ k(·)‖2

H . (2.7)

The Riemannian metric on Xa is defined in the same way. These Riemannian metric are called
the right invariant H1-Riemannian metrics. Left invariant Riemannian metric 〈·, ·〉 is defined by

〈k, k〉 = ‖(Lγ(·))−1
∗ k(·)‖2

H , (2.8)

where Lab = ab. These metrics were studied by Freed [15]. Let h ∈ H and consider the following
differential equations on G.

γ̇(t) = (Rγ(t))∗ḣ(t) (2.9)

γ̇(t) = (Lγ(t))∗ḣ(t) (2.10)
γ(0) = e, (2.11)

We denote the solutions to (2.9) and (2.10) by IR(h) and IL(h) respectively. Also we denote
hR = I−1

R (γ) and hL = I−1
L (γ). The map h → IR(h) defines a diffeomorphism between two

Hilbert manifolds H and X. Also note that the energy of IL(h) and IR(h) are equal to ‖h‖2
H .

Noting d
dt

(
γ(t)−1

)
= −γ(t)−1γ̇(t)γ(t)−1, we have for h ∈ H,

d

dt

(
Ad(γ(t)−1)h(t)

)
= Ad(γ(t)−1)ḣ(t)−Ad(γ(t)−1)[ḣR(t), h(t)].

Since
d

dt

(
(Lγ(t))

−1
∗ k(t)

)
=

d

dt

(
Ad(γ(t)−1)((Rγ(t))∗)−1k(t)

)
, (2.12)

we have

〈k, k〉 =
∫ 1

0

∣∣∣∣
d

dt

(
Rγ(t))

−1
∗ k(t)

)−
[
ḣR(t), (Rγ(t))

−1
∗ k(t)

]∣∣∣∣
2

dt. (2.13)

The linear operator Kγ : h → ∫ ·
0[ḣR(t), h(t)]dt is a Hilbert-Schmidt operator on H and has

no eigenvalues which is easily checked by observing that Kγ is a Volterra type operator. These
imply that the right-invariant and left-invariant Riemannian metric is equivalent on X. However
differently from finite dimensional cases, we cannot consider “bi-invariant Riemannian metric”
since there are no Haar measure on X. By the same definition as in (2.7) and (2.8), the
Riemannian metric and H1-tangent space are defined on continuous pinned path space too.
In such cases, the tangent space at “generic paths” are different corresponding to the metric.
Below we adopt the right-invariant Riemannian metric. For h, k ∈ H, let φ(t, h, k) = IL(h +
k)(t)IL(h)(t)−1. Then φ(t, h, k) satisfies

φ(t, h, k)−1φ̇(t, h, k) = Ad(IL(h)(t))ḣ(t) (0 ≤ t ≤ 1).
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So we have (
RIL(h)(t)

)−1

∗ DkIL(h)(t) =
∫ t

0
Ad (IL(h)(t)) k̇(s)ds. (2.14)

D denotes the H-derivative on H. This implies IL is a Riemannian isometry mapping from H
onto X. Now consider a submanifold with codimension dim g in H:

Sa = {h ∈ H | IL(h)(1) = a} . (2.15)

There is a Riemannian metric ga induced by the Riemannian metric ‖ ‖H on H. Then by (2.14),

Theorem 2.1 IL is a Riemannian isometry between (Sa, ga) and (Xa, gR).

Let us consider the stochastic case. Let P (g) be the space of continuous paths x(·) on [0, 1]
with values in g starting at 0. There exists a probability measure µλ on P (g) such that

∫

P (g)
e
√−1(γ,h)Hdµλ(γ) = exp

(
−‖h‖

2

2λ

)
. (2.16)

This measure is the Gaussian measure whose covariance operator is λ−1IH . Let P (G) be the
space of continuous paths γ on G satisfying γ(0) = e. We denote by Pa(G) the subset of P (G)
with γ(1) = a. The differential equations (2.9) and (2.10) can be interpreted as the Stratonovich
differential equation for the Brownian motion path on g. Then IR and IL are Itô’s map. We
denote B(·) = I−1

L (γ)(·) and b(·) = I−1
R (γ)(·) which are called the Itô-Cartan development. We

refer the precise meaning to [20]. We denote by p(t, x, y) the heat kernel of the heat semigroup
of et∆/2 where ∆ is the Laplace-Beltrami operator. Define a probability measure on P (g) by
dµa,λ(B) = cλ,aδa(IR(B)(1))dµλ(B). Here cλ,a = p

(
λ−1, e, a

)−1. Then we see that the image
measure of µa,λ by IR is the pinned Brownian motion measure νa,λ on Pa(G). See [30]. Formally,
µa,λ is a measure on Sa ⊂ H. Now we recall the coarea formula in finite dimension [14].

Theorem 2.2 Let F be a smooth mapping from Rn to a compact Riemannian manifold M .
Assume that there exists an open subset U ⊂M such that dF (x) : TxRn → TF (x)M is surjective
for any x ∈ F−1(U). Let ρ be a continuous function on M with supp ρ ⊂ U . Then for any
z ∈ U , F−1(z) is a smooth submanifold. Let dvz(x) be the induced volume element on F−1(z).
Then for any smooth nonnegative function ϕ on Rn it holds that

∫

Rn

ρ (F (x))ϕ(x)dx =
∫

M
dz ρ(z)

{∫

F−1(z)

ϕ(x)dvz(x)√
det (dF (x)dF (x)∗)

}
. (2.17)

Now, we consider the case where Rn = H and M = G formally. By the definition of the pull-
back of the delta function by the Wiener functional IL (see also [4]), we have for any smooth
function ψ on P (g) in the sense of Malliavin,

∫

P (g)
ρ(IL(B)(1))ψ(B)dµλ(B) =

∫

G
da ρ(a)

{∫

P (g)
ψ(B)δa(IL(B)(1))dµλ(B)

}
, (2.18)

where da denotes the Riemannian volume element on G. Formally it holds that

dµλ(h) =
(
λ

2π

)dim H/2

exp
(
−λ

2

∫ 1

0
|ḣ(t)|2dt

)
dh, (2.19)
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where dh is the “Lebesgue measure” on H. By (2.14), we see

DIL(h)(1)DIL(h)(1)∗ = IdTIL(h)(1)
. (2.20)

Therefore, the coarea formula above implies formally that

dµa,λ(B) =
(
λ

2π

)dim H/2

cλ,a exp
(
−λ

2

∫ 1

0
|ḣ(t)|2dt

)
dva(h), (2.21)

where dva(h) denotes the formal induced Riemannian volume on Sa. Take a function ρ on Pa(G).
Then

∫

Pa(G)
ρ(γ)dνa,λ(γ) =

∫

Sa

ρ (IL(B)) dµa,λ(B)

=
∫

Sa

ρ (IL(h))
(
λ

2π

)dim H/2

cλ,a exp
(
−λ

2

∫ 1

0
|ḣ(t)|2dt

)
dva(h)

=
∫

Sa

ρ (IL(h))
(
λ

2π

)dim H/2

cλ,a exp
(
−λ

2

∫ 1

0
|İL(h)(t)|2dt

)
dva(h)

=
∫

Pa(G)
ρ (γ)

(
λ

2π

)dim H/2

cλ,a exp
(
−λ

2

∫ 1

0
|γ̇(t)|2dt

)
dγa. (2.22)

Here dγa denotes the induced Riemannian volume element on Xa. In (2.22), we use the isometry
property of IL, that is I∗Ldγa = dva. (2.22) implies that

dνa,λ(γ) =
(
λ

2π

)dim H/2

cλ,a · exp
(
−λ

2

∫ 1

0
|γ̇(t)|2dt

)
dγa (2.23)

which we want to show. Of course, the above calculation is formal and the Andersson and
Driver’s type theorem is desired. Note that this expression is not contradicted with their results

dνa,λ(γ) = C ′λ · exp
(
−λ

2

∫ 1

0
|γ̇(t)|2dt

)
dLCγ. (2.24)

Here dLCγ denotes the Riemannian volume element which is induced by the Riemannian metric
gLC which is defined by the Levi-Civita connection on G. (Actually they proved it for Brownian
motion measure without conditioning γ(1) = a.) That is, the right-invariant Riemannain metric
and gLC is different but it is possible that the induced volume element on total space coincides
and in fact it happens in finite dimensional cases too.

3 Calculation of the Hessian of the energy functional and its
spectrum

Let

E(γ) =
1
2

∫ 1

0
|γ̇(t)|2Tγ(t)G

dt. (3.1)

This is a smooth functional on Xa. ZhZkE(γ) is a continuous symmetric form on H0 if γ is a
geodesic, namely, γ(t) = etv, where v ∈ g. Here, we identify H0 and TγXa. So there exists a
self-adjoint operator Qv such that (Qvh, k)H0 = ZhZkE(γ). We calculate Qv explicitly.
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Lemma 3.1 (1)

1
2
‖hR‖2

H = E(γ). (3.2)

(2) Let γ(t) = etv. Then Qv = IH0 + Tv where

(Tvh)(t) =
∫ t

0
[h(s), v]ds− t

∫ 1

0
[h(s), v]ds. (3.3)

(3) Let {ξi}l
i=1 be the positive eigenvalues of the symmetric operator ad(v)2 on g counting the

multiplicity, where ad(v)u = [v, u] for v, u ∈ g. Then nonzero eigenvalues of Tv are
{
±
√
ξi

2πm
, ±

√
ξi

2πm

∣∣∣ m ∈ N, 1 ≤ i ≤ l

}
(3.4)

counting the multiplicity.

Proof. (1) This holds because the Riemmanian metric on G is right invariant.
(2) First, let γ ∈ Xa. Suppose h is a C1-path. Below, we calculate as if G is a matrix group.

But this is not a restriction. In this case, the exponential map coincides with the exponential
of the matrices. Thus, we have for almost all s,

d

ds
I−1
R

(
eεhγ

)
(s) =

d

ds

(
eεh(s)

)
e−εh(s) +Ad

(
eεh(s)

)
ḣR(s)

=

[
εḣ(s) +

∞∑

n=2

εn

n!

n−1∑

l=0

h(s)lḣ(s)h(s)n−l−1

]
e−εh(s)

+Ad
(
eεh(s)

)
ḣR(s). (3.5)

Integrating both sides with respect to s from 0 to t and taking derivatives with respect to ε, we
have

ZhhR = h+
∫ ·

0
[h(s), ḣR(s)]ds. (3.6)

That is, I−1
R (γ) is a H-valued smooth function. This formula is found in (4.44) in [16]. Using

this,

Zh

∫ 1

0
|ḣR(t)|2dt = 2

∫ 1

0

(
ḣ(t), ḣR(t)

)
dt+ 2

∫ 1

0

(
[h(s), ḣR(s)], ḣR(s)

)
ds (3.7)

= 2
∫ 1

0

(
ḣ(s), ḣR(s)

)
ds (3.8)

Therefore

ZkZhE(γ) =
∫ 1

0

(
ḣ(s), k̇(s)

)
ds+

∫ 1

0

(
ḣ(s), [k(s), ḣR(s)]

)
ds. (3.9)

If γ(t) = etv, then ḣR(t) = v. So this implies (2).
(3) First note that Tv = −S · ad(v), where S is an operator on H0 such that (Sh)(t) =∫ t

0 h(s)ds − t
∫ 1
0 h(s)ds. Then we have Sek = (2πk)−1fk and Sfk = −(2πk)−1ek where ek(t) =
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sin(2πkt)/(
√

2πk), fk(t) = cos(2πkt)−1√
2πk

and {ek, fk}∞k=1 constitutes a complete orthonormal sys-
tem of H1

0 ([0, 1] → R). Since ad(v) is a skewsymmetric operator on g, there exists an orthonor-
mal system {ui}l

i=1, {vi}l
i=1 and {wi}d−2l

i=1 such that ad(v)ui =
√
ξivi, ad(v)vi = −√ξiui and

ad(v)wj = 0. Here d = dim g. Thus {ekui + fkvi, ekvi− fkui} are eigenfunctions with the eigen-
value

√
ξi/(2πk) and {ekui−fkvi, ekvi+fkui} are eigenfunctions with the eigenvalue −√ξi/(2πk)

and {ekwi, fkwi}1≤i≤d−2l,k∈N are eigenfunctions whose eigenvalue is 0. This completes the proof.

4 The case of SU(n)

In this section, let G = SU(n). Then the Lie algebra is su(n). Ad-invariant inner product on
su(n) is given by (A,B) = trAB∗. We denote the diagonal matrix whose (i, i) element is ηi by
D[η1, . . . , ηn]. Also we denote the matrix whose (i, j) element is 1 and other elements are 0 by
Eij . We take and fix an element v = D

[√−1λ1, . . . ,
√−1λn

]
∈ su(n) such that

∑n
i=1 λi = 0

and λi − λj /∈ 2πZ. Let

a = ev = D
[
e
√−1λ1 , . . . , e

√−1λn

]
. (4.1)

We can identify all geodesics joining e and a under the above assumptions.

Lemma 4.1 Let A ∈ su(n) and assume eA = a. Then, there exists ki ∈ Z with
∑

i=1 ki = 0
such that

A = D
[√−1(λ1 + 2πk1), . . . ,

√−1(λn + 2πkn)
]
. (4.2)

Proof. Since A ∈ su(n), there exists U ∈ U(n) and ηi ∈ R such that

U∗AU =
√−1D [η1, . . . , ηn] . (4.3)

Then
U∗eAU = D

[
e
√−1η1 , . . . , e

√−1ηn

]
. (4.4)

By taking U appropriately, we see that e
√−1ηj = e

√−1λj . So ηj = λj + 2πkj . By (4.4), U

and D
[
e
√−1λ1 , . . . , e

√−1λn

]
are commutative. Since

{
e
√−1λi

}
are distinct, U is also a diagonal

matrix. By (4.3), we complete the proof.
By this lemma, we see that there is one to one correspondence between V ⊂ Zn which

consists of {ki}n
i=1 with

∑n
i=1 ki = 0 and the space of geodesics joining e and a. Let Pa(G)cr

denote the subset of geodesics of Pa(G).

Theorem 4.2 Let {ξi(c)}∞i=1 be all eigenvalues of the Hessian of E(·) at the geodesic c which
corresponds to {ki} ∈ V counting the multiplicity. Let S be the set which is obtained by removing
all 1 from {ξi(c)}.
(1) We have

S =
{

1± |λi − λj + 2π(ki − kj)|
2mπ

, 1± |λi − λj + 2π(ki − kj)|
2mπ

∣∣∣ m ∈ N, 1 ≤ i, j ≤ n

}
. (4.5)

In particular, a is not a conjugate point of e along any geodesics and the multiplicity of all
eigenvalues except 1 are even number.
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(2) Let l(c) be the length of c corresponding to v = {ki}n
i=1 ∈ V . Then l(c) =

{∑n
i=1 (λi + 2πki)

2
}1/2

.
(3) Let p ∈ N and for a geodesic c ∈ Pa(G)cr, set

θp(c) = inf
I⊂N,|I|=p

∑

i∈I,ξi(c)>0

|ξi(c)|+
∑

i/∈I,ξi(c)<0

|ξi(c)|. (4.6)

If p is odd, then
inf

c∈Pa(G)cr
θp(c) > 0. (4.7)

Proof. (1) In this case, we can see the eigenvalues and eigenvectors explicitly. Let eij =√
2
−1

(Eij − Eji), fij = −√−2−1(Eij + Eji) and gk =
√−2−1(E11 − Ekk) (2 ≤ k ≤ n). These

constitute a complete orthonormal system. Let A = D
[√−1(λ1 + 2πk1), . . . ,

√−1(λn + 2πkn)
]
.

Then ad(A)eij = {(λi − λj) + 2π(ki − kj)} fij , ad(A)fij = −{(λi − λj) + 2π(ki − kj)} eij , ad(A)gk =
0 hold. Hence, (4.5) is a consequence of Lemma 3.1 (3). Since λi − λj /∈ 2πZ, second assertion
follows from (4.5). The third assertion also follows immediately from (4.5).

(2) This follows from the definition of the Riemannian metric.
(3) The results in (1) imply that θp(c) > 0 for odd p. Thus, it is sufficient to prove that

lim
l(c)→∞

θp(c) = ∞, (4.8)

since for any R, the number of geodesics whose length are less than R is finite. Take a positive

number R0 such that
{∑

1≤i≤n |λi|2
}1/2

≤ R0. By (2), for any large number R, except finite

number of geodesics, l(c) ≥ R holds. For these geodesics, it holds that
(∑

1≤i≤n(2πki)2
)1/2

≥
R − R0. So |2πk∗| := max1≤i≤n |2πki| ≥ R−R0

n . Since
∑n

i=1 ki = 0, there exists at least one ki

whose sign is different from k∗’s. So it holds that max1≤i<j≤n |2π(ki − kj)| ≥ R−R0
n + 2π. Let

us take a positive number K. The above results and (4.5) imply that the number of negative
eigenvalues of E at c less than −K diverges uniformly when l(c) → ∞. This proves (4.8) and
completes the proof.

Remark 4.3 (1) (2) implies that the set of critical points is an isolated set in Xa.
(2) Note that the Ricci curvature of SU(n) is positive. Let m(c) be the index at c, that is
the total number of the negative eigenvalues of the Hessian at c. By the Morse theory [27], we
see that liml(c)→∞m(c) = ∞ for a compact Riemannian manifold with positive Ricci curvature.
Therefore (4.8) might hold in such cases.
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