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§1. Introduction

(1) What is weak Poincaré inequality(=WPI)?

(X,B,m): Probability space

(E,D(E)): local symmetric Dirichlet form

(WPI): ∃ non-increasing function ξ : (0,∞) →
(0,∞) s.t.∫

X

(f − 〈f〉m)2dm ≤ ξ(δ)E(f, f) + δ‖f‖∞

for all δ > 0, f ∈ D(E) ∩ L∞(X). (1)

(Poincaré inequality=PI): ∃ C > 0 s.t.

∫

X

(f − 〈f〉m)2dm ≤ CE(f, f)

for all f ∈ D(E)(∩L∞(X)). (2)

(Irreducibility of (E,D(E)))：
E(f, f) = 0 =⇒ f = const. a.s.

Remark:

(PI)=⇒(WPI)=⇒(Irreducibility)
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Example

d-dimensional Wiener space: (Wd,Hd, µ)

H-open set : U ⊂ Wd

EU(f, f) :=

∫

U

|Df(w)|2Hdµ(w)

Theorem 1 (Feyel-Üstünel) If U is an H-convex

set, then LSI holds for EU.

Theorem 2 (Kusuoka) If U is an H-connected

set + some conditions, then EU satisfies WPI.

Theorem 3 If U is an H-connected set, then

EU is irreducible.

By using Kusuoka’s theorem, we can prove

that
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Theorem 4 Let M be a connected and sim-

ply connected compact Riemannian mani-

fold. Let

Lx(M) = C([0, 1] → M | γ(0) = γ(1) = x),

where x ∈ M and consider the pinned Brow-

nian motion measure. We fix a torsion skew-

symmetric connection and define an H-derivative

by the connection. Let Ex be the Dirichlet

form which is defined by the H-derivative.

Then Ex satisfies WPI.

The aim of this talk is to present a proof of

Theorem 2 in the case where U is an inverse

image of an open set by a continuous function

in the sense of rough path analysis and prove

Theorem 4 based on the results.
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(2) A strategy to prove WPI

We present a proof of the WPI for EU in

the case where U ⊂ Wd is an open connected

set.

Proposition 5 Let us consider a general set-

ting. We assume E has the square field op-

erator such that

E(f, f) =

∫

X

Γ(f, f)dm.

For Ui ⊂ X, set

Ei(f, f) :=

∫

Ui

Γ(f, f)dmi, f ∈ D(E), (3)

where dmi = dm/m(Ui). For U := ∪∞
i=1Ui,

set

EU(f, f) =

∫

U

Γ(f, f)dmU , f ∈ D(E), (4)

where dmU = dm/m(U). Assume the fol-

lowing (A1) and (A2).

(A1) WPI holds for each (Ei,D(E)) (i ∈ N).

(A2) For any n ∈ N,

m
(
(∪n

i=1Ui) ∩ Un+1

)
> 0.

Then WPI holds for (EU ,D(E)).
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Remark ： Assume that U = ∪N
i=1Ui(finite

union) and PI holds for each Ei. Then PI

holds for EU .

The following is a consequence of Feyel and

Üstünel’s theorem.

Lemma 6 Let us consider the Wiener space

(Wd,Hd, µ). Let ‖ ‖ be the norm of Wd.

(for example, sup norm, Hölder norm, etc).

Let

Br(h) =
{
w ∈ Wd | ‖w − h‖ < r

}
,

where h ∈ Hd. LSI holds for

EBr(h)(f, f) =

∫

Br(h)

|Df(w)|2dµ(w)

f ∈ FC∞
b (Wd), (5)

where FC∞
b (Wd) denotes a set of smooth cylin-

drical functions.
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Corollary 7 Let U ⊂ Wd be a connected

open set. Then WPI holds for EU.

Proof There exist Bri(hi) such that

U = ∪∞
i=1Bri(hi)

and for any n

µ
(
(∪n

i=1Bri(hi) ∩Brn+1(hn+1))
)
> 0.

But a typical set U which appears in Malli-

avin calculus is not an open set in the topol-

ogy of Wd. Let M be a compact Riemannian

manifold isometrically embedded in Rd. Let

P (x) : Rd → TxM be the projection opera-

tor. X(t, x,w) be the solution to the follow-

ing SDE:

dX(t, x,w) = P (X(t, x,w)) ◦ dw(t)

X(0, x,w) = x ∈ M. (6)

Let Vε = {y ∈ M | d(x, y) < ε} and set

UVε =
{
w ∈ Wd | X(1, x,w) ∈ Vε

}
. (7)
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Then, in general, X(t, x,w) is not a contin-

uous function of w in the topology of W d

and so Corollary 7 cannot be applied. But

X(t, x,w) is a continuous function of w in

the sense of rough path. Our main idea is

1. To prove a WPI for a ball like set in the

sense of rough path analysis

2. To apply the proof of Corollay 7 and Propo-

sition 5 to prove WPI
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§2. Lyons’ continuity theorem

(1) Notaion, p-variation norm

Let ∆ =
{
(s, t) ∈ R2 | 0 ≤ s ≤ t ≤ 1

}
. Take

q > 1. For ψ : ∆ → R, ‖ψ‖q is defined by

‖ψ‖q = sup
D

{
n−1∑

i=0

|ψ(ti, ti+1)|q
}1/q

, (8)

where D = {0 = t0 < t1 < . . . < tn = 1}
runs all partitions of [0, 1].

Let T2(Rd) = Rd⊕(Rd⊗Rd). Let C(∆, T2(Rd))
be the space of continuous functions. Let

ei = t(0, . . . ,
i
1, . . . , 0).

For η = (η(·, ·)1, η(·, ·)2) ∈ C(∆, T2(Rd)), set

η1,i(s, t) = (η(s, t)1, ei)

η2,k,l(s, t) = (η(s, t)2, ek ⊗ el)

and define

‖η(·, ·)1‖q = max
1≤i≤d

‖η(·, ·)1,i‖q, (9)

‖η(·, ·)2‖q = max
1≤k,l≤d

‖η(·, ·)2,k,l‖q. (10)
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Let p be a positive number such that 2 <

p < 3. For η(·, ·) ∈ C(∆, T2(Rd)), define

‖η(·, ·)‖Cp = max
{‖η1‖p, ‖η2‖p/2

}
. (11)

Remark

For w ∈ Wd, let w1(s, t) := w(t) − w(s).

Then it holds that ‖w1‖p < ∞ for µ-a.e. w in

the case where 2 < p < 3.
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(2) For h ∈ Hd define a smooth rough path

h ∈ C(∆ → T2(Rd)):

h(s, t) := (h(s, t)1, h(s, t)2) (12)

h(s, t)1 := h(t) − h(s) (13)

h(s, t)2 :=

∫ t

s

(h(u) − h(s)) ⊗ dh(u). (14)

Theorem 8 (T.Lyons) Let us consider an

ODE which is driven by h ∈ Hd:

ξ̇(t, x, h) = P (ξ(t, x, h)) ḣ(t)

ξ(0, x, h) = x ∈ M.

Then ∀ R > 0, ∃C(R) > 0 such that

∀h, ∀h′ ∈ Hd with ‖h‖Cp ≤ R, ‖h̄′‖Cp ≤ R,

we have

‖ξ̄(·, x, h) − ξ̄(·, x, h′)‖Cp ≤ C(R)‖h − h̄′‖Cp
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(3) A realization of Brownian rough path:

Theorem 8 itself has nothing to do with

SDE and Brownian motion. In order to re-

late it with Brownian path and the solution

of SDE, we need an approximation theorem

and a realization of Brownian path as a limit

of smooth rough path.

For w ∈ Wd, set

(Pnw)(t)

= w
(
tnk

)
+ 2n

(
w

(
tnk+1

) − w
(
tnk

)) (
t− tnk

)

(tnk ≤ t ≤ tnk+1),

where tnk = k
2n

(0 ≤ k ≤ 2n). Since Pnw ∈ Hd,

Pnw ∈ C(∆ → T2(Rd)).

Theorem 9 (Hambly,Ledoux,Lyons,Qian)

Let Yd ⊂ Wd be the set which consists of w

such that Pnw is a Cauchy sequence in the

topology of Cp.Then µ(Yd) = 1. We denote

the limit by w for w ∈ Yd. Also it holds that

limn→∞E[‖Pnw − w‖Cp] = 0.

The limit w is called a Brownian rough path.
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Remark If w ∈ Yd, then w + h ∈ Yd for all

h ∈ Hd.

By the method similar to the above, we can

prove the following facts which we need.

Lemma 10 Let Xd ⊂ Yd be the set which con-

sists of w such that ‖CPnw−w,Pnw‖p/2 → 0 and

‖Pnw − w‖Cp → 0. Then µ(Xd) = 1.

Here

Cw,h(s, t) =

∫ t

s

(w(u) − w(s)) ⊗ dh(u).

Remark If w ∈ Xd, then w + h ∈ Xd for all

h ∈ Hd.

Theorem 11 (Approximation theorem)

Let X(t, x,w) and ξ(t, x, h) be the solutions

which were defined already. Then for all t ≥
0

X(t, x,w) = lim
n→∞

ξ(t, x, Pnw) µ− a.e. w.

(15)
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This approximation theorem and Theorem 8

and Theorem 9 imply that

w(∈ Yd) → X(·, x,w)

has a continuous modification of w in the

topology of ‖ ‖Cp.
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§3. Main theorem

Now we introduce ball like set in the sense

of rough path: For r > 0 and h ∈ Hd:

Ur,h =

{
w ∈ Xd

∣∣∣ ‖w‖Cp < r, ‖Cw,h‖p/2 < r,

‖Ch,w‖p/2 < r

}
. (16)

Br,h := Ur,h + h (h ∈ Hd)

=
{
w ∈ Xd

∣∣∣ ‖(w − h)‖Cp < r,

‖Cw−h,h‖p/2 < r, ‖Ch,w−h‖p/2 < r
}
.

The following is a key result in our analysis.

Lemma 12 µ(Ur,h) > 0, µ(Br,h) > 0 hold and

WPI hold for Ur,h and Br,h.

We use the induction on the latter half of

the proof. In the first step, d = 1, we use

Feyel-Üstünel’s result.
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Our main theorem is as follows:

Theorem 13 Assume that F : Hd → R sat-

isfies the following continuity condition:

∀ R > 0, ∃C(R) > 0 such that ∀h, ∀h′ ∈ Hd

with ‖h‖Cp ≤ R, ‖h̄′‖Cp ≤ R, it holds that

|F (h) − F (h′)| ≤ C(R)‖h − h̄′‖Cp. (17)

Then

(1) limn→∞ F (Pnw) exists for all w ∈ Xd.

We denote the limit by F̃ (w).

(2) Let

UF :=
{
h ∈ Hd | F (h) > 0

}

UF̃ :=
{
w ∈ Xd | F̃ (w) > 0

}

UF 6= ∅ is equivalent to µ(UF̃ ) > 0.

(3) If UF (6= ∅) is a connected set in Hd, then

WPI holds for EU
F̃
.

Proof of (3):

We can prove that there exists a countable

set {hi}∞
i=1 ⊂ UF and positive numbers ri

such that
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(i) UF̃ = ∪∞
i=1Bri,hi

(ii) For any n ∈ N,

µ
(∪n

i=1Bri,hi ∩Brn+1,hn+1

)
> 0.

Hence Proposition 5 and Lemma 12 imply

the conclusion.

To prove WPI on loop spaces, we need the

following results:

Lemma 14 Let us consider two probability spaces

(Xi,Bi,mi) and two pre-Dirichlet forms (Ei,Fi)
on them. Assume that there exists a mea-

surable map I : X1 → X2 such that

(A1) There exists a positive constant C such

that for all f ∈ F2, f ◦ I ∈ F1 hold and

E1(f ◦ I, f ◦ I) ≤ CE2(f, f).

(A2) The image measure I∗m1 is equivalent

to m2 and the density function is a bounded

function.

Then if (E1,F1) satisfies WPI, then (E2,F2)

satisfies WPI.
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Lemma 15

Let us consider the case where X2 = Lx(M),

m2 = pinned measure and E2 is the Dirich-

let form on it as explained in Theorem 4.

We can construct a function F which is the

continuous function in the sense of rough

path in Theorem 13 and the assumption of

Lemma 14 holds for

X1 := UF̃ = {w ∈ Xd | F̃ (w) > 0} (18)

and EU
F̃

and the above X2.

To construct a function in Lemma 15, we

use the following:
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Proposition 16 Let Vξ : Hd → Hd (ξ ∈ RN) be

a family of vector fields on Hd. Assume that

there exista a positive function C(·) such

that

(A1) ∀h, ∀h′ ∈ Hd with ‖h‖Cp ≤ R, ‖h̄′‖Cp ≤
R, it holds that

sup
ξ

|Vξ(h) − Vξ(h
′)| ≤ C(R)‖h − h̄′‖Cp. (19)

(A2) For all h ∈ Hd with ‖h‖Cp ≤ R,

sup
ξ

‖DVξ(h)‖L(H,H) ≤ C(R).

(A3) For all multi-index α,

sup
ξ,h

‖∂αξ Vξ(h)‖ < ∞.

Let φt(ξ, h) be the solution to the following

ODE in Hd:

φ̇t(ξ, h) = Vξ(h + φt(ξ, h)) (20)

φ0(ξ, h) = 0 (21)

Let F (h) be a continuous function in Theo-

rem 13. Let us fix T > 0. Then {φt(F (h), h)}0≤t≤T
satisifes the continuity in Theorem 13.
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