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§1. Introduction

(1) What is weak Poincaré inequality (=WPI)?
(X,2B,m): Probability space
(£,D(E)): local symmetric Dirichlet form

(WPI): 3 non-increasing function £ : (0, 00) —
(0, 00) s.t.

/X (F — (Fm)2dm < EG)ES, ) + 611 Flloe
foralld >0, f € D(E) N L>*(X). (1)

(Poincaré inequality=PI): 3 C > 0 s.t.

/X (f — (F)m)*dm < CE(f, §)
for all f € D(E)(NL>*(X)). (2)

(Irreducibility of (£,D(€)))0
E(f, f) = 0 = f = const. a.s.

Remark:
(PI)=—=(WPI)=—=(Irreducibility)



Example
d-dimensional Wiener space: (W% HY, 1)
H-open set : U C W¢

Eu(f, f) = /U D (w) 2, dps(w)

Theorem 1 (Feyel-Ustiinel) If U is an H-convex
set, then LSI holds for &;.

Theorem 2 (Kusuoka) If U is an H-connected
set + some conditions, then &y satisfies WPI.

Theorem 3 If U s an H-connected set, then

Eu 18 wrreducible.

By using Kusuoka’s theorem, we can prove
that



Theorem 4 Let M be a connected and sim-

ply connected compact Riemannian mani-
fold. Let

L,(M) = C([0,1] = M | 7(0) =~(1) = =),

where x € M and consider the pinned Brow-
nian motion measure. We fix a torsion skew-
symmetric connection and define an H -derivative
by the connection. Let £, be the D:irichlet
form which 1s defined by the H -derivative.
Then £, satisfies WPI.

The aim of this talk is to present a proof of
Theorem 2 in the case where U is an inverse
image of an open set by a continuous function
in the sense of rough path analysis and prove

Theorem 4 based on the results.



(2) A strategy to prove WPI
We present a proof of the WPI for &y in
the case where U C W9 is an open connected

set.

Proposition 5 Let us constder a general set-
ting. We assume £ has the square field op-

erator such that

E(f.0) = [ T(f, fdm.
For U; C X, set

E(f.0) = [ T(f f)dmi,  fEDE), ©

U;
where dm; = dm/m(U;). For U := U2 U;,

set

Eo(f.f) = [ T Hdmy, fEDE), ()

U
where dmy = dm/m(U). Assume the fol-

lowing (A1) and (A2).
(A1) WPI holds for each (€;,D(E)) (¢ € N).
(A2) For any n € N,
m (U, U;) NUy,41) > 0.
Then WPI holds for (Ey,D(E)).
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Remark 0 Assume that U = UY U;(finite
union) and PI holds for each &;. Then PI
holds for & .

The following is a consequence of Feyel and

Ustiinel’s theorem.

Lemma 6 Let us consider the Wiener space
(WY, H ). Let || | be the norm of W4,

(for example, sup norm, Hélder norm, etc).
Let

B,(h) = {w € W*| [lw —h|| < r},
where h € HY. LSI holds for

Ep.a(F f) = / Df (W) 2dpu(w)

B’I‘(h)
f € FEL (WY, (5)

where FE°(W4) denotes a set of smooth cylin-

drical functions.



Corollary 7 Let U C W¢? be a connected
open set. Then WPI holds for &.

Proof There exist B,,(h;) such that
U= Uz?ilBTz'(hi)
and for any n
p (U By, (h;) N B, (hnt1))) > 0.

H
But a typical set U which appears in Malli-

avin calculus is not an open set in the topol-
ogy of W9 Let M be a compact Riemannian
manifold isometrically embedded in R%. Let
P(z) : R* — T,M be the projection opera-
tor. X (t,x,w) be the solution to the follow-
ing SDE:

dX (t,z,w) = P(X(t,x,w)) odw(t)
X(0,z,w) = x € M. (6)

Let V.={y € M | d(x,y) < €} and set
Uy, ={weW*| X(1,z,w) € V.}. (7)

7



Then, in general, X (¢, x,w) is not a contin-
uous function of w in the topology of W¢
and so Corollary 7 cannot be applied. But
X (t,x,w) is a continuous function of w in

the sense of rough path. Our main idea is

1. To prove a WPI for a ball like set in the

sense of rough path analysis

2. To apply the proof of Corollay 7 and Propo-
sition 5 to prove WPI



§2. Lyons’ continuity theorem

(1) Notaion, p-variation norm
Let A = {(s,t) € R? | 0 < s <t < 1}. Take
q> 1. For ¢ : A — R, ||¢||4 is defined by

n—1 1/q
[llq = Sup {Z 1% (Ls, ti—|—1)|q} ,  (8)
i=0

where D = {0 = t) < t;1 < ... < t, = 1}
runs all partitions of [0, 1].
Let T5(R%) = RYD (RIQRY). Let C(A, Tx(R?))
be the space of continuous functions. Let
e; Zt(O,...,]_,...,O).
For n = (n(-,-)1,1(+,+)2) € C(A, T3(R?)), set
771,72(37 t) = (n(s,t)1,€;)

7727k7l(87 t) — (77(87 t)27 ekﬁ ® el)

and define

In(-s )1l = fg%’il”n('a')l,i”qv (9)
117(+5)2llg = max |[|[n(-,)2killg-  (10)

1<k,1<d



Let p be a positive number such that 2 <
p < 3. For n(-,+) € C(A,T2(R%)), define

(s )ller = max {|Imllp, In2llp/2} - (11)
Remark
For w € W4, let wi(s,t) := w(t) — w(s).

Then it holds that ||w||, < co for p-a.e. w in
the case where 2 < p < 3.
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(2) For h € H? define a smooth rough path
b € C(A — Ty(RY):

h(s,t) := (h(s,t)1,h(s,t)2) (12)
h(s,t); := h(t) — h(s) (13)

t
h(s,t); := / (h(u) — h(s)) ® dh(u). (14)
Theorem 8 (T.Lyons) Let us consider an

ODE which is driven by h € H?:

é(tawah) — P(S(tawah)) h(t)
£(0,z,h) = x € M.

Then ¥V R > 0, AC(R) > 0 such that
Vh,Vh’ € H? with ||h||cr < R, ||W||cr < R,

we have

1€z, h) — &(-, 2, 1) [lcr < C(R)|Ih — 1||cr
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(3) A realization of Brownian rough path:

Theorem 8 itself has nothing to do with
SDE and Brownian motion. In order to re-
late it with Brownian path and the solution
of SDE, we need an approximation theorem
and a realization of Brownian path as a limit
of smooth rough path.

For w € W€, set

(Pw)(t)

= w () + 2" (w (t5,,) — w (8)) (¢ = 3)

(L, <t < tp ),

where t} = * (0 < k < 2"). Since P,w € HY,
P,w € C(A — T(RY)).
Theorem 9 (Hambly,Ledoux,Lyons,Qian)
Let Y C W¢? be the set which consists of w
such that P,w is a Cauchy sequence in the
topology of CP.Then u(Y?9) = 1. We denote
the limit by w for w € Y®. Also it holds that
lim,,_,o E[||P,w — W||cr] = 0.

The limit W is called a Brownian rough path.
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Remark If w € Y%, then w + h € Y? for all
h € H%
By the method similar to the above, we can

prove the following facts which we need.

Lemma 10 Let X? C Y9 be the set which con-
sists of w such that |Cp,w—w,P,w|lp/2 — 0 and
|P,w — wl||cp — 0. Then u(X%) = 1.

Here

Cun(s,t) = / (w(u) — w(s)) ® dh(u).

Remark If w € X%, then w + h € X¢ for all
h € HY.

Theorem 11 (Approximation theorem)

Let X (t,x,w) and &(t, x,h) be the solutions
which were defined already. Then for allt >
0

X(t,x,w) = lim &(t, ¢, P,w) p — a.e. w.
(15)
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This approximation theorem and Theorem 8

and Theorem 9 imply that
w(€ YY) — X (-2, w)

has a continuous modification of w in the

topology of || ||ce-
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§3. Main theorem
Now we introduce ball like set in the sense
of rough path: For » > 0 and h € H%:

;

Uy = {w € X* | [Wllow < 7, [Cwnllp2 < 74
|Ch,wllp/2 < "“}- (16)
Bf,a,h = Upn + h (h & Hd)

= {wex?| [w=h)llor <

[Cunallprz < 75 |Gl < 7.
The following is a key result in our analysis.

Lemma 12 p(U,y) > 0, u(B,n) > 0 hold and
WPI hold for U,y and B, .

We use the induction on the latter half of
the proof. In the first step, d = 1, we use

Feyel-ﬁstﬁnel’s result.
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Our main theorem is as follows:

Theorem 13 Assume that F : H* — R sat-
1sfies the following continuity condition:

V R > 0, 3C(R) > 0 such that Vh,Vh’' € H?
with ||h||cr < R, ||W'||ce < R, it holds that

[F(h) — F(h')| < C(R)||h — W|lcp.  (17)

Then
(1) lim,_ . F(P,w) ezists for all w € X4,
We denote the limit by F(w).
(2) Let

Ur := {he H* | F(h) > 0}

Up := {W e X4 | F(w) > O}
Ur # 0 is equivalent to p(Uz) > 0.

(3) If Up(s# 0) is a connected set in H?, then
WPI holds for gUF'

Proof of (3):

We can prove that there exists a countable
set {h;};°, C Ur and positive numbers 7;
such that
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(i) Up = UZ, Bryp,
(ii) For any n € N,

M (Uzr'bleT,;,hi M Brn_|_1,hn+1) > 0.

Hence Proposition 5 and Lemma 12 imply

the conclusion.l

To prove WPI on loop spaces, we need the

following results:

Lemma 14 Let us consider two probability spaces
(X, B;, m;) and two pre-Dirichlet forms (&;, §;)
on them. Assume that there exists a mea-
surable map I : X; — X5 such that

(A1) There exists a positive constant C such

that for all f € §2, fol € & hold and
E(fol, fol) < CE&S, ).

(A2) The image measure I,m; is equivalent
to mo and the density function 1s a bounded
function.

Then if (€1, &1) satisfies WPI, then (€2, &2)
satisfies WPI.
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Lemma 15

Let us consider the case where Xy = L,(M),
mso = pinned measure and £s s the Dirich-
let form on it as explained in Theorem 4.
We can construct a function F' which is the
continuous function in the sense of rough

path in Theorem 13 and the assumption of
Lemma 14 holds for

Xy o= Up = {we X | F(w) >0} (18)

and gUﬁ and the above X,.

To construct a function in Lemma 15, we

use the following:
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Proposition 16 Let V; : HY — H? (¢ € RY) be
a family of vector fields on H?. Assume that
there exista a positive function C(-) such
that

(A1) Vh,Vh' € H? with ||h||cr < R, ||b/||cr <
R, it holds that

sup [Ve(h) — Ve(h)] < C(R)||h — W[|ce. (19)

(A2) For all h € H? with ||h||cr < R,
Sup IDVe(h)|| o,y < C(R).

(A3) For all multi-index o,
Sup 10 Ve(h)|| < oo.
Let ¢i(&,h) be the solution to the following
ODE in H¢:
$:(€,h) = Ve(h + ¢4(¢, 1)) (20)
¢o(§,h) =0 (21)
Let F(h) be a continuous function in Theo-

rem 13. Let us fixr T > 0. Then {¢:(F'(h),h) }o<i<r

satisifes the continuity in Theorem 13.
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