On tensor category arising from representation theory of the restricted quantum universal enveloping algebra associated to $\mathfrak{s l}_{2}$

Yoshihisa Saito (Tokyo)

joint work with Hiroki Kondo (Tokyo)
(arXiv:0901.4221)
Sep. 23, 2009 @ Seoul

§ Introduction

Background

- Kazhdan-Lusztig (1993~1994):

> Category of
> representation of affine Lie algebra $\widehat{\mathfrak{g}}$$\stackrel{\begin{array}{c}\text { Category of } \\ \longleftrightarrow\end{array} \begin{array}{c}\text { representation of } U_{\mathfrak{q}}(\mathfrak{g}) \\ \text { at a root of unity }\end{array}}{\text { a }}$

Main tool : Conformal Field Theory (WZW-model)

- Recently, a "log-version" of the above correspondence is considered.

What is a logarithmic CFT?

- Roughly speaking, a log CFT is a CFT such that "KZtype equations" have logarithmic singularities.
- But, in mathematical sense, there is no definition. That is, there are only some examples.

As an example of log-CFTs, there is a CFT based on representation of the triplet vertex operator algebra $W(p)\left(p \in \mathbb{Z}_{\geq 2}\right)$.

Conjecture 1 (Feigin et al.). There is a "log-version" of KL-equivalence. That is, as braided tensor categories,

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Category of } \\
W(p) \text {-modules }
\end{array} & \sim & \begin{array}{c}
\text { Category of } \\
\text { finite dimensional }
\end{array} \\
\bar{U}_{\mathfrak{q}}\left(\mathfrak{s} l_{2}\right) \text {-modules }
\end{array}
$$

where $\bar{U}_{\mathfrak{q}}\left(\mathfrak{s l} l_{2}\right)$ is the restricted quantum group associated $\mathfrak{s l} l_{2}$ and $\mathfrak{q}=\exp \left(\frac{\pi \sqrt{-1}}{p}\right)$.

They proved the conjecture for $p=2$ case.

In 2009, Tsuchiya-Nagatomo proved the following theorem. Theorem 2 (Tsuchiya-Nagatomo). As abelian categories, these are equivalent.

- In this talk, we only treat the quantum group side.

Aim :

Study tensor structure of $\bar{U}_{\mathfrak{q}}\left(\mathfrak{S l}_{2}\right)-\mathbf{m o d}$.

Main result :

Indecomposable decomposition of all tensor products of $\bar{U}_{\mathfrak{q}}\left(\mathfrak{S l}_{2}\right)$ modules is completely determined in explicit formulas.

As a by-product, we show that $\bar{U}_{\mathfrak{q}}\left(\mathfrak{s l}_{2}\right)-\bmod$ is not a braided tensor category for $p \geq 3$.
$\Rightarrow \quad$ It needs a rectification for Conjecture 1.
This is a future problem.

\S Preliminaries

Notations

Let $p \geq 2$ be an integer and \mathfrak{q} be a primitive $2 p$-th root of unity. For any integer n, we set

$$
[n]=\frac{\mathfrak{q}^{n}-\mathfrak{q}^{-n}}{\mathfrak{q}-\mathfrak{q}^{-1}}
$$

Note that $[n]=[p-n]$ for any n.

- $\bar{U}=\bar{U}_{\mathfrak{q}}\left(\mathfrak{s l}_{2}\right)$: The restricted quantum $\mathfrak{s l}_{2}$

An unital associative \mathbb{C}-algebra with generators E, F, K, K^{-1} and relations ;

$$
\begin{gathered}
K K^{-1}=K^{-1} K=1, \quad K E K^{-1}=q^{2} E, \quad K F K^{-1}=q^{-2} F \\
E F-F E=\frac{K-K^{-1}}{q-q^{-1}} \\
K^{2 p}=1, \quad E^{p}=0, \quad F^{p}=0
\end{gathered}
$$

This is a $2 p^{3}$-dimensional \mathbb{C}-algebra and has a Hopf algebra structure defined by

$$
\begin{aligned}
\Delta: & E \longmapsto E \otimes K+1 \otimes E, \quad F \longmapsto F \otimes 1+K^{-1} \otimes F, \\
& K \longmapsto K \otimes K, \quad K^{-1} \longmapsto K^{-1} \otimes K^{-1} \\
\varepsilon: & E \longmapsto 0, \quad F \longmapsto 0, \quad K \longmapsto 1, \quad K^{-1} \longmapsto 1 \\
S: & E \longmapsto-E K^{-1}, \quad F \longmapsto-K F, \quad K^{ \pm 1} \longmapsto K^{\mp 1} .
\end{aligned}
$$

The category \bar{U}-mod of finite-dimensional left \bar{U}-modules has a structure of a monoidal category associated with this Hopf algebra structure on \bar{U}.

\S Structure of $\bar{U}-\bmod$

This is a survey of known results on \bar{U}-mod which were proved by Reshetikhin-Turaev, Suter, Xiao, Gunnlaugsdóttir, Feigin-Gainutdinov-Semikhatov-Tipunin, Arike.

Basic algebra

A : an unital associative \mathbb{C}-algebra of finite dimension, $A=\underset{i=1}{\oplus} \mathcal{P}_{i}^{m_{i}}:$ a decomposition of A into indecomposable left ideals where $\mathcal{P}_{i} \not \neq \mathcal{P}_{j}$ if $i \neq j$.

For each i take a primitive idempotent $e_{i} \in A$ such that $A e_{i} \cong \mathcal{P}_{i}$, and set $e=\sum_{i=1}^{n} e_{i}$.
$B_{A}=e A e$ is called the basic algebra of A which has the following nice properties:

- B_{A} is Morita-equivalent to A.

There is a functor $B_{A}-\bmod \rightarrow A-\bmod$ defined as

$$
\mathcal{Z} \longmapsto A e \otimes_{B_{A}} \mathcal{Z}
$$

- B_{A} is described by a quiver with relations.

A \mathbb{C}-algebra B is called basic if $B / \operatorname{rad}(B) \cong \mathbb{C}^{n}$. It is well-known that an basic algebra is described by a quiver with relations and it is easy to see that B_{A} is basic.

\Rightarrow What is $B_{\bar{U}}$?

Answer:

The basic algebra $B_{\bar{U}}$ of \bar{U} is decomposed as a direct product $B_{\bar{U}} \cong \prod_{s=0}^{p} B_{s}$ and one can describe each B_{s} as follows:

- $B_{0} \cong B_{p} \cong \mathbb{C}$. (1-dimensional algebra)
- For each $s=1, \ldots, p-1, B_{s}$ is isomorphic to the 8dimensional algebra B defined by the following quiver

with relations $\tau_{i}^{ \pm} \tau_{i}^{\mp}=0$ for $i=1,2$, and $\tau_{1}^{ \pm} \tau_{2}^{\mp}=\tau_{2}^{ \pm} \tau_{1}^{\mp}$.

Remark. To get the basic algebra $B_{\bar{U}}$ of \bar{U}, we need to determine a complete set of mutually orthogonal primitive idempotents of \bar{U}. The explicit form of it is known, but we omit to give it.

The next problem is :
What is the structure of $B-\bmod$?

In the following, we will give you

- the complete list of indecomposable B-modules and
- Auslander-Reiten quiver of B-mod.

Classification of indecomposable B-modules

We can identify a B-module with data

$$
\mathcal{Z}=\left(V_{\mathcal{Z}}^{+}, V_{\mathcal{Z}}^{-} ; \tau_{1, \mathcal{Z}}^{+}, \tau_{2, \mathcal{Z}}^{+}, \tau_{1, \mathcal{Z}}^{-}, \tau_{2, \mathcal{Z}}^{-}\right)
$$

where

- $V_{\mathcal{Z}}^{ \pm}$is a vector space over \mathbb{C} (attached to the vertices \pm).
- $\tau_{i, \mathcal{Z}}^{ \pm}: V_{\mathcal{Z}}^{ \pm} \rightarrow V_{\mathcal{Z}}^{\mp}(i=1,2)$ are \mathbb{C}-linear maps (attached to the arrows) satisfying $\tau_{i, \mathcal{Z}}^{ \pm} \tau_{i, \mathcal{Z}}^{\mp}=0, \tau_{1, \mathcal{Z}}^{ \pm} \tau_{2, \mathcal{Z}}^{\mp}=\tau_{2, \mathcal{Z}}^{ \pm} \tau_{1, \mathcal{Z}}^{\mp}$.

For positive integers m, n and $i=1, \ldots, m, j=1, \ldots, n$, we denote the composition of j-th projection and i-th embedding

$$
e_{i, j}: \mathbb{C}^{n} \rightarrow \mathbb{C} \rightarrow \mathbb{C}^{m}
$$

Proposition 3. Any indecomposable B-module is isomorphic to exactly one of modules in the following list:

- Simple modules :

$$
\mathcal{X}^{+}=(\mathbb{C},\{0\} ; 0,0,0,0), \quad \mathcal{X}^{-}=(\{0\}, \mathbb{C} ; 0,0,0,0)
$$

- Projective-injective modules :

$$
\begin{aligned}
& \mathcal{P}^{+}=\left(\mathbb{C}^{2}, \mathbb{C}^{2} ; e_{1,1}, e_{2,1}, e_{2,2}, e_{2,1}\right)= \mathbb{C} \\
& \mathbb{C} \\
& \mathbb{C}: \mathbb{C} \\
& \mathbb{C} \\
& \mathcal{P}^{-}=\left(\mathbb{C}^{2}, \mathbb{C}^{2} ; e_{2,2}, e_{2,1}, e_{1,1}, e_{2,1}\right)= \oplus+\mathbb{C} \\
& \mathbb{C} \longrightarrow \mathbb{C}
\end{aligned}
$$

- For each integer $n \geq 2$,

$$
\left.\begin{array}{rl}
\mathcal{M}^{+}(n) & =\left(\mathbb{C}^{n-1}, \mathbb{C}^{n} ; \sum_{i=1}^{n-1} e_{i, i}, \sum_{i=1}^{n-1} e_{i+1, i}, 0,0\right) \\
& =\mathbb{C}^{n-1} \xlongequal{\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)} \mathbb{C}^{n}, \quad\left(\begin{array}{c}
1 \\
\vdots \\
0
\end{array} \cdots\right. \\
\vdots & \vdots \\
\text { Here we omit } \\
0 \text {-arrows. }
\end{array}\right) .
$$

- For each integer $n \geq 1$ and $\lambda \in \mathbb{P}^{1}(\mathbb{C})$,

$$
\begin{aligned}
& \mathcal{E}^{+}(n ; \lambda)=\left(\mathbb{C}^{n}, \mathbb{C}^{n} ; \varphi_{1}(n ; \lambda), \varphi_{2}(n ; \lambda), 0,0\right), \\
& \mathcal{E}^{-}(n ; \lambda)=\left(\mathbb{C}^{n}, \mathbb{C}^{n} ; 0,0, \varphi_{1}(n ; \lambda), \varphi_{2}(n ; \lambda)\right),
\end{aligned}
$$

where

$$
\left(\varphi_{1}(n ; \lambda), \varphi_{2}(n ; \lambda)\right)= \begin{cases}\left(\beta \cdot \mathrm{id}+\sum_{i=1}^{n-1} e_{i, i+1}, \mathrm{id}\right) & (\lambda=[\beta: 1]) \\ \left(\mathrm{id}, \sum_{i=1}^{n-1} e_{i, i+1}\right) & (\lambda=[1: 0])\end{cases}
$$

i.e,

$$
\mathcal{E}^{+}(n ; \lambda)=\left\{\begin{array}{ll}
\mathbb{C}^{n} \stackrel{J(\beta ; n)}{\stackrel{\mathrm{id}}{\mathrm{id}}} \mathbb{C}^{n} & (\lambda=[\beta: 1]), \\
\mathbb{C}^{n} \underset{\mathrm{id}}{J(0 ; n)} & \mathbb{C}^{n}
\end{array}(\lambda=[1: 0]) .\right.
$$

Here $J(\beta ; n)$ is the $(n \times n)$-Jordan cell with eigenvalue β.

Auslander-Reiten quiver of $B-\bmod$

Remark. We "divide" the quiver of B into the following two pieces which are isomorphic to the Kronecker quiver:

Consider AR-quivers of Q^{+}and Q^{-}(i.e. two copies of ARquiver of the Kronecker quiver), and "paste" the above two copies.
$\Rightarrow \quad$ AR-quiver of $B-\bmod$

Structure of \bar{U}-mod

Recall a decomposition of the basic algebra $B_{\bar{U}}$ of \bar{U} :

$$
B_{\bar{U}}=\underset{s=0}{\stackrel{p}{\oplus}} B_{s}
$$

where

$$
B_{0} \cong B_{p} \cong \mathbb{C}, \quad B_{s} \cong B \quad(1 \leq s \leq p-1) .
$$

Denote by $\mathcal{C}(s)$ the full subcategory of \bar{U}-mod corresponding to B_{s}-modules (considered as $B_{\bar{U}}$-modules) for $s=0, \ldots, p$.
\Rightarrow We have a block decomposition of \bar{U}-mod:

$$
\bar{U}-\bmod =\underset{s=0}{\underset{~}{\oplus}} \mathcal{C}(s) .
$$

- For $s=1, \ldots, p-1$, let Φ_{s} be the composition of functors

$$
\Phi_{s}: B-\bmod \rightarrow B_{\bar{U}}-\bmod \rightarrow \bar{U}-\text { mod. }
$$

We denote by

$$
\begin{gathered}
\mathcal{X}_{s}^{+}, \mathcal{X}_{p-s}^{-}, \mathcal{P}_{s}^{+}, \mathcal{P}_{p-s}^{-}, \mathcal{M}_{s}^{+}(n), \mathcal{M}_{p-s}^{-}(n), \mathcal{W}_{s}^{+}(n), \mathcal{W}_{p-s}^{-}(n), \\
\mathcal{E}_{s}^{+}(n ; \lambda), \mathcal{E}_{p-s}^{-}(n ; \lambda)
\end{gathered}
$$

the images of

$$
\begin{gathered}
\mathcal{X}^{+}, \mathcal{X}^{-}, \mathcal{P}^{+}, \mathcal{P}^{-}, \mathcal{M}^{+}(n), \mathcal{M}^{-}(n), \mathcal{W}^{+}(n), \mathcal{W}^{-}(n), \\
\mathcal{E}^{+}(n ; \lambda), \mathcal{E}^{-}(n ; \lambda)
\end{gathered}
$$

by Φ_{s}.

- On the other hand, for $s=0$ or p, let Φ_{s} be the composition of functors

$$
\Phi_{s}: \mathbb{C}-\bmod \rightarrow B_{\bar{U}^{-}}-\bmod \rightarrow \bar{U}-\bmod
$$

Let us denote $\mathcal{X} \cong \mathbb{C}$ the unique simple object in \mathbb{C} - mod. We denote the corresponding object in $\mathcal{C}(0)$ and $\mathcal{C}(p)$ by

$$
\begin{aligned}
\mathcal{X}_{p}^{-} & :=\Phi_{0}(\mathcal{X}) \in \mathcal{C}(0) \\
\mathcal{X}_{p}^{+} & :=\Phi_{p}(\mathcal{X}) \in \mathcal{C}(p)
\end{aligned}
$$

We remark that both \mathcal{X}_{p}^{-}and \mathcal{X}_{p}^{+}are also projective. In that sense, we sometimes denote

$$
\mathcal{P}_{p}^{ \pm}:=\mathcal{X}_{p}^{ \pm}
$$

Simple objects in $\mathcal{C}(s)$

The explicit form of $\Phi_{s}\left(\mathcal{X}^{ \pm}\right)$are given as follows:

- $1 \leq s \leq p-1$
- $\mathcal{X}_{s}^{+}=\Phi_{s}\left(\mathcal{X}^{+}\right)$is isomorphic to the s-dimensional module defined by basis $\left\{a_{n}\right\}_{n=0, \ldots, s-1}$ and \bar{U}-action given by

$$
\begin{gathered}
K a_{n}=q^{s-1-2 n} a_{n}, \\
E a_{n}=\left\{\begin{array}{ll}
{[n][s-n] a_{n-1}} & (n \neq 0) \\
0 & (n=0)
\end{array},\right. \\
F a_{n}= \begin{cases}a_{n+1} & (n \neq s-1) \\
0 & (n=s-1)\end{cases}
\end{gathered}
$$

- $\mathcal{X}_{p-s}^{-}=\Phi_{s}\left(\mathcal{X}^{-}\right)$is isomorphic to the $(p-s)$-dimensional module defined by basis $\left\{a_{n}\right\}_{n=0, \ldots, p-s-1}$ and \bar{U}-action given by

$$
\begin{gathered}
K a_{n}=-q^{p-s-1-2 n} a_{n}, \\
E a_{n}=\left\{\begin{array}{ll}
-[n][p-s-n] a_{n-1} & (n \neq 0) \\
0 & (n=0)
\end{array},\right. \\
F a_{n}= \begin{cases}a_{n+1} & (n \neq p-s-1) \\
0 & (n=p-s-1)\end{cases}
\end{gathered}
$$

Remark. Since we consider all finite dimensional \bar{U}-modules, modules which are not of type I are appeared. For example, \mathcal{X}_{s}^{+}is a \bar{U}-module of type I. On the other hand \mathcal{X}_{p-s}^{-}is not.

○ $s=0$ or p
$\mathcal{X}_{p}^{+}=\Phi_{p}(\mathcal{X})\left(\right.$ resp. $\left.\quad \mathcal{X}_{p}^{-}=\Phi_{0}(\mathcal{X})\right)$ is the p-dimensional irreducible module of \bar{U} defined as similar way.

Other indecomposable objects in $\mathcal{C}(s)(1 \leq s \leq p-1)$

- Since $\mathcal{C}(s)$ is equivalent to B - mod as an abelian category, all information of indecomposable objects in $\mathcal{C}(s)$ can be obtained form one of the corresponding objects in B-mod.

Example. In B-mod, the structure of the projective modules $\mathcal{P}^{ \pm}$are given as:

By easy computation, we have

$$
\operatorname{Ext}_{B}^{1}\left(\mathcal{X}^{ \pm}, \mathcal{X}^{\mp}\right)=\mathbb{C}^{2}
$$

We fix basis of $\operatorname{Ext}_{B}^{1}\left(\mathcal{X}^{+}, \mathcal{X}^{-}\right)$and $\operatorname{Ext}_{B}^{1}\left(\mathcal{X}^{-}, \mathcal{X}^{+}\right)$by $\left\{x_{1}^{+}, x_{2}^{+}\right\}$ and $\left\{x_{1}^{-}, x_{2}^{-}\right\}$respectively.
(We omit to give the explicit form of them.)
In the above diagram, we denote $\mathcal{X}_{1} \xrightarrow{x} \mathcal{X}_{2}$ by the extension by $x \in \operatorname{Ext}_{B}^{1}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$.

Applying the functor Φ_{s}, we have

As a corollary, we have

$$
\operatorname{dim} \mathcal{P}_{s}^{+}=2 p(=2 s+2(p-s)), \quad \operatorname{dim} \mathcal{P}_{p-s}^{-}=2 p
$$

\S Calculation of tensor products

Main tools

(a) Some (basic) short exact sequences.
(It is enough to show the existence of them in B-mod.)
(b) Exactness of the functors $-\otimes \mathcal{Z}$ and $\mathcal{Z} \otimes-$.
$(\because \otimes$ in a tensor product over a field \mathbb{C}. $)$
(c) For a projective module \mathcal{P}, both $\mathcal{P} \otimes \mathcal{Z}$ and $\mathcal{Z} \otimes \mathcal{P}$ are also projective.
(d) \bar{U} is a Frobenius algebra. As a by-product, \mathcal{Z} is projective $\Leftrightarrow \mathcal{Z}$ is injective.
(e) Rigidity : For $n \geq 0$,

$$
\begin{aligned}
& \operatorname{Ext} \frac{n}{\bar{U}}\left(\mathcal{Z}_{1}, \mathcal{Z}_{2} \otimes \mathcal{Z}_{3}\right) \cong \operatorname{Ext} \frac{n}{\bar{U}}\left(D\left(\mathcal{Z}_{2}\right) \otimes \mathcal{Z}_{1}, \mathcal{Z}_{3}\right) \\
& \operatorname{Ext} \frac{n}{\bar{U}}\left(\mathcal{Z}_{1} \otimes \mathcal{Z}_{2}, \mathcal{Z}_{3}\right) \cong \operatorname{Ext} \frac{n}{\bar{U}}\left(\mathcal{Z}_{1}, \mathcal{Z}_{3} \otimes D\left(\mathcal{Z}_{2}\right)\right)
\end{aligned}
$$

Here $D(\mathcal{Z})$ the standard dual of $\mathcal{Z} \in \bar{U}$-mod. More precisely, define \bar{U}-module structure on the dual space $D(\mathcal{Z}):=\operatorname{Hom}_{\mathbb{C}}(\mathcal{Z}, \mathbb{C})$ as:

$$
(a \cdot f)(z):=f(S(a) z) \quad(a \in \bar{U}, f \in D(\mathcal{Z}), z \in \mathcal{Z})
$$

where S is the antipode of \bar{U}.
Remark . It is known that the properties (c), (d) and (e) hold in more general setting. Namely, for any finite dimensional Hopf-algebra A over a field, these properties hold in $A-$ mod. (Of course, (b) is also satisfied.)

Tensor products of simple modules

The following proposition is proved by Reshetikhin-Turaev. Proposition 4 (Reshetikhin-Traev). For $s, s^{\prime}=1, \ldots, p$,
where

$$
\delta= \begin{cases}1 & \left(s+s^{\prime}-p-1 \text { is odd }\right) \\ 0 & \left(s+s^{\prime}-p-1 \text { is even }\right)\end{cases}
$$

- If $s+s^{\prime}-1 \leq p$, the formula is nothing but ClebushGordan formula.
- It is easy to see that

$$
\begin{aligned}
& \mathcal{X}_{s}^{ \pm} \otimes \mathcal{X}_{1}^{-} \cong \mathcal{X}_{1}^{-} \otimes \mathcal{X}_{s}^{ \pm} \cong \mathcal{X}_{s}^{\mp} \\
& \mathcal{P}_{s}^{ \pm} \otimes \mathcal{X}_{1}^{-} \cong \mathcal{X}_{1}^{-} \otimes \mathcal{P}_{s}^{ \pm} \cong \mathcal{P}_{s}^{\mp}
\end{aligned}
$$

By the associativity of tensor products, we can calculate other decompositions. For example,

$$
\begin{aligned}
\mathcal{X}_{s}^{-} \otimes \mathcal{X}_{s^{\prime}}^{+} & \cong\left(\mathcal{X}_{1}^{-} \otimes \mathcal{X}_{s}^{+}\right) \otimes \mathcal{X}_{s^{\prime}}^{+} \\
& \cong \mathcal{X}_{1}^{-} \otimes\left(\left(\oplus_{t} \mathcal{X}_{t}^{+}\right) \oplus\left(\oplus_{t^{\prime}} \mathcal{P}_{t^{\prime}}^{+}\right)\right) \\
& \cong\left(\left(\oplus_{t} \mathcal{X}_{t}^{-}\right) \oplus\left(\oplus_{t^{\prime}} \mathcal{P}_{t^{\prime}}^{-}\right)\right)
\end{aligned}
$$

Main result

Theorem 5. Indecomposable decomposition of all tensor products in \bar{U} - mod is completely determined in explicit formulas.

Since there are too many indecomposables in \bar{U} - mod, we can not list up all formulas in this talk. In the following, we will give some typical examples.

$\underline{\text { Tensor products of } \mathcal{E}_{s}^{ \pm}(1 ; \lambda) \text { with simple modules }}$

By direct calculation, we have the following.
Proposition 6. For $s, s^{\prime}=1, \ldots, p-1, n \geq 1$ and $\lambda=$ $\left[\lambda_{1}: \lambda_{2}\right] \in \mathbb{P}^{1}(\mathbb{C})$ we have

$$
\begin{gathered}
\mathcal{E}_{s}^{ \pm}(1 ; \lambda) \otimes \mathcal{X}_{1}^{-} \cong \mathcal{E}_{s}^{\mp}(1 ;-\lambda) \\
\mathcal{X}_{1}^{-} \otimes \mathcal{E}_{s}^{ \pm}(1 ; \lambda) \cong \mathcal{E}_{s}^{\mp}\left(1 ;(-1)^{p-1} \lambda\right) \\
\mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{2}^{+} \cong \mathcal{E}_{s-1}^{+}\left(1 ; \frac{[s]}{[s-1]} \lambda\right) \oplus \mathcal{E}_{s+1}^{+}\left(1 ; \frac{[s]}{[s+1]} \lambda\right) \\
\mathcal{X}_{2}^{+} \otimes \mathcal{E}_{s}^{+}(1 ; \lambda) \cong \mathcal{E}_{s-1}^{+}\left(1 ;-\frac{[s]}{[s-1]} \lambda\right) \oplus \mathcal{E}_{s+1}^{+}\left(1 ;-\frac{[s]}{[s+1]} \lambda\right)
\end{gathered}
$$

Here, for $c \in \mathbb{C}$, we set $c \lambda=\left[c \lambda_{1}: \lambda_{2}\right] \in \mathbb{P}^{1}(\mathbb{C})$.

Remark . This proposition tells us that, in general,

$$
\begin{aligned}
& \mathcal{E}_{s}^{ \pm}(1 ; \lambda) \otimes \mathcal{X}_{1}^{-} \not \neq \mathcal{X}_{1}^{-} \otimes \mathcal{E}_{s}^{ \pm}(1 ; \lambda), \\
& \mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{2}^{+} \not \not 二 \mathcal{X}_{2}^{+} \otimes \mathcal{E}_{s}^{+}(1 ; \lambda) .
\end{aligned}
$$

That is, $\bar{U}-\mathbf{m o d}$ is not a braided tensor category.

Proposition 7. For $s, s^{\prime}=1, \ldots, p-1$ and $\lambda \in \mathbb{P}^{1}(k)$,
$\mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+} \cong \bigoplus_{t_{1} \in I_{s, s^{\prime}}} \mathcal{E}_{t_{1}}^{+}\left(1 ; \frac{[s]}{\left[t_{1}\right]} \lambda\right) \oplus \bigoplus_{t_{2} \in J_{s+s^{\prime}}} \mathcal{P}_{t_{2}}^{+} \oplus \bigoplus_{t_{3} \in J_{p-s+s^{\prime}}} \mathcal{P}_{t_{3}}^{-}$.
Here, $I_{s, s^{\prime}}, J_{s+s^{\prime}}, J_{p-s+s^{\prime}}$ are some sets of integers.
(For $\mathcal{X}_{s^{\prime}}^{+} \otimes \mathcal{E}_{s}^{+}(1 ; \lambda)$, we have a similar formula.)
Proof. There is a (basic) exact sequence in \bar{U}-mod:

$$
0 \rightarrow \mathcal{X}_{p-s}^{-} \rightarrow \mathcal{E}_{s}^{+}(1 ; \lambda) \rightarrow \mathcal{X}_{s}^{+} \rightarrow 0 .
$$

Applying $-\otimes \mathcal{X}_{s^{\prime}}^{+}$, we have

$$
0 \rightarrow \mathcal{X}_{p-s}^{-} \otimes \mathcal{X}_{s^{\prime}}^{+} \rightarrow \mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+} \rightarrow \mathcal{X}_{s}^{+} \otimes \mathcal{X}_{s^{\prime}}^{+} \rightarrow 0
$$

By Proposition 4, we have

$$
\mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+} \cong \bigoplus_{t_{1}} \mathcal{Z}_{t_{1}}^{+} \oplus \bigoplus_{t_{2}} \mathcal{P}_{t_{2}}^{+} \oplus \bigoplus_{t_{2}} \mathcal{P}_{t_{3}}^{-}
$$

with an exact sequence $0 \rightarrow \mathcal{X}_{p-t_{1}}^{-} \rightarrow \mathcal{Z}_{t_{1}} \rightarrow \mathcal{X}_{t_{1}}^{+} \rightarrow 0$ for each t_{1}. We remark that $\mathcal{Z}_{t_{1}}$ is not projective.

Assume the formula hols for $s^{\prime \prime} \leq s^{\prime}-1$. Then,

$$
\begin{aligned}
\left(\mathcal{E}_{s}^{+}(1 ; \lambda)\right. & \left.\otimes \mathcal{X}_{s^{\prime}-1}^{+}\right) \otimes \mathcal{X}_{2}^{+} \\
& \cong \mathcal{E}_{s}^{+}(1 ; \lambda) \otimes\left(\mathcal{X}_{s^{\prime}-1}^{+} \otimes \mathcal{X}_{2}^{+}\right) \\
& \cong \mathcal{E}_{s}^{+}(1 ; \lambda) \otimes\left(\mathcal{X}_{s^{\prime}-2}^{+} \oplus \mathcal{X}_{s^{\prime}}^{+}\right) \\
& \cong\left(\mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{s^{\prime}-2}^{+}\right) \oplus\left(\mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+}\right)
\end{aligned}
$$

tells us that a non-projective indecomposable summand of $\mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+}$must be of the form $\mathcal{E}_{t}^{+}\left(1 ; \frac{[s]}{[t]} \lambda\right)$ with $t=$ $1, \ldots, p-1$. Then we have $\mathcal{Z}_{t_{1}} \cong \mathcal{E}_{t_{1}}^{+}\left(1 ; \frac{[s]}{\left[t_{1}\right]} \lambda\right)$ since $\mathcal{Z}_{t_{1}}$ cannot be projective. Thus we have the formula.

Tensor products of $\mathcal{E}_{s}^{ \pm}(n ; \lambda)$ with simple modules

For computing these combination, we need the rigidity.
Proposition 8. For $s=1, \ldots, p-1$ and $\lambda \in \mathbb{P}^{1}(k)$,

$$
\begin{aligned}
& D\left(\mathcal{X}_{s}^{ \pm}\right) \cong \mathcal{X}_{s}^{ \pm}, \quad D\left(\mathcal{E}_{s}^{+}(1 ; \lambda)\right) \cong \mathcal{E}_{p-s}^{-}\left(1 ;(-1)^{s} \lambda\right) \\
& D\left(\mathcal{E}_{s}^{-}(1 ; \lambda)\right) \cong \mathcal{E}_{p-s}^{+}\left(1 ;(-1)^{p-s} \lambda\right)
\end{aligned}
$$

Proposition 9.

$D\left(\mathcal{E}_{s}^{+}(n ; \lambda)\right) \cong \mathcal{E}_{p-s}^{-}\left(n ;(-1)^{s} \lambda\right), D\left(\mathcal{E}_{s}^{-}(n ; \lambda)\right) \cong \mathcal{E}_{p-s}^{+}\left(n ;(-1)^{p-s} \lambda\right)$.
Proof. Since $\operatorname{dim} \mathcal{E}_{s}^{+}(n ; \lambda)=p n$ and D preserves direct sum and dimension, $D\left(\mathcal{E}_{s}^{+}(n ; \lambda)\right)$ is an indecomposable module of dimension $p n$.
\Rightarrow This is of the form $\mathcal{E}_{t}^{ \pm}(n ; \mu)$ or is projective (the latter case could occur only if $n \leq 2$).

$$
\operatorname{ext} \frac{1}{\bar{U}}\left(D\left(\mathcal{E}_{s}^{+}(n ; \lambda)\right), \mathcal{X}_{s}^{+}\right) \quad\left(\text { ext }:=\operatorname{dim}_{\mathbb{C}} \text { Ext. }\right)
$$

$$
=\operatorname{ext} \frac{1}{\bar{U}}\left(D\left(\mathcal{E}_{s}^{+}(n ; \lambda)\right) \otimes \mathcal{X}_{1}^{+}, \mathcal{X}_{s}^{+}\right)=\operatorname{ext}_{\bar{U}}^{1}\left(\mathcal{X}_{1}^{+}, \mathcal{E}_{s}^{+}(n ; \lambda) \otimes \mathcal{X}_{s}^{+}\right)
$$

$$
=\operatorname{ext}_{\bar{U}}^{1}\left(\mathcal{X}_{1}^{+}, \mathcal{E}_{s}^{+}(n ; \lambda) \otimes D\left(\mathcal{X}_{s}^{+}\right)\right)=\operatorname{ext}_{\bar{U}}^{1}\left(\mathcal{X}_{1}^{+} \otimes \mathcal{X}_{s}^{+}, \mathcal{E}_{s}^{+}(n ; \lambda)\right)
$$

$$
=\operatorname{ext}_{\bar{U}}^{1}\left(\mathcal{X}_{s}^{+}, \mathcal{E}_{s}^{+}(n ; \lambda)\right)=\operatorname{ext}_{B}^{1}\left(\mathcal{X}^{+}, \mathcal{E}^{+}(n ; \lambda)\right)=n
$$

$\Rightarrow D\left(\mathcal{E}_{s}^{+}(n ; \lambda)\right)$ must be of the form $\mathcal{E}_{t}^{ \pm}(n ; \mu)$.
By the similar argument,

$$
\begin{aligned}
\operatorname{ext}_{\frac{1}{U}}^{1} & \left(D\left(\mathcal{E}_{s}^{+}(n ; \lambda)\right), \mathcal{E}_{s}^{+}(1 ; \mu)\right)=\operatorname{ext}_{B}^{1}\left(\mathcal{E}^{-}\left(1 ;(-1)^{s} \mu\right), \mathcal{E}^{+}(n ; \lambda)\right) \\
& =\left\{\begin{array}{cc}
1 & \left((-1)^{s} \mu=-\lambda\right) \\
0 & \left((-1)^{s} \mu \neq-\lambda\right)
\end{array}\right.
\end{aligned}
$$

$$
\Rightarrow \quad D\left(\mathcal{E}_{s}^{+}(n ; \lambda)\right) \cong \mathcal{E}_{p-s}^{-}\left(n ;(-1)^{s} \lambda\right)
$$

Proposition 10.

$$
\begin{aligned}
\mathcal{E}_{s}^{+}(n ; \lambda) & \otimes \mathcal{X}_{s^{\prime}}^{+} \\
& \cong \bigoplus_{t_{1} \in I_{s, s^{\prime}}} \mathcal{E}_{t_{1}}^{+}\left(n ; \frac{[s]}{\left[t_{1}\right]} \lambda\right) \oplus \bigoplus_{t_{2} \in J_{s+s^{\prime}}}\left(\mathcal{P}_{t_{2}}^{+}\right)^{n} \oplus \bigoplus_{t_{3} \in J_{p-s+s^{\prime}}}\left(\mathcal{P}_{t_{3}}^{-}\right)^{n}
\end{aligned}
$$

(We have a similar formula for $\mathcal{X}_{s^{\prime}}^{+} \otimes \mathcal{E}_{s}^{+}(n ; \lambda)$.)
Proof. The same argument as the case of $\mathcal{E}_{s}^{+}(1 ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+}$shows that

$$
\mathcal{E}_{s}^{+}(n ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+} \cong \bigoplus_{t_{1}} \mathcal{Z}_{t_{1}} \oplus \bigoplus_{t_{2}}\left(\mathcal{P}_{t_{2}}^{+}\right)^{n} \oplus \bigoplus_{t_{3}}\left(\mathcal{P}_{t_{3}}^{-}\right)^{n}
$$

with an exact sequence $0 \rightarrow\left(\mathcal{X}_{p-t_{1}}^{-}\right)^{n} \rightarrow \mathcal{Z}_{t_{1}} \rightarrow\left(\mathcal{X}_{t_{1}}^{+}\right)^{n} \rightarrow 0$ for each t_{1}. Moreover, by the exact sequence

$$
0 \rightarrow \mathcal{E}_{s}^{ \pm}(n-1 ; \lambda) \rightarrow \mathcal{E}_{s}^{ \pm}(n ; \lambda) \rightarrow \mathcal{E}_{s}^{ \pm}(1 ; \lambda) \rightarrow 0
$$

and induction on n, we have the following exact sequence

$$
0 \rightarrow \mathcal{E}_{t_{1}}^{+}\left(n-1 ; \frac{[s]}{\left[t_{1}\right]} \lambda\right) \rightarrow \mathcal{Z}_{t_{1}} \rightarrow \mathcal{E}_{t_{1}}^{+}\left(1 ; \frac{[s]}{\left[t_{1}\right]} \lambda\right) \rightarrow 0 .
$$

$\Rightarrow \quad \mathcal{Z}_{t_{1}} \in \mathcal{C}\left(t_{1}\right)$ and $\operatorname{dim}_{\mathbb{C}} \mathcal{Z}_{t_{1}}=p n$.
By using the rigidity, we have

$$
\begin{aligned}
\operatorname{ext}_{\frac{1}{U}}\left(\mathcal{E}_{s}^{+}(n ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+}, \mathcal{X}_{t}^{+}\right) & =0, \\
\operatorname{ext}_{\bar{U}}\left(\mathcal{E}_{s}^{+}(n ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+}, \mathcal{X}_{p-t}^{-}\right) & =n, \\
\operatorname{ext}_{\bar{U}}^{1}\left(\mathcal{E}_{s}^{+}(n ; \lambda) \otimes \mathcal{X}_{s^{\prime}}^{+}, \mathcal{E}_{t}^{+}(1 ; \mu)\right) & =\left\{\begin{array}{ll}
1 & \left(\lambda=\frac{[t]}{[s]} \mu\right) \\
0 & \left(\lambda \neq \frac{[t]}{[s]} \mu\right)
\end{array} .\right.
\end{aligned}
$$

\Rightarrow By the above properties, $\mathcal{Z}_{t_{1}}$ is uniquely determined. Namely, we have $\mathcal{Z}_{t_{1}} \cong \mathcal{E}_{t_{1}}^{+}\left(n ; \frac{[s]}{\left[t_{1}\right]} \lambda\right)$.

Conclusions

For other combinations, we can compute the explicit formulas by the similar methods.

As a by-product, we have
Corollary 11. (1) Let $\mathcal{Z}_{1}, \mathcal{Z}_{2}$ be $\bar{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules. If \mathcal{Z}_{1} nor \mathcal{Z}_{2} do not have any indecomposable summand of type \mathcal{E}, we have $\mathcal{Z}_{1} \otimes \mathcal{Z}_{2} \cong \mathcal{Z}_{2} \otimes \mathcal{Z}_{1}$.
(2) If $p=2$, for arbitrary $\bar{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules $\mathcal{Z}_{1}, \mathcal{Z}_{2}$ we have $\mathcal{Z}_{1} \otimes \mathcal{Z}_{2} \cong \mathcal{Z}_{2} \otimes \mathcal{Z}_{1}$.
(3) If $p \geq 3$, there exist $\bar{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules $\mathcal{Z}_{1}, \mathcal{Z}_{2}$ such that $\mathcal{Z}_{1} \otimes \mathcal{Z}_{2} \neq \mathcal{Z}_{2} \otimes \mathcal{Z}_{1}$. In particular, $\bar{U}_{q}\left(\mathfrak{s l}_{2}\right)-\bmod$ is not a braided tensor category.

Remark . These method can be applied only for $\mathfrak{s l} l_{2}$-case. If $\mathfrak{g} \neq \mathfrak{s} l_{2}$, it is known that $\bar{U}_{q}(\mathfrak{g})-\bmod$ has a wild representation type.

