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§ Introduction

Mirković-Vilonen (1997∼)

• MV cycles : Algebraic cycles in affine Grassmannian

Kamnitzer (2005∼)

• Moment map image ⇒ MV polytopes : Polytopes in hR(R
∨)

• MV : the set of all MV polytopes has a crystal structure,
and MV ∼= B(∞).

• Prove the Anderson-Mirković conjecture in type A.

(It tells us the explicit action of f̃i on MV .)

That is, the Kamnitzer’s result tells us a realization of B(∞)
in terms of MV polytopes.

Today :

In type A, compare the Kamnitzer’s realization with

• a realization of B(∞) in terms of Young tableaux,

• a realization of B(∞) in terms of irreducible Lagrangians

and, as an application, we will give

• a new proof of AM conjecture.
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§ Notations

Uq = Uq(sln+1) = 〈ei, fi, t±1
i (i ∈ I)〉.

B(∞) : the crystal basis of U−
q

∗ : Uq → Uq : a Q(q)-algebra anti-automorphism

ei 7→ ei, fi 7→ fi, t±i 7→ t∓i .

⇒ ∗ : B(∞) → B(∞).

Set
ε∗i (b) := εi(b

∗), ϕ∗
i (b) := ϕi(b

∗),

ẽ∗i := ∗ ◦ ẽi ◦ ∗, f̃ ∗
i := ∗ ◦ f̃i ◦ ∗.

⇒ The set B(∞) endowed with maps wt, ε∗i , ϕ∗
i , ẽ∗i , f̃ ∗

i

is a crystal.

( “the ∗-crystal structure” on B(∞))

That is, B(∞) has two crystal structures :

(B(∞) ; wt, εi, ϕi, ẽi, f̃i),

(B(∞)∗ = B(∞) ; wt, ε∗i , ϕ∗
i , ẽ∗i , f̃ ∗

i ).
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§ Realization I : Young tableaux

λ ∈ P+ : dominant integral weight

V (λ) : irreducible Uq-module with h.w. λ

B(λ) : crystal basis of V (λ)

Theorem (Kashiwara-Nakashima).

B(λ) ∼= SST (λ).

Here SST (λ) is the set of semistandard Young tableaux of
shape λ.

• Take λ → ∞ (w.r.t. λ ≥ µ ⇔ λ − µ ∈ Q+)

B(λ) ∼= SST (λ)
↓ ↓

B(∞) ∼= B

B : The set of all n(n + 1)/2 tuples of non-negative integers

a = (ai,j)1≤i<j≤n+1

We regard B as “SST (∞)” via

ai,j=“the number of j in the i-th row of a tableau”

Remark .

(1) The explicit crystal structure of B can be determined.

(2) Since B(∞) has the ∗-crystal structure, B also has the

induced ∗-crystal structure.

(We omit to give them.)
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§ Realization II : Lagrangian construction

(I,H) : (double) quiver of type An

(I = {1, · · · , n} : set of vertices, H : set of arrows)

Ω ⊂ H : an orientation ⇒ (I, Ω) : a quiver of type An.

V = ⊕i∈IVi : finite dimensional I-graded complex vector space

EV,Ω := ⊕
τ∈Ω

HomC(Vout(τ), Vin(τ)),

XV,Ω := ⊕
τ∈H

HomC(Vout(τ), Vin(τ))

= EV,Ω ⊕ EV,Ω

∼= T ∗EV,Ω.

GV :=
∏

i∈I GL(Vi) y EV,Ω and XV .

⇒ µ : XV → (LieGV )∗ ∼= ⊕i∈IEnd(Vi) : moment map

ΛV := µ−1(0) : a Lagrangian subvariety of XV .

Irr ΛV : the set of all irreducible components of ΛV .

Theorem (Kashiwara-S).

(1)
⊔

V Irr ΛV
∼= B(∞).

(2)
⊔

V Irr ΛV has a ∗-crystal structure induced from the
map

∗ : B 7→ tB (B ∈ XV ),

and
⊔

V Irr ΛV
∼= B(∞) as ∗-crystals.

Remark . Since (I, Ω) is of type An, for Λ ∈ ΛV , there is a
unique GV -orbit O ⊂ EV,Ω such that

Λ = T ∗
OEV,Ω.
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§ Comparison I & II

◦ Preliminaries

• There is a natural one to one correspondence

GV -orbits in EV,Ω
∼= isomorphism classes of reps. of (I, Ω)

with dimension vector = dim V.

• There is a one to one correspondence

∆+
∼= isomorphism classes of

indecomposable reps. of (I, Ω),

where ∆+ is the set of positive roots (Gabriel’s theorem).

For a positive root α ∈ ∆+, we denote by e(α, Ω) the corre-
sponding indecomposable representation of (I, Ω).

• ∆+ =
{

αi,j :=
∑j−1

k=i αk

∣∣∣ 1 ≤ i < j ≤ n + 1
}

.
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◦ Realization I ⇒ Realization II

Consider the following orientation:

Ω0 : ¾ ¾ ¾ · · · ¾ ¾ ¾
1 2 3 n − 2 n − 1 n

e e e e e e
For a = (ai,j)1≤i<j≤n+1 ∈ B, set

e(a, Ω0) := ⊕
1≤i<j≤n+1

e(αi,j, Ω0)
⊕ai,j .

We denote by Oa ⊂ EV,Ω0 the GV -orbit through e(a, Ω0) and
let

Λa := T ∗
Oa

EV,Ω0.

Proposition .

The map B →
⊔

V Irr ΛV defined by

a 7→ Λa

is an isomorphism of crystals in usual sense. Moreover
this map is compatible with the ∗-crystal structures.
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§ Realization III : MV polytopes

◦ Definition of MV polytopes

K ⊂ [1, n + 1] : a Maya diagram of size n

Mn : the set of all Maya diagrams of size n

M×
n := Mn \ {φ, [1, n + 1]}

M = (MK)K∈M×
n

: a family of integers indexed by M×
n

• W = Sn+1 y Mn, M×
n .

We can identify M×
n with Γn :=

⊔
w∈W, i∈I WΛi via

[1, i] ↔ Λi.

• For M = (MK)K∈M×
n
, consider a polytope in hR

P (M) := {h ∈ hR | 〈h,K〉 ≥ MK (∀K ∈ M×
n )}.

• A polytope P (M) is called a pseudo-Weyl polytope if it

satisfies the following condition:

(BZ-1) for every two indices i 6= j in [1, n + 1] and every

K ∈ Mn with K ∩ {i, j} = φ,

MKi + MKj ≤ MKij + MK.

Here we denote Kij = K ∪ {i, j} etc., and we set Mφ =
M[1,n+1] = 0.
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Remark .

P (M) : a pseudo-Weyl polytope

⇒ P (M) is the convex hull of µ• := (µw)w∈W ⊂ hR (GGMS

datum) where

µw :=

n∑
i=1

MwΛi
wα∨

i ∈ hR (w ∈ W ).

That is, for a pseudo-Weyl polytope,

P (M) ↔ M = (MK)K∈M×
n
.

Definition .

(1) M is called a BZ datum if it satisfies (BZ-1) and

(BZ-2) for every three indices i < j < k in [1, n + 1] and

every K ∈ Mn with K ∩ {i, j, k} = φ,

MKik + MKj = min {MKij + MKk, MKjk + MKi} .

(2) P (M) is called a MV polytope if M is a BZ datum.

That is,

(BZ-1) ⇒ P (M) : a pseudo-Weyl polytope

(BZ-1) & (BZ-2) ⇒ P (M) : a MV polytope
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◦ Crystal structure on BZ data

A BZ datum M is called a w0-BZ datum if

Mw0Λi
= M[n−i+1,n+1] = 0 for 1 ≤ ∀i ≤ n.

BZw0 : the set of all w0-BZ data

Let us define a crystal structure on BZw0. For M ∈ BZw0,

wt(M) :=
∑

1≤i≤n

M[1,i]αi,

εi(M) := −
(
M[1,i] + M[1,i+1]\{i} − M[1,i+1] − M[1,i]\{i}

)
,

ϕi(M) := εi(M) + 〈hi, wt(M)〉.

If εi(M) = 0, we set ẽiM = 0.

Otherwise, there exists a unique w0-BZ datum ẽiM s.t.

(i) (ẽiM)[1,i] = M[1,i] + 1,
(ii) (ẽiM)K = MK for all K ∈ M×

n \M×
n (i).

Here M×
n (i) = {K ∈ M×

n | i ∈ K and i + 1 6∈ K} ⊂ M×
n .

There exists a unique a unique w0-BZ datum f̃iM s.t.

(iii) (f̃iM)[1,i] = M[1,i] − 1,

(iv) (f̃iM)K = MK for all K ∈ M×
n \M×

n (i).

Theorem (Kamniter).

BZw0 is a crystal which is isomorphic to B(∞).

• This theorem gives us the 3-rd realization of B(∞) in terms
of BZ data (or MV polytopes).
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◦ AM conjecture

Anderson and Mirković conjectured the explicit form of the
action of f̃i on BZw0 (AM conjecture). This conjecture is
proved by Kamnitzer.

Theorem (Kamniter).

For each i ∈ I, we have

(f̃iM)K =

{
min {MK, MsiK + ci(M)} (K ∈ M×

n (i)),
MK (otherwise).

Here ci(M) = M[1,i] − M[1,i+1]\{i} − 1.

In the last of this talk, we will give a sketch of a new proof of
this theorem.
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§ From Realization I or II to Realization III

◦ e-BZ data and w0-BZ data

To make a bridge form the 1-st or 2-nd realization of B(∞) to
the 3-rd one, we introduce a notion of e-BZ data.

A BZ datum M′ is called a e-BZ datum if

M ′
Λi

= M ′
[1,i] = 0 for 1 ≤ ∀i ≤ n.

BZe : the set of all e-BZ data

• For M = (MK)K∈M×
n
∈ BZw0, set M∗ = (M ∗

K)K∈M×
n

by

M ∗
K := MKc

where Kc := [1, n + 1] \ K is the compliment of K ∈ M×
n .

Then, it is easy to check M∗ ∈ BZe and the map

∗ : BZw0 → BZe

gives a bijection. The inverse is also denoted by ∗.

• We can define a crystal structure on BZe :

ẽ∗i : BZe ∗−→ BZw0 ẽi−→ BZw0 ∗−→ BZe,

f̃ ∗
i : BZe ∗−→ BZw0 f̃i−→ BZw0 ∗−→ BZe,

etc.
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◦ From I to III

Definition . Let K = {k1 < k2 < · · · < kl} ∈ M×
n be

a Maya diagram. For such K, we define a K-tableau as
an upper-triangular matrix C = (cp,q)1≤p≤q≤l with integer
entries satisfying

cp,p = kp (1 ≤ p ≤ l),

and the usual monotonicity conditions for semi-standard
tableaux:

cp,q ≤ cp,q+1, cp,q < cp+1,q.

Example .

K = {1, 3, 4} ⇒ K-tableaux are : 1 1 1
3 3

4

 ,

 1 1 2
3 3

4

 ,

 1 2 2
3 3

4

 .
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Recall a = (ai,j) ∈ B : “limit” of semistandard Young tableau.

For a giving a = (ai,j) ∈ B, let M(a) = (MK(a))K∈M×
n

be a
collection of integers defined by

MK(a) := −
l∑

j=1

kj−1∑
i=1

ai,kj

+ min

 ∑
1≤p<q≤l

acp,q,cp,q+(q−p)

∣∣∣∣∣∣ C = (cp,q) is
a K-tableau.


and denote the map a 7→ M(a) by Ψ.

Proposition (Bernstein-Fomin-Zelevinsky).

For any a ∈ B, Ψ(a) = M(a) is an e-BZ datum. Moreover
Ψ : B → BZe is a bijection.

Moreover we can prove

Proposition .

The map Ψ : B ∼→ BZe is an isomorphism of ∗-crystals.
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◦ From II to III

Any Maya diagram K ∈ M×
n can be written as a disjoint

union of intervals

K = [s1 + 1, t1] t [s2 + 1, t2] t · · · t [sl + 1, tl]
(0 ≤ s1 < t1 < s2 < t2 < · · · < sl < tl ≤ n + 1).

Km = [sm + 1, tm] (1 ≤ m ≤ l) : the m-th component of K.

out(K) := {tm| 1 ≤ m ≤ l} ∩ [1, n],

in(K) := {sm| 1 ≤ m ≤ l} ∩ [1, n].

Ω(K) : the orientation so that

• an element of out(K) is a source,
• an element if in(K) is a sink.

Example . Let n = 17 and

K = [3, 4] t [7, 8] t [10, 13] t [16, 17].

Then we have

out(K) = {4, 8, 13}, in(K) = {2, 6, 9, 15}.
In this case, the orientation Ω(K) is given as follows:

Ω(K) = - ¾ ¾ - - ¾ ¾ - ¾ ¾ ¾ ¾ - - ¾ ¾
1 2 4 6 8 9 13 15 17

u e · u · e · u e · · · u · e · u .

Here ◦ is a sink and • is a source．That is,

sink(Ω(K)) = in(K) = {2, 6, 9, 15},
source(Ω(K)) = out(K) ∪ {1, 17} = {1, 4, 8, 13, 17}.
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For B = (Bτ )τ∈H ∈ XV , we set

MK(B) := − dimC Coker

(
⊕

k∈out(K)
Vk

⊕Bσ−→ ⊕
l∈in(K)

Vl

)
,

where σ is a path in Ω(K), and for Λ ∈ Irr ΛV , set

MK(Λ) := MK(B) (B is a generic point of Λ).

Proposition . The family of integers {MK(Λ)}K∈M×
n

is a
e-BZ datum and the map

⊔
V Irr ΛV → BZe defined by

Λ 7→ {MK(Λ)}K∈M×
n

is an isomorphism of ∗-crystals.
In particular, for Λ = Λa (a = (ai,j) ∈ B), we have

MK(a) = MK(Λa).
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◦ Conclusions

There are three realizations of B(∞):

B : “limit” of SST

BZe : e-BZ data
⊔

V Irr ΛV : Irred. Lagrangians.-¾

¡
¡

¡µ

¡¡ª

@
@

@R

@
@I(b) (a)

(c)

(a) orbits ↔ conormal bundles

(b) B ∼→ BZe : a 7→ M(a) = (MK(a))K∈M×
n
,

MK(a) = −
l∑

j=1

kj−1∑
i=1

ai,kj

+ min

 ∑
1≤p<q≤l

acp,q,cp,q+(q−p)

∣∣∣∣∣∣ C = (cp,q) is
a K-tableau.

 .

(c)
⊔

V Irr ΛV
∼→ BZe: Λ 7→ (MK(Λ))K∈M×

n
,

MK(Λ) = − dimC Coker

(
⊕

k∈out(K)
Vk

⊕Bσ−→ ⊕
l∈in(K)

Vl

)

• MK(a) = MK(Λa)

⇒ The above is a commutative diagram.
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§ Applications

◦ A new proof of AM conjecture

The AM conjecture (proved by Kamnizter) can be re-written
as follows:

Corollary (e-BZ datum version).

Let M = (MK) ∈ BZe. For each i ∈ I, we have

(f̃ ∗
i M)K =

{
min {MK, MsiK + c∗i (M)} (K ∈ M×

n (i)∗),
M ′

K (otherwise).

Here

M×
n (i)∗ = {K ∈ M×

n | i 6∈ K and i + 1 ∈ K},
c∗i (M) = M[1,i]c − M([1,i+1]\{i})c − 1.

• By using a Lagrangian realization of (e-)BZ data, we can
easily check that

(f̃ ∗
i M)K = MK (K 6∈ M×

n (i)∗).

⇒ The remaining problem is:

(f̃ ∗
i M)K = min {MK, MsiK + c∗i (M)}

(K ∈ M×
n (i)∗).

(])
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Lemma .

(]) ⇔ For any K ∈ M×
n (i)∗,

MK(Λ) = min
{
MK(Λ),MsiK(Λ) + 〈hi, wt(Λ)〉 − ε∗i (Λ)

}
,

(]])
where Λ = ẽ∗max

i Λ.

Proposition .

The formula (]]) holds for any K ∈ M×
n (i)∗.

Key properties

• f̃ ∗
i Λ = Λ.

• By the definition, i is a source in Ω(siK).

⇒ MsiK(Λ) = MsiK(Λ).

• Let π : V → V be a surjective linear map, and ψ : N → V
a linear map. Consider a generic map ϕ : N → V such that
ψ = π ◦ ϕ.

N

↓ ↘
V ³ V

ϕ ψ

π

⇒ dimC Kerϕ = max{dimC Kerψ − (dimC V − dimC V ), 0}.



19

§ Future problems

◦ A
(1)
n−1 case

• Realization I and II : known

• Realization III :

There is no corresponding affine Grassmannian.

⇒ There is no MV cycle.

But, there exists an affine analogue of BZ datum.

(Naito-Sagaki’s unpublished result : A∞-case→ n-reduction)

In affine case,

· I ↔ III : OK.

· II ↔ III : not yet (partially done).

• Beck-Nakajima’s affine PBW basis ?

(In An-case, Realization I is closely related to the theory of
PBW basis.)

• Other (finite or affine) types?


