Mirković-Vilonen polytopes and quiver construction of crystal basis in type A

Yoshihisa Saito (Tokyo)

Aug. 3, 2010 @ Nagoya

§ Introduction

Mirković-Vilonen (1997~)

- MV cycles : Algebraic cycles in affine Grassmannian

Kamnitzer (2005~)

- Moment map image \Rightarrow MV polytopes : Polytopes in $\mathfrak{h}_{\mathbb{R}}\left(R^{\vee}\right)$
- $\mathcal{M V}$: the set of all MV polytopes has a crystal structure, and $\mathcal{M} \mathcal{V} \cong B(\infty)$.
- Prove the Anderson-Mirković conjecture in type A. (It tells us the explicit action of \widetilde{f}_{i} on $\mathcal{M} \mathcal{V}$.)

That is, the Kamnitzer's result tells us a realization of $B(\infty)$ in terms of MV polytopes.

Today :

In type A, compare the Kamnitzer's realization with

- a realization of $B(\infty)$ in terms of Young tableaux,
- a realization of $B(\infty)$ in terms of irreducible Lagrangians and, as an application, we will give
- a new proof of AM conjecture.

§ Notations

$U_{q}=U_{q}\left(\mathfrak{s l} l_{n+1}\right)=\left\langle e_{i}, f_{i}, t_{i}^{ \pm 1}(i \in I)\right\rangle$.
$B(\infty)$: the crystal basis of U_{q}^{-}

* $: U_{q} \rightarrow U_{q}:$ a $\mathbb{Q}(q)$-algebra anti-automorphism

$$
e_{i} \mapsto e_{i}, \quad f_{i} \mapsto f_{i}, \quad t_{i}^{ \pm} \mapsto t_{i}^{\mp} .
$$

$$
\Rightarrow *: B(\infty) \rightarrow B(\infty)
$$

Set

$$
\begin{aligned}
\varepsilon_{i}^{*}(b):=\varepsilon_{i}\left(b^{*}\right), & \varphi_{i}^{*}(b):=\varphi_{i}\left(b^{*}\right), \\
\widetilde{e}_{i}^{*}:=* \circ \widetilde{e}_{i} \circ *, & \widetilde{f}_{i}^{*}:=* \circ \widetilde{f}_{i} \circ * .
\end{aligned}
$$

\Rightarrow The set $B(\infty)$ endowed with maps wt, $\varepsilon_{i}^{*}, \varphi_{i}^{*}, \widetilde{e}_{i}^{*}, \widetilde{f}_{i}^{*}$ is a crystal.
("the *-crystal structure" on $B(\infty)$)
That is, $B(\infty)$ has two crystal structures :

$$
\begin{gathered}
\left(B(\infty) ; \mathrm{wt}, \varepsilon_{i}, \varphi_{i}, \widetilde{e}_{i}, \widetilde{f}_{i}\right), \\
\left(B(\infty)^{*}=B(\infty) ; \mathrm{wt}, \varepsilon_{i}^{*}, \varphi_{i}^{*}, \widetilde{e}_{i}^{*}, \widetilde{f}_{i}^{*}\right) .
\end{gathered}
$$

§ Realization I : Young tableaux

$\lambda \in P_{+}$: dominant integral weight
$V(\lambda)$: irreducible U_{q}-module with h.w. λ
$B(\lambda)$: crystal basis of $V(\lambda)$

Theorem (Kashiwara-Nakashima).

$$
B(\lambda) \cong S S T(\lambda)
$$

Here $\operatorname{SST}(\lambda)$ is the set of semistandard Young tableaux of shape λ.

- Take $\lambda \rightarrow \infty$ (w.r.t. $\left.\lambda \geq \mu \Leftrightarrow \lambda-\mu \in Q_{+}\right)$

\mathcal{B} : The set of all $n(n+1) / 2$ tuples of non-negative integers $\mathbf{a}=\left(a_{i, j}\right)_{1 \leq i<j \leq n+1}$
We regard \mathcal{B} as "SST(∞)" via
$a_{i, j}=$ "the number of j in the i-th row of a tableau"

Remark .

(1) The explicit crystal structure of \mathcal{B} can be determined.
(2) Since $B(\infty)$ has the $*$-crystal structure, \mathcal{B} also has the induced $*$-crystal structure.
(We omit to give them.)

§ Realization II : Lagrangian construction

(I, H) : (double) quiver of type A_{n}

$$
(I=\{1, \cdots, n\}: \text { set of vertices, } \quad H: \text { set of arrows })
$$

$\Omega \subset H:$ an orientation $\Rightarrow(I, \Omega):$ a quiver of type A_{n}.
$V=\oplus_{i \in I} V_{i}$: finite dimensional I-graded complex vector space

$$
\begin{aligned}
E_{V, \Omega} & :=\underset{\tau \in \Omega}{\oplus} \operatorname{Hom}_{\mathbb{C}}\left(V_{\text {Out }(\tau)}, V_{\operatorname{in}(\tau)}\right), \\
X_{V, \Omega} & :=\underset{\tau \in H}{\oplus} \operatorname{Hom}_{\mathbb{C}}\left(V_{\text {out }(\tau)}, V_{\operatorname{in}(\tau)}\right) \\
& =E_{V, \Omega} \oplus E_{V, \bar{\Omega}} \\
& \cong T^{*} E_{V, \Omega} .
\end{aligned}
$$

$G_{V}:=\prod_{i \in I} G L\left(V_{i}\right) \curvearrowright E_{V, \Omega}$ and X_{V}.
$\Rightarrow \mu: X_{V} \rightarrow\left(\operatorname{Lie} G_{V}\right)^{*} \cong \oplus_{i \in I} \operatorname{End}\left(V_{i}\right):$ moment map

$$
\Lambda_{V}:=\mu^{-1}(0): \text { a Lagrangian subvariety of } X_{V}
$$

$\operatorname{Irr} \Lambda_{V}$: the set of all irreducible components of Λ_{V}.

Theorem (Kashiwara-S).
(1) $\bigsqcup_{V} \operatorname{Irr} \Lambda_{V} \cong B(\infty)$.
(2) $\bigsqcup_{V} \operatorname{Irr} \Lambda_{V}$ has a*-crystal structure induced from the map

$$
*: B \mapsto{ }^{t} B \quad\left(B \in X_{V}\right),
$$

and $\bigsqcup_{V} \operatorname{Irr} \Lambda_{V} \cong B(\infty)$ as $*$-crystals.

Remark . Since (I, Ω) is of type A_{n}, for $\Lambda \in \Lambda_{V}$, there is a unique $G_{V \text {-orbit }} \mathcal{O} \subset E_{V, \Omega}$ such that

$$
\Lambda=\overline{T_{\mathcal{O}}^{*} E_{V, \Omega}}
$$

§ Comparison I \& II

\circ Preliminaries

- There is a natural one to one correspondence
$G_{V \text {-orbits in }} E_{V, \Omega} \cong \begin{gathered}\text { isomorphism classes of reps. of }(I, \Omega) \\ \text { with dimension vector }=\operatorname{dim} V .\end{gathered}$
- There is a one to one correspondence

$$
\Delta_{+} \cong \stackrel{\text { isomorphism classes of }}{\text { indecomposable reps. of }(I, \Omega),}
$$

where Δ_{+}is the set of positive roots (Gabriel's theorem).
For a positive root $\alpha \in \Delta_{+}$, we denote by $\mathbf{e}(\alpha, \Omega)$ the corresponding indecomposable representation of (I, Ω).

- $\Delta_{+}=\left\{\alpha_{i, j}:=\sum_{k=i}^{j-1} \alpha_{k} \mid 1 \leq i<j \leq n+1\right\}$.

- Realization I \Rightarrow Realization II

Consider the following orientation:

For $\mathbf{a}=\left(a_{i, j}\right)_{1 \leq i<j \leq n+1} \in \mathcal{B}$, set

$$
\mathbf{e}\left(\mathbf{a}, \Omega_{0}\right):=\underset{1 \leq i<j \leq n+1}{\oplus} \mathbf{e}\left(\alpha_{i, j}, \Omega_{0}\right)^{\oplus a_{i, j}}
$$

We denote by $\mathcal{O}_{\mathbf{a}} \subset E_{V, \Omega_{0}}$ the G_{V}-orbit through $\mathbf{e}\left(\mathbf{a}, \Omega_{0}\right)$ and let

$$
\Lambda_{\mathbf{a}}:=\overline{T_{\mathcal{O}_{\mathbf{a}}}^{*} E_{V, \Omega_{0}}}
$$

Proposition .

The map $\mathcal{B} \rightarrow \bigsqcup_{V} \operatorname{Irr} \Lambda_{V}$ defined by

$$
\mathbf{a} \mapsto \Lambda_{\mathbf{a}}
$$

is an isomorphism of crystals in usual sense. Moreover this map is compatible with the $*$-crystal structures.

§ Realization III : MV polytopes

- Definition of MV polytopes
$K \subset[1, n+1]$: a Maya diagram of size n
\mathcal{M}_{n} : the set of all Maya diagrams of size n
$\mathcal{M}_{n}^{\times}:=\mathcal{M}_{n} \backslash\{\phi,[1, n+1]\}$
$\mathbf{M}=\left(M_{K}\right)_{K \in \mathcal{M}_{n}^{\times}}$: a family of integers indexed by \mathcal{M}_{n}^{\times}
- $W=\mathfrak{S}_{n+1} \curvearrowright \mathcal{M}_{n}, \mathcal{M}_{n}^{\times}$.

We can identify \mathcal{M}_{n}^{\times}with $\Gamma_{n}:=\bigsqcup_{w \in W, i \in I} W \Lambda_{i}$ via

$$
[1, i] \leftrightarrow \Lambda_{i} .
$$

- For $\mathbf{M}=\left(M_{K}\right)_{K \in \mathcal{M}_{n}^{\times}}$, consider a polytope in $\mathfrak{h}_{\mathbb{R}}$

$$
P(\mathbf{M}):=\left\{h \in \mathfrak{h}_{\mathbb{R}} \mid\langle h, K\rangle \geq M_{K}\left(\forall K \in \mathcal{M}_{n}^{\times}\right)\right\} .
$$

- A polytope $P(\mathbf{M})$ is called a pseudo-Weyl polytope if it satisfies the following condition:
(BZ-1) for every two indices $i \neq j$ in $[1, n+1]$ and every $K \in \mathcal{M}_{n}$ with $K \cap\{i, j\}=\phi$,

$$
M_{K i}+M_{K j} \leq M_{K i j}+M_{K}
$$

Here we denote $K i j=K \cup\{i, j\}$ etc., and we set $M_{\phi}=$ $M_{[1, n+1]}=0$.

Remark .

$P(\mathbf{M})$: a pseudo-Weyl polytope
$\Rightarrow P(\mathbf{M})$ is the convex hull of $\mu_{\bullet}:=\left(\mu_{w}\right)_{w \in W} \subset \mathfrak{h}_{\mathbb{R}}$ (GGMS datum) where

$$
\mu_{w}:=\sum_{i=1}^{n} M_{w \Lambda_{i}} w \alpha_{i}^{\vee} \in \mathfrak{h}_{\mathbb{R}} \quad(w \in W)
$$

That is, for a pseudo-Weyl polytope,

$$
P(\mathbf{M}) \quad \leftrightarrow \quad \mathbf{M}=\left(M_{K}\right)_{K \in \mathcal{M}_{n}^{\times}} .
$$

Definition .

(1) \mathbf{M} is called a BZ datum if it satisfies (BZ-1) and
(BZ-2) for every three indices $i<j<k$ in $[1, n+1]$ and every $K \in \mathcal{M}_{n}$ with $K \cap\{i, j, k\}=\phi$, $M_{K i k}+M_{K j}=\min \left\{M_{K i j}+M_{K k}, M_{K j k}+M_{K i}\right\}$.
(2) $P(\mathbf{M})$ is called a MV polytope if \mathbf{M} is a BZ datum.

That is,
(BZ-1) $\quad \Rightarrow P(\mathbf{M})$: a pseudo-Weyl polytope
(BZ-1) \& (BZ-2) $\Rightarrow P(\mathbf{M})$: a MV polytope

- Crystal structure on BZ data

A BZ datum \mathbf{M} is called a $w_{0}-B Z$ datum if

$$
M_{w_{0} \Lambda_{i}}=M_{[n-i+1, n+1]}=0 \quad \text { for } 1 \leq \forall i \leq n
$$

$\mathcal{B Z} \mathcal{Z}^{w_{0}}$: the set of all w_{0}-BZ data

Let us define a crystal structure on $\mathcal{B} \mathcal{Z}^{w_{0}}$. For $\mathbf{M} \in \mathcal{B Z}^{w_{0}}$,

$$
\begin{aligned}
\mathrm{wt}(\mathbf{M}) & :=\sum_{1 \leq i \leq n} M_{[1, i]} \alpha_{i}, \\
\varepsilon_{i}(\mathbf{M}) & :=-\left(M_{[1, i]}+M_{[1, i+1] \backslash\{i\}}-M_{[1, i+1]}-M_{[1, i] \backslash\{i\}}\right), \\
\varphi_{i}(\mathbf{M}) & :=\varepsilon_{i}(\mathbf{M})+\left\langle h_{i}, \mathrm{wt}(\mathbf{M})\right\rangle .
\end{aligned}
$$

If $\varepsilon_{i}(\mathbf{M})=0$, we set $\widetilde{e}_{i} \mathbf{M}=0$.
Otherwise, there exists a unique w_{0} - BZ datum $\widetilde{e}_{i} \mathbf{M}$ s.t.
(i) $\left(\widetilde{e}_{i} \mathbf{M}\right)_{[1, i]}=M_{[1, i]}+1$,
(ii) $\left(\widetilde{e}_{i} \mathbf{M}\right)_{K}=M_{K}$ for all $K \in \mathcal{M}_{n}^{\times} \backslash \mathcal{M}_{n}^{\times}(i)$.

Here $\mathcal{M}_{n}^{\times}(i)=\left\{K \in \mathcal{M}_{n}^{\times} \mid i \in K\right.$ and $\left.i+1 \notin K\right\} \subset \mathcal{M}_{n}^{\times}$.

There exists a unique a unique w_{0} - BZ datum $\widetilde{f_{i}} \mathbf{M}$ s.t.
(iii) $\left(\widetilde{f}_{i} \mathbf{M}\right)_{[1, i]}=M_{[1, i]}-1$,
(iv) $\left(\widetilde{f}_{i} \mathbf{M}\right)_{K}=M_{K}$ for all $K \in \mathcal{M}_{n}^{\times} \backslash \mathcal{M}_{n}^{\times}(i)$.

Theorem (Kamniter).
$\mathcal{B} \mathcal{Z}^{w_{0}}$ is a crystal which is isomorphic to $B(\infty)$.

- This theorem gives us the 3-rd realization of $B(\infty)$ in terms of BZ data (or MV polytopes).

- AM conjecture

Anderson and Mirkovic conjectured the explicit form of the action of \widetilde{f}_{i} on $\mathcal{B Z} \mathcal{Z}^{w_{0}}$ (AM conjecture). This conjecture is proved by Kamnitzer.

Theorem (Kamniter).
For each $i \in I$, we have

$$
\left(\widetilde{f_{i}} \mathbf{M}\right)_{K}= \begin{cases}\min \left\{M_{K},\right. & \left.M_{s_{i} K}+c_{i}(\mathbf{M})\right\} \\ M_{K} & \left(K \in \mathcal{M}_{n}^{\times}(i)\right) \\ \text { (otherwise) }\end{cases}
$$

Here $c_{i}(\mathbf{M})=M_{[1, i]}-M_{[1, i+1] \backslash\{i\}}-1$.

In the last of this talk, we will give a sketch of a new proof of this theorem.

§ From Realization I or II to Realization III $\circ e-\mathrm{BZ}$ data and w_{0}-BZ data

To make a bridge form the 1-st or 2-nd realization of $B(\infty)$ to the 3-rd one, we introduce a notion of e-BZ data.

A BZ datum \mathbf{M}^{\prime} is called a $e-B Z$ datum if

$$
M_{\Lambda_{i}}^{\prime}=M_{[1, i]}^{\prime}=0 \quad \text { for } 1 \leq \forall i \leq n
$$

$\mathcal{B Z}^{e}$: the set of all e-BZ data

- For $\mathbf{M}=\left(M_{K}\right)_{K \in \mathcal{M}_{n}^{\times}} \in \mathcal{B} \mathcal{Z}^{w_{0}}$, set $\mathbf{M}^{*}=\left(M_{K}^{*}\right)_{K \in \mathcal{M}_{n}^{\times}}$by

$$
M_{K}^{*}:=M_{K^{c}}
$$

where $K^{c}:=[1, n+1] \backslash K$ is the compliment of $K \in \mathcal{M}_{n}^{\times}$.
Then, it is easy to check $\mathbf{M}^{*} \in \mathcal{B} \mathcal{Z}^{e}$ and the map

$$
*: \mathcal{B} \mathcal{Z}^{w_{0}} \rightarrow \mathcal{B Z}^{e}
$$

gives a bijection. The inverse is also denoted by *.

- We can define a crystal structure on $\mathcal{B} \mathcal{Z}^{e}$:

$$
\begin{aligned}
& \widetilde{e}_{i}^{*}: \mathcal{B Z} \mathcal{Z}^{e} \xrightarrow{*} \mathcal{B} \mathcal{Z}^{w_{0}} \xrightarrow{\widetilde{e}_{i}} \mathcal{B} \mathcal{Z}^{w_{0}} \xrightarrow{*} \mathcal{B} \mathcal{Z}^{e}, \\
& \widetilde{f}_{i}^{*}: \mathcal{B Z} \mathcal{Z}^{e} \xrightarrow{*} \mathcal{B} \mathcal{Z}^{w_{0}} \xrightarrow{\tilde{f}_{i}} \mathcal{B} \mathcal{Z}^{w_{0}} \xrightarrow{*} \mathcal{B Z} \mathcal{Z}^{e}, \\
& \text { etc. } .
\end{aligned}
$$

- From I to III

Definition . Let $K=\left\{k_{1}<k_{2}<\cdots<k_{l}\right\} \in \mathcal{M}_{n}^{\times}$be a Maya diagram. For such K, we define a K-tableau as an upper-triangular matrix $C=\left(c_{p, q}\right)_{1 \leq p \leq q \leq l}$ with integer entries satisfying

$$
c_{p, p}=k_{p} \quad(1 \leq p \leq l)
$$

and the usual monotonicity conditions for semi-standard tableaux:

$$
c_{p, q} \leq c_{p, q+1}, \quad c_{p, q}<c_{p+1, q}
$$

Example .
$K=\{1,3,4\} \Rightarrow K$-tableaux are :

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
& 3 & 3 \\
& & 4
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 2 \\
& 3 & 3 \\
& & 4
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 2 & 2 \\
& 3 & 3 \\
& & 4
\end{array}\right) .
$$

Recall $\mathbf{a}=\left(a_{i, j}\right) \in \mathcal{B}$: "limit" of semistandard Young tableau.
For a giving $\mathbf{a}=\left(a_{i, j}\right) \in \mathcal{B}$, let $\mathbf{M}(\mathbf{a})=\left(M_{K}(\mathbf{a})\right)_{K \in \mathcal{M}_{n}^{\times}}$be a collection of integers defined by

$$
\begin{aligned}
& M_{K}(\mathbf{a}):=-\sum_{j=1}^{l} \sum_{i=1}^{k_{j}-1} a_{i, k_{j}} \\
& +\min \left\{\begin{array}{l|l}
\sum_{1 \leq p<q \leq l} a_{c_{p, q}, c_{p, q}+(q-p)} & \begin{array}{l}
C=\left(c_{p, q}\right) \text { is } \\
\text { a } K \text {-tableau. }
\end{array}
\end{array}\right\}
\end{aligned}
$$

and denote the map $\mathbf{a} \mapsto \mathbf{M}(\mathbf{a})$ by Ψ.

Proposition (Bernstein-Fomin-Zelevinsky).
For any $\mathbf{a} \in \mathcal{B}, \Psi(\mathbf{a})=\mathbf{M}(\mathbf{a})$ is an e-BZ datum. Moreover $\Psi: \mathcal{B} \rightarrow \mathcal{B Z}^{e}$ is a bijection.

Moreover we can prove

Proposition .

The $\operatorname{map} \Psi: \mathcal{B} \xrightarrow{\sim} \mathcal{B Z}^{e}$ is an isomorphism of $*$-crystals.

- From II to III

Any Maya diagram $K \in \mathcal{M}_{n}^{\times}$can be written as a disjoint union of intervals

$$
\begin{gathered}
K=\left[s_{1}+1, t_{1}\right] \sqcup\left[s_{2}+1, t_{2}\right] \sqcup \cdots \sqcup\left[s_{l}+1, t_{l}\right] \\
\left(0 \leq s_{1}<t_{1}<s_{2}<t_{2}<\cdots<s_{l}<t_{l} \leq n+1\right) .
\end{gathered}
$$

$K_{m}=\left[s_{m}+1, t_{m}\right](1 \leq m \leq l):$ the m-th component of K.
$\operatorname{out}(K):=\left\{t_{m} \mid 1 \leq m \leq l\right\} \cap[1, n]$,
$\operatorname{in}(K):=\left\{s_{m} \mid 1 \leq m \leq l\right\} \cap[1, n]$.
$\Omega(K)$: the orientation so that

- an element of $\operatorname{out}(K)$ is a source,
- an element if in (K) is a sink.

Example . Let $n=17$ and

$$
K=[3,4] \sqcup[7,8] \sqcup[10,13] \sqcup[16,17] .
$$

Then we have

$$
\operatorname{out}(K)=\{4,8,13\}, \quad \operatorname{in}(K)=\{2,6,9,15\}
$$

In this case, the orientation $\Omega(K)$ is given as follows:

Here \circ is a sink and \bullet is a source. That is,

$$
\begin{gathered}
\operatorname{sink}(\Omega(K))=\operatorname{in}(K)=\{2,6,9,15\} \\
\operatorname{source}(\Omega(K))=\operatorname{out}(K) \cup\{1,17\}=\{1,4,8,13,17\}
\end{gathered}
$$

For $B=\left(B_{\tau}\right)_{\tau \in H} \in X_{V}$, we set

$$
M_{K}(B):=-\operatorname{dim}_{\mathbb{C}} \operatorname{Coker}\left(\underset{k \in \operatorname{Out}(K)}{\oplus} V_{k} \xrightarrow{\oplus B_{\sigma}} \underset{l \in \operatorname{in}(K)}{\oplus} V_{l}\right),
$$

where σ is a path in $\Omega(K)$, and for $\Lambda \in \operatorname{Irr} \Lambda_{V}$, set

$$
M_{K}(\Lambda):=M_{K}(B) \quad(B \text { is a generic point of } \Lambda)
$$

Proposition. The family of integers $\left\{M_{K}(\Lambda)\right\}_{K \in \mathcal{M}_{n}^{\times}}$is a e-BZ datum and the map $\bigsqcup_{V} \operatorname{Irr} \Lambda_{V} \rightarrow \mathcal{B} \mathcal{Z}^{e}$ defined by

$$
\Lambda \mapsto\left\{M_{K}(\Lambda)\right\}_{K \in \mathcal{M}_{n}^{\times}}
$$

is an isomorphism of $*$-crystals.
In particular, for $\Lambda=\Lambda_{\mathbf{a}}\left(\mathbf{a}=\left(a_{i, j}\right) \in \mathcal{B}\right)$, we have

$$
M_{K}(\mathbf{a})=M_{K}\left(\Lambda_{\mathbf{a}}\right)
$$

Conclusions

There are three realizations of $B(\infty)$:

\mathcal{B} : "limit" of SST

(b)
$\mathcal{B Z}^{e}: e$-BZ data $\xrightarrow{(\mathrm{c})} \bigsqcup_{V} \operatorname{Irr} \grave{\Lambda}_{V}:$ Irred. Lagrangians.
(a) orbits \leftrightarrow conormal bundles
(b) $\mathcal{B} \xrightarrow{\sim} \mathcal{B Z}^{e}: \mathbf{a} \mapsto \mathbf{M}(\mathbf{a})=\left(M_{K}(\mathbf{a})\right)_{\mathbf{K} \in \mathcal{M}_{\mathbf{n}}^{\times}}$,
$M_{K}(\mathbf{a})=-\sum_{j=1}^{l} \sum_{i=1}^{k_{j}-1} a_{i, k_{j}}$
$+\min \left\{\begin{array}{l|l}\sum_{1 \leq p<q \leq l} a_{c_{p, q}, c_{p, q}+(q-p)} & \begin{array}{l}C=\left(c_{p, q}\right) \text { is } \\ \text { a } K \text {-tableau. }\end{array}\end{array}\right\}$.
(c) $\bigsqcup_{V} \operatorname{Irr} \Lambda_{V} \xrightarrow{\sim} \mathcal{B Z}^{e}: \Lambda \mapsto\left(M_{K}(\Lambda)\right)_{K \in \mathcal{M}_{n}^{\times}}$,

$$
M_{K}(\Lambda)=-\operatorname{dim}_{\mathbb{C}} \operatorname{Coker}\left(\underset{k \in \operatorname{Out}(K)}{\oplus} V_{k} \xrightarrow{\oplus B_{\sigma}} \underset{l \in \operatorname{in}(K)}{\oplus} V_{l}\right)
$$

- $M_{K}(\mathbf{a})=M_{K}\left(\Lambda_{\mathbf{a}}\right)$
\Rightarrow The above is a commutative diagram.

§ Applications

- A new proof of AM conjecture

The AM conjecture (proved by Kamnizter) can be re-written as follows:

Corollary (e-BZ datum version).
Let $\mathbf{M}=\left(M_{K}\right) \in \mathcal{B Z}^{e}$. For each $i \in I$, we have

$$
\left(\widetilde{f_{i}^{*}} \mathbf{M}\right)_{K}= \begin{cases}\min _{M_{K}}\left\{M_{K}, M_{s_{i} K}+c_{i}^{*}(\mathbf{M})\right\} & \left(K \in \mathcal{M}_{n}^{\times}(i)^{*}\right) \\ M_{K}^{\prime} & \text { (otherwise) }\end{cases}
$$

Here

$$
\begin{gathered}
\mathcal{M}_{n}^{\times}(i)^{*}=\left\{K \in \mathcal{M}_{n}^{\times} \mid i \notin K \text { and } i+1 \in K\right\}, \\
c_{i}^{*}(\mathbf{M})=M_{[1, i]^{c}}-M_{([1, i+1] \backslash\{i\})^{c}}-1 .
\end{gathered}
$$

- By using a Lagrangian realization of ($e-$) BZ data, we can easily check that

$$
\left(\widetilde{f}_{i}^{*} \mathbf{M}\right)_{K}=M_{K} \quad\left(K \notin \mathcal{M}_{n}^{\times}(i)^{*}\right)
$$

\Rightarrow The remaining problem is:

$$
\begin{align*}
\left(\widetilde{f}_{i}^{*} \mathbf{M}\right)_{K}=\min \left\{M_{K}, M_{s_{i} K}+\right. & \left.c_{i}^{*}(\mathbf{M})\right\} \\
& \left(K \in \mathcal{M}_{n}^{\times}(i)^{*}\right) .
\end{align*}
$$

Lemma .

$(\sharp) \Leftrightarrow$ For any $K \in \mathcal{M}_{n}^{\times}(i)^{*}$,

$$
M_{K}(\Lambda)=\min \left\{M_{K}(\bar{\Lambda}), M_{s_{i} K}(\bar{\Lambda})+\left\langle h_{i}, \mathrm{wt}(\bar{\Lambda})\right\rangle-\varepsilon_{i}^{*}(\Lambda)\right\},
$$

where $\bar{\Lambda}=\widetilde{e}_{i}^{* m a x} \Lambda$.

Proposition .

The formula ($\sharp \sharp$) holds for any $K \in \mathcal{M}_{n}^{\times}(i)^{*}$.

Key properties

- $\overline{\tilde{f}_{i}^{*} \Lambda}=\bar{\Lambda}$.
- By the definition, i is a source in $\Omega\left(s_{i} K\right)$.

$$
\Rightarrow \quad M_{s_{i} K}(\bar{\Lambda})=M_{s_{i} K}(\Lambda) .
$$

- Let $\pi: V \rightarrow \bar{V}$ be a surjective linear map, and $\psi: N \rightarrow \bar{V}$ a linear map. Consider a generic map $\varphi: N \rightarrow V$ such that $\psi=\pi \circ \varphi$.

$$
\begin{array}{rll}
N & & \\
\varphi \downarrow & \Psi \\
V & \vec{\pi} & \bar{V}
\end{array}
$$

$\Rightarrow \operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \varphi=\max \left\{\operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \psi-\left(\operatorname{dim}_{\mathbb{C}} V-\operatorname{dim}_{\mathbb{C}} \bar{V}\right), 0\right\}$.

§ Future problems

- $A_{n-1}^{(1)}$ case
- Realization I and II : known
- Realization III :

There is no corresponding affine Grassmannian.
\Rightarrow There is no MV cycle.
But, there exists an affine analogue of BZ datum.
(Naito-Sagaki's unpublished result : A_{∞}-case $\rightarrow n$-reduction)

In affine case,

- I \leftrightarrow III : OK.
- II \leftrightarrow III : not yet (partially done).
- Beck-Nakajima's affine PBW basis ?
(In A_{n}-case, Realization I is closely related to the theory of PBW basis.)
- Other (finite or affine) types?

