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§ Introduction
Mirkovié-Vilonen (1997~)

e MV cycles : Algebraic cycles in affine Grassmannian

Kamnitzer (2005~)
e Moment map image = MV polytopes : Polytopes in hg(R")

o MYV : the set of all MV polytopes has a crystal structure,
and MV = B(o0).
e Prove the Anderson-Mirkovi¢ conjecture in type A.

(It tells us the explicit action of f; on MV.)

That is, the Kamnitzer’s result tells us a realization of B(oo)
in terms of MV polytopes.

Today :
In type A, compare the Kamnitzer’s realization with
e a realization of B(0o) in terms of Young tableaux,

e a realization of B(o0o) in terms of irreducible Lagrangians

and, as an application, we will give
e a new proof of AM conjecture.
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§ Notations
Uy = Uylsln) = {er, fi 5 (€ 1),
B(oo) : the crystal basis of U,

x: U, — U, : a Q(g)-algebra anti-automorphism
eir e, fir fi, the ]
= % : B(0co) — B(00).

Set
S0 =alb). @) =)
€l == %0¢; 0 %, fi=xo0 fjox

= The set B(oo) endowed with maps wt, £*, ¢*, &, f7
is a crystal.

( “the *-crystal structure” on B(oc0))

That is, B(oo) has two crystal structures
(B(OO) : Wt) Eiy Pis gi) ﬁ)7
(B(oo)* = B(oo) 5 wt, €, @7, €, [i).



§ Realization I : Young tableaux
A € P, : dominant integral weight

V() : irreducible U,-module with h.w. A
B(A) : crystal basis of V()

Theorem (Kashiwara-Nakashima).
B(X\) =2 SST ().

Here SST(A) is the set of semistandard Young tableauz of
shape \.

e Take A 0o (Wwrt. A>pue A—pue@y)

B(\) = SST())
l l
B(oo) =2 B
B : The set of all n(n + 1)/2 tuples of non-negative integers
a = (ai,j)ngan—irl
We regard B as “SST(0c0)” via

a; j="the number of | j| in the i-th row of a tableau”

Remark .
(1) The explicit crystal structure of B can be determined.

(2) Since B(oo) has the *-crystal structure, B also has the
induced *-crystal structure.

(We omit to give them.)
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§ Realization II : Lagrangian construction
(I, H) : (double) quiver of type A,
(I ={1,--- ,n} : set of vertices, H : set of arrows)
() C H : an orientation = (I,2) : a quiver of type A,.

V = @®,e1V; : finite dimensional I-graded complex vector space
by = T@SQ Home (Vougr): Vin(f)%

Xy = TEBH Home (Vougr): Vin(r))

= bva® byg
~ T By .
Gy = ]l,c; GL(Vi) ~ Eyq and Xy.

= 1 Xy — (LieGy)* = @erEnd(V;) : moment map

Ay = p1(0) : a Lagrangian subvariety of Xy .
Irr Ay : the set of all irreducible components of Ay .

Theorem (Kashiwara-3).
(1) Ly Ir Ay = B(o0).

(2) LIy Irr Ay has a *-crystal structure induced from the
map
x:B+—'B (BEXv),

and ||, Irr Ay = B(oo) as *-crystals.

Remark . Since (I,€) is of type A,,, for A € Ay, there is a
unique Gy-orbit O C Eyq such that

A =T5Evq.



§ Comparison I & 11

o Preliminaries

e There is a natural one to one correspondence

isomorphism classes of reps. of (1,€)
with dimension vector = dim V.

~

Gy-orbits in By =

e There is a one to one correspondence

isomorphism classes of

Ay = indecomposable reps. of (I,€),

where A is the set of positive roots (Gabriel’s theorem).

For a positive root a € A, we denote by e(«, () the corre-
sponding indecomposable representation of (1, 2).

e ={ay; =S| 1<i<j<n+1}.
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o Realization I = Realization 11

Consider the following orientation:

QO: O———0O—<—0O——<— ¢ ¢ ¢ —a—0O——O—<—0
1 2 3 n—2 n-—1 n

For a = (a; j)1<i<j<nt1 € B, set

e(a, QO) = D e(ozi’j, QQ)@ai’j.

1<i<j<n+1

We denote by Oa C Ey g, the Gy-orbit through e(a, £2y) and
let
Aa = TE’k)aEV,Qo'

Proposition .
The map B — | |, Irr Ay defined by

ar— A\,

1s an 1somorphism of crystals in usual sense. Moreover
this map 1s compatible with the x-crystal structures.



§ Realization III : MV polytopes
o Definition of MV polytopes

K C[l,n+1]: a Maya diagram of size n

M, . the set of all Maya diagrams of size n

M= Mo\ {6, [1,n + 1]}

M = (Mg)gepqz © a family of integers indexed by M

o IV = 6n+1 mMn, M;:
We can identify M with I', := | |, ey jef WA via

o For M = (M) e pqx; consider a polytope in b
P(M) :={h € ba | (h, K) > M (VK € M;)}.

e A polytope P(M) is called a pseudo- Weyl polytope if it
satisfies the following condition:

(BZ-1) for every two indices 7 # j in [1,n + 1] and every
K € M, with K N {i,j} = ¢,
My + MKj < MKz'j + M.

Here we denote Kij = K U {i,j} etc., and we set My =
M 1) = 0.
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Remark .
P(M) : a pseudo-Weyl polytope

= P(M) is the convex hull of pte := (fty)wew C ba (GGMS
datum) where

Ly = ZMwAiwo%\'/ € br (w e W).
i=1

That is, for a pseudo-Weyl polytope,
PM) = M= (Mg)gene

Definition .
(1) M is called a BZ datum if it satisfies (BZ-1) and

(BZ-2) for every three indices i < j < k in [1,n+ 1] and
every K € M,, with K N{i,j,k} = ¢,
Mpgix + Mgj = min {Mg;; + Mg, Mg+ Mg;}.

(2) P(M) is called a MV polytope if M is a BZ datum.

That is,
(BZ-1) = P(M) : a pseudo-Weyl polytope

(BZ-1) & (BZ-2) = P(M) : a MV polytope



o Crystal structure on BZ data

A BZ datum M is called a wy-BZ datum it
MwOAi = M[n_Hl,nJrl] =0 forl < V1 <n.

BZ"0 : the set of all wy-BZ data

Let us define a crystal structure on BZ*°. For M € BZ"0,
wt(IM) = Z My v,

1<i<n
gi(M) = — (MM + My — M — M[Lz‘]\{z’}) ’
pi(M) = (M) + (h;, wt(M)).

If £,(M) = 0, we set ;M = 0.
Otherwise, there exists a unique wy-BZ datum e;M s.t.
(i) (M) = Mg + 1,
(ii) (M) g = M for all K € M\ M (7).
Here M} (i) ={K e M |ie Kandi+1¢ K} C M.

There exists a unique a unique wy-BZ datum EM s.t.
(ii) (ng)[l,z'] = M — 1,
(iv) (fiM)g = M for all K € M*\ MX(3).

Theorem (Kamniter).
BZ" is a crystal which is isomorphic to B(00).

e This theorem gives us the 3-rd realization of B(oco) in terms
of BZ data (or MV polytopes).
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o AM conjecture

Anderson and Mirkovi¢ conjectured the explicit form of the
action of f; on BZ" (AM conjecture). This conjecture is
proved by Kamnitzer.

Theorem (Kamniter).
For each v € I, we have

= { g O Mo s (1 6

Here CZ(M) = M[l,i] — M[17i+1]\{i} — 1.

In the last of this talk, we will give a sketch of a new proof of
this theorem.
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§ From Realization I or II to Realization III
o e-BZ data and wy,-BZ data

To make a bridge form the 1-st or 2-nd realization of B(00) to
the 3-rd one, we introduce a notion of e-BZ data.

A BZ datum M’ is called a e-BZ datum if
M//\z = M[’l’i] =0 forl<Vi<n.

BZ°¢ : the set of all e-BZ data

o For M = (M) ceppx € BZ™, set M* = (Mg) cepps by
M;; = MKC
where K¢ :=[1,n + 1] \ K is the compliment of K € M*.

Then, it is easy to check M* € BZ“ and the map
x: BZY — BZ°

gives a bijection. The inverse is also denoted by .

e We can define a crystal structure on BZ° :

& B2 L B2 YL Bzw t, Bze

~

froBze 2 pzw L gzm 1, gae
etc.
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o From I to 111

Definition . Let K = {k1 < ko < -+ < Kk} € MX be
a Maya diagram. For such K, we define a K-tableau as
an upper-triangular matric C = (cpq)1<p<q<i With integer
entries satisfying

Cpp = Ky (1<p<l,

and the usual monotonicity conditions for semi-standard
tableaux:

Cpg < Cpgtls Cpg < Cp+lg-
Example .
K ={1,3,4} = K-tableaux are :
111 112 1 22
33|, 331, 3 3
4 4 4
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Recalla = (a; ;) € B: “limit” of semistandard Young tableau.
For a giving a = (a; ;) € B, let M(a) = (Mk(a))gepx be a

collection of integers defined by
[ kj—l

Mpg(a) = — Z Z ik

j=1 i=1

. C = (cpg) is
+ min Z Qepg.cpgt(a-p) | o K-tableaww.

1<p<q<l

and denote the map a — M(a) by V.

Proposition (Bernstein-Fomin-Zelevinsky).

For any a € B, V(a) = M(a) is an e-BZ datum. Moreover
V. B — BZ is a bijection.

Moreover we can prove

Proposition .
The map V : B = BZ° is an isomorphism of *-crystals.
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o From II to III

Any Maya diagram K € M can be written as a disjoint
union of intervals

K=[si+1,t1])U[sa+ 1, o] U---U[s;+ 1,¢]
D<s1<ti<s9<ty<---<s<t;<n+1).

Ky = [sm+ 1, t,) (1 <m <) : the m-th component of K.

out(K) :={t| 1 <m <1} N[, n,
n(K):={su| 1 <m<I}Nlln.

Q(K) : the orientation so that

e an clement of out(K) is a source,
e an element if in(K) is a sink.

Example . Let n = 17 and
K = [3,4 u|7,8 L[10,13] L [16, 17].
Then we have
out(K) = {4, 8,13}, in(K) ={2,6,9,15}.

In this case, the orientation 2(K) is given as follows:

Q(K) p— Q@ >0 +@ >+ +Q@ e —e @+ D—e<+—@Q .
1 2 4 6 8 9 13 15 17

Here o is a sink and e is a source] That is,
sink(Q(K)) = in(K) = {2,6,9, 15},
source(Q(K)) = out(K) U {1,17} = {1,4,8,13,17}.
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For B = (B;);en € Xy, we set
Mg(B) = —dim:Coker [ & W25 & V|,
keout(K) leln(K)
where ¢ is a path in Q(K), and for A € Trr Ay, set
Mg (N) .= Mg(B) (B is a generic point of A).

Proposition . The family of integers { My ()} e x5 a
e-BZ datum and the map | |, Irr Ay — BZ° defined by

A= {ME (N} ey

s an 1somorphism of x-crystals.
In particular, for A =N\, (a= (a;;) € B), we have

MK(a) = MK(Aa).
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o Conclusions

There are three realizations of B(oo):

B : “limit” of SST

(bV . w)

BZ°¢: e-B7Z data

||y Irr Ay : Irred. Lagrangians.

(a) orbits « conormal bundles

(b) B B2 : am M(a) = (My(a))geu:.

l kj—l
Mpg(a) = — E Qi f;
j=1 i=1
C' = (cpy) is
. D.q
+ mmn Z Aep.g.cpqt(a—p) a K-tableau.
1<p<g<i

(c) LIy Trr Ay = BZ% A= (Mg(A)) e

Mg (A) = — dimg Coker & V¥ o
keout(K) leIn(K)

o My(a) = My (A,)

= The above is a commutative diagram.
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§ Applications

o A new proof of AM conjecture

The AM conjecture (proved by Kamnizter) can be re-written
as follows:

Corollary (e-BZ datum version).
Let M = (My) € BZ°. For each i € I, we have

% ~ min{Mg, Mgx+ (M)} (K € MJ(i)*),
(FiM)k = { M, " " (otherwise).

Here
Mi@) ={KeM |i¢gdKandi+ 1€ K},
¢; (M) = My jje — Mppipapiye — L.

e By using a Lagrangian realization of (e-)BZ data, we can
easily check that

~

(fiM)k =Mk (K& M;()).

= The remaining problem is:

(E*M)K = min {MKv MSiK + C:(M)} (ﬁ)
(K € M(i)").



Lemma .
(f) & For any K € MX(i),
MK(A) — min {MK(K>, MSZK(K) + <hl, Wt(K» — Ej(/\) }(ﬁ,ﬁ)

where A = €™ A\.

Proposition .
The formula (88) holds for any K € M (i)*.

Key properties

° E*/\ — A

e By the definition, 7 is a source in Q(s; K ).

—= MSZK(A) — Mle(A>

o Let 7: V — V be a surjective linear map, and ¢ : N — V
a linear map. Consider a generic map ¢ : N — V such that

Y =mop.
N
ol N
V >V

= dim¢ Kerp = max{dim¢ Kery) — (dim¢ V' — dim¢ V), 0}.
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§ Future problems

o Agzl case

e Realization I and II : known

e Realization III :
There is no corresponding affine Grassmannian.
= There is no MV cycle.

But, there exists an affine analogue of BZ datum.
(Naito-Sagaki’s unpublished result : A-case — n-reduction)

In affine case,
-1 < Il : OK.

- IT <= III : not yet (partially done).

e Beck-Nakajima's affine PBW basis 7

(In A,-case, Realization I is closely related to the theory of
PBW basis.)

e Other (finite or affine) types?



