Curriculum vitae(Tsuyoshi Yoneda:米田 剛)


Affiliation Graduate School of Mathematical Sciences, University of Tokyo, Assosiate professor
(東京大学大学院数理科学研究科 准教授)
Address Komaba 3-8-1 Meguro, Tokyo 153-8914, Japan
(〒153-8914 東京都目黒区駒場3-8-1)
Research interests Partial differential equations (in particular, Navier-Stokes equations and Euler equations), Fluid dynamics
研究室 521室(5階)
e-mail yoneda*at*ms.u-tokyo.ac.jp(スパム防止のため@は*at*と書かれています)


(学生に対する)研究室の紹介

私はNavier-Stokes方程式やEuler方程式という、流体の運動を記述する方程式の数学研究を進めています。 特に、Navier-Stokes方程式は7つのミレニアム懸賞問題の一つを提供しており、当研究室は、そのそのような大問題に挑む学生を大歓迎しています(仮に解けなくても、挑むこと自体で得られる成果は大きい)。その大問題を進展させるためには、「フーリエ解析」「関数空間論とさまざまなノルム不等式、エネルギー法」といった従来の解析手法だけではなく、「微分幾何学的アプローチ」や「整数論的洞察」、更には「乱流現象の数学的洞察」といった幅広い視野が必要であろうと感じています。 意欲的な学生には、そのようなミレニアム懸賞問題に直結していると思われる最新の論文を紹介し、世界の動向を把握する手助けをします。 ちなみに、若者のスポーツと言われている「スノーボード」にも私は挑戦していて、学生とのgeneration gapを感じさせないように努力しています。 Snowboarding 1 Snowboarding 2 Snowboarding cruise

A list of publications since April 2014 (Articles in refereed journal)

  1. C-H. Chan, M. Czubak and T. Yoneda, An ODE for boundary layer separation on a sphere and a hyperbolic space, Physica D, 282 (2014) 34--38.
  2. T. Itoh, H. Miura and T. Yoneda, Remark on single exponential bound of the vorticity gradient for the two-dimensional Euler flow around a corner, J. Math. Fluid Mech., 18 (2016) 531-537.
  3. G. Misiolek and T. Yoneda, Local ill-posedness of the incompressible Euler equations in $C^1$ and $B^1_{\infty,1}$, Math. Ann., 364 (2016) 243-268.
  4. P-Y. Hsu, H. Notsu, T. Yoneda, A local analysis of the axi-symmetric Navier-Stokes flow near a saddle point and no-slip flat boundary, J. Fluid Mech., 794 (2016) 444-459.
  5. N. Kishimoto and T. Yoneda, A number theoretical observation of a resonant interaction of Rossby waves, Kodai Math. J., 40 (2017) 16-20.
  6. G. Misiolek and T. Yoneda Continuity of the solution map of the Euler equations in H\"older spaces and weak norm inflation in Besov spaces, to appear in Trans. Amer. Math. Soc.
  7. Y. Giga, S. Ibrahim, S. Shen and T. Yoneda, Global well posedness for a two-fluid model, to appear in Differential and Integral Equations, arXiv:1411.0917
  8. E.Nakai and T. Yoneda, New applications of Campanato spaces with variable growth condition to the Navier-Stokes equation, to appear in Hokkaido Math. J., arXiv:1408.0159

Preprints

  1. T. Itoh, H. Miura and T. Yoneda, The growth of the vorticity gradient for the two-dimensional Euler flows on domains with corners.
  2. T. Yoneda, A geometric instability of the laminar axisymmetric Euler flows with oscillating flux,arXiv:1606.05744
  3. T. Yoneda, A mathematical consideration of vortex thinning in 2D turbulence, arXiv:1609.00107
  4. N. Kishimoto and T. Yoneda, Global solvability of the rotating Navier-Stokes equations with fractional Laplacian in a periodic domain arXiv:1702.07443

Proceeding

  1. T. Yoneda, Topological instability of laminar flows for the two-dimensional Navier-Stokes equation with circular arc no-slip boundary conditions, RIMS Kokyuroku Bessatsu B49 (2014) 131--137.

A list of publications until March 2014 (Articles in refereed journal)

  1. C-H Chan and T. Yoneda, On the stationary Navier-Stokes flow with isotropic streamlines in all latitudes on a sphere or a 2D hyperbolic space, Dynamics of PDE, 10 (2013) 209--254.
  2. S.Ibrahim and T. Yoneda, Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data, J. Math. Sci. Univ. Tokyo, 20 (2013) 1--25
  3. E. Foxall, S. Ibrahim and T. Yoneda, Streamlines concentration and application to the incompressible Navier-Stokes equations, Tohoku Math. J., 65 (2013) 273--279.
  4. D. Chae and T. Yoneda, On the Liouville theorem for the stationary Navier-Stokes equations in a critical space, J. Math. Anal. Appl., 405 (2013) 706--710.
  5. M. Yamada and T. Yoneda, Resonant interaction of Rossby waves in two-dimensional flow on a β plane, Physica D, 245 (2013) 1--7.
  6. C-H. Chan and T. Yoneda, On possible isolated blow-up phenomena and regularity criterion of the 3D Navier-Stokes equation along the streamlines, Methods and Applications of Analysis, 19 (2012) 211--242.
  7. G. Misiolek and T. Yoneda, Ill-posedness examples for the quasi-geostrophic and the Euler equations, in Analysis, Geometry and Quantum Field Theory, Contemporary Mathematics, Amer. Math. Soc., Providence, RI, (2012) 251--258.
  8. S. Ibrahim and T. Yoneda, Local solvability and loss of smoothness of the Navier-Stokes-Maxwell equations with large initial data, J. Math. Anal. Appl., 396 (2012) 555--561.
  9. H. Koba, A. Mahalov and T. Yoneda, Global well-posedness for the rotating Navier-Stokes-Boussinesq equations with stratification effects, Adv. Math. Sci. Appl., 22 (2012) 61--90.
  10. E. Nakai and T. Yoneda, Bilinear estimates in dyadic BMO and the Navier-Stokes equations, J. Math. Soc. Japan, 64 (2012) 399--422.
  11. Y. Giga, A. Mahalov and T. Yoneda, On a bound for amplitudes of Navier-Stokes flow with almost periodic initial data, J. Math. Fluid Mech., 13 (2011) 459--467.
  12. E. Nakai and T. Yoneda, Riesz transforms on generalized Hardy spaces and a uniqueness theorem for the Navier-Stokes equations, Hokkaido Math. J., 40 (2011) 67--88.
  13. P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Diff. Eq., 250 (2011) 3859--3873.
  14. T. Yoneda, Long-time solvability of the Navier-Stokes equations in a rotating frame with spatially almost periodic large data, Arch. Ration. Mech. Anal., 200 (2011) 225--237.
  15. Y. Taniuchi, T. Tashiro and T. Yoneda, On the two-dimensional Euler equations with spatially almost periodic initial data, J. Math. Fluid Mech., 12 (2010) 594--612.
  16. T. Yoneda, Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO^{-1}, J. Funct. Anal., 258 (2010) 3376--3387.
  17. E. Nakai and T. Yoneda, Construction of solutions for the initial value problem of a functional-differential equation of advanced type, Aeq. Math., 77 (2009) 259 -- 272.
  18. Y. Giga, H. Jo, A. Mahalov and T. Yoneda, On time analyticity of the Navier-Stokes equations in a rotating frame with spatially almost periodic data, Physica D, 237 (2008) 1422--1428.
  19. Y. Sawano and T. Yoneda, Quarkonial decomposition suitable for functional-differential equations of delay type, Math. Nachr., 281 (2008) 1810--1822.
  20. N. Kikuchi, E. Nakai, N. Tomita, K. Yabuta and T. Yoneda, Calderon-Zygmund operators on amalgam spaces and in the discrete case, J. Math. Anal. Appl., 335 (2007) 198--212.
  21. Y. Sawano and T. Yoneda, On the Young theorem for amalgams and Besov spaces, Int. J. Pure Appl. Math., 36 (2007) 199--208.
  22. T. Yoneda, On the functional-differential equation of advanced type f'(x)=af(λx), λ>1, with f(0)=0, J. Math. Anal. Appl., 332 (2007) 487--496.
  23. T. Yoneda, On the functional-differential equation of advanced type f'(x)=af(2x) with f(0)=0, J. Math. Anal. Appl., 317 (2006) 320--330.
  24. T. Yoneda, Spline functions and n-periodic points (Japanese), Trans. Japan Soc. Ind. Appl. Math., 15 (2005) 245--252.

Honors and Awards

  1. The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology:The Young Scientists’ Prize(科学技術分野の文部科学大臣表彰若手科学者賞) April 2014.
  2. MSJ Tatebe Katahiro Prize(日本数学会賞:建部賢弘特別賞)September 2012.
  3. Inoue Research Award for Young Scientists(井上研究奨励賞)February 2012.
  4. Postdoctoral Fellowship Award, Pacific Institute for the Mathematical Sciences September 2010-August 2012
  5. Postdoctoral Fellowship Award, Institute for Mathematics and its Applications September 2009-August 2011
  6. Chairman Award for Outstanding Ingenuity and Creativity(数理科学研究科長賞), University of Tokyo, March 2009.
  7. JSPS Research Fellowship for Young Scientists(学振特別研究員DC1): April 2006-March 2009, at University of Tokyo.

Grants

  1. 住友財団基礎科学研究助成 2013年11月--2014年11月「ナヴィエ・ストークス方程式の爆発問題の解明に向けた流体乱流の大規模数値計算」(共同研究者:斉木吉隆)
  2. 2013年度、北海道大学情報基盤センター共同研究実施に係る学際大規模計算機システム利用:斉木・米田グループとして400万秒分、スパコンのファイル容量が0.6TB分
  3. Grant-in-Aid for Young Scientists B(科研費、若手研究 B) 2013--2015 「流体方程式に対する実解析的手法および数値計算」
  4. 稲盛財団研究助成 2017年4月--2019年3月「ナヴィエ・ストークス方程式の爆発問題の解明に向けた渦の非線形相互作用に対する大規模数値計算」
  5. Grant-in-Aid for Young Scientists A, 17H04825(科研費、若手研究 A) 2017--2019 「数学的アプローチによる様々な流体物理現象の解明」
  6. 基盤研究(B)(分担)2017--2021「流体方程式における非共鳴波動相互作用」
  7. 基盤研究(B)(分担)2015--2019「実解析・調和解析に由来する関数空間の理論の深化と応用」

Selected invited talks

  1. April 2016--present

    1. An instability mechanism in the vorticity on the axis for the axisymmetric Euler equations, Princeton Tokyo Mathematical Fluid Dynamics, Princeton University, Princeton, USA, Nov.7--Nov. 9, 2017.
    2. TBA, 2017 Program on Analysis of PDE: 2D Hydrodynamics and related Issues, Fudan University, Shanghai, China, Oct.30--Nov. 3, 2017.
    3. Pulsatile flowの乱流遷移とVortex breakdownに関する純粋数学的洞察の試み, SummerSchool 数理物理, University of Tokyo, Aug. 25--27.
    4. A weak type of norm inflation for solutions of the incompressible 2D Euler equations near the critical Besov space B^2_{2,1}, Harmonic Analysis and its Applications in Tokyo 2017, Nihon University, August 2(Wed) -- 4(Fri), 2017.
    5. A weak type of norm inflation for solutions of the incompressible 2D Euler equations near the critical Besov space B^2_{2,1}, 5th East Asian Conference in Harmonic Analysis and its Applications, Zhejiang University of Science and Technology, Hangzhou (杭州), China, June 9--13, 2017
    6. An instantaneous blowup of the axisymmetric Euler flow in well-posed Holder spaces (ten min. talk), Oberwolfach Workshop (Geophysical Fluid Dynamics), Oberwolfach, Germany, May 2017.
    7. Mathematical analysis of pulsatile flow and vortex breakdown, interdisciplinary/international seminar on nonlinear sciences, University of Tokyo, Mar. 13,14,22, 2017 (talk at 14).
    8. Pulsatile flowの乱流遷移に関する純粋数学的洞察の試み, 非線形現象と高精度高品質数値解析, 富山大学, Feb. 13--15, 2017. (talk at 15)
    9. Mathematical considerations of laminar-turbulent transition and vortex thinning in 2D turbulence, Tokyo-Berkeley Mathematics Workshop:Partial Differential Equations and Mathematical Physics University of Tokyo, Jan. 9--13, 2017. (talk at 11--13)
    10. 軸対称オイラー方程式の一方向流に対する不安定性について, 日本流体力学会 年会2016, Nagoya Inst. Tech., Sep. 26, 2016.
    11. フルネ・セレの公式と動標構を用いた3次元軸対称オイラー流の洞察,談話会, Tokyo Inst. Tech., July 6, 2016.
  2. April 2014--March 2016

    1. A local analysis of incompressible Euler flow, Fifth China-Japan Workshop on Mathematical Topics from Fluid Mechanics, Wuhan, China, Nov. 17-- Nov. 21 2015.
    2. Loss of continuity of the solution map for the Euler equations using large Lagrangian deformation. 10th International ISAAC Congress in Macau, Harmonic Analysis and PDEs,University of Macau, Aug. 3--8 2015. (talk at 5)
    3. Loss of continuity of the solution map for the Euler equations using multi-scale vorticities, Summer School on multiscale and geometric analysis, Hokkido University, Hokkaido, July 27--July 30 2015.
    4. Loss of continuity of the solution map for the Euler equations using large Lagrangian deformation. RIMS研究集会「流体と気体の数学解析」, RIMS Workshop on Mathematical Analysis in Fluid and Gas Dynamics, Kyoto Univ., July 8--10 2015.
    5. Loss of continuity of the solution map for the Euler equations in \alpha-modulation spaces including B^1_{\infty, 1} and C^{1+s} (0<s<1), 第7回 名古屋微分方程式研究集会, Nagoya University, March 3--5 2015.
    6. Loss of continuity of the solution map for the Euler equations, PDE seminar, University of Minnesota, January 28 2015
    7. 2次元渦度方程式に対する数学解析:三波相互作用とLagrangian deformation, 山田道夫先生還暦記念研究集会「非線形現象の数理」, Wakayama, Dec. 26--28 2014.
    8. Topics in Mathematical fluid dynamics, CMMSC seminar in dynamical system and differential equations, National Chiao Tung University, Taiwan, Nov. 24 2014.
    9. Local ill-posedness of the Euler equations in a critical Besov Space, 九州関数方程式セミナー, Fukuoka Univ., Fukuoka, Nov. 7 2014.
    10. Local ill-posedness of the Euler equations in a critical Besov space , 調和解析駒場セミナー, Univ. of Tokyo, Tokyo, Oct. 25 2014.
    11. オイラー方程式の$C^1$クラスにおける局所非適切性について, 渦の特徴付け, Hokkaido Univ., Sapporo, July 28--30, 2014
    12. ミレニアム懸賞問題:Navier-Stokes方程式, 応用解析特別講義, Ibaraki Univ., Ibaraki, June 3 2014.
    13. 3次元Navier-Stokes流の局所的振る舞いに対する微分幾何学的アプローチ,談話会,Tokyo Inst. of Tech., Tokyo, May 28 2014.
    14. Navier-Stokes流の局所的振る舞いに対する特性曲線法の応用, 応用解析研究会, Waseda Univ., Tokyo, May 17, 2014

Teaching experience and Postdoctoral Mentor (April 2014--2016)

  1. 応用解析演習(2014年度前期:茨城大学の集中講義)
  2. Applied calculus, April--Aug. 2014(応用微積分学 2014年度前期)
  3. Calculus, April--Aug. 2015(微積分学I 2015年度前期)
  4. Applied calculus, April--Aug. 2015(応用微積分学 2015年度前期)
  5. Applied analysis, Sep.--Jan. 2015(解析学特別講義 2015年度後期)
  6. Applied analysis, April--July 2016 (基礎数理特別講義Ⅷ 2016年度Sセメスター)
  7. 全学自由ゼミナール2016年度Aセメスター
  8. April--July 2017 「乱流の数学的洞察に関する入門」(数物先端科学Ⅷ 2016年度Sセメスター)
  • Bachelor
    1. 鈴木健人 (2015)
    2. 榎本直樹 (2015)
    3. 上野健太 (2014)
    4. 武原直紀 (2014)
  • Master student
    1. 上野健太 (April 2015--Mar. 2017)
    2. 中井 拳吾 (April 2015--Mar. 2017)
  • Doctor student
    1. 中井 拳吾 (April 2017--present)
  • Postdoc
    1. 伊藤 翼(Tsubasa Ito)(April 2014--March 2016)
    2. 許 本源(PenYuan Hsu)(Oct. 2014--Sep. 2015)
    3. 柏原崇人 (Takahito Kashiwabara) (April 2015--Sep. 2015)

    Organizer (since April 2016)

    1. 日本応用数理学会学会誌の編集委員会委員(April 2017--Mar. 2020)
    2. 流体力学会年会における「流体数理」のセッションオーガナイザー(2016,2017)

    Working experience (since April 2014)

    1. 一般向けの講演:流体の数学研究とその社会的意義について, 東工大オープンキャンパス,Tokyo Inst. Tech. Aug. 8, 2014
    2. 一般向けの講演:流体の数学研究とその社会的意義について, ホームカミングデイ, Tokyo Inst. Tech. May 25, 2014

    Reseach support

    1. 2011 June--March 2016, JST Math Crest, 数学と諸分野の協働によるブレークスルーの探索, 坂上グループの研究員
    2. 2016 April--present, JST Math Crest, 水藤グループの研究員

    Editorial services

    1. 2014 April--2016 March, Editorial board: Kodai Mathematical Journal

    CV until March 2014


    Movies

    Shibuya , Times square, Sapporo , Manhattan , Yokohama