Categorical duality for quantum group actions

Makoto YAMASHITA¹ based on joint works with Kenny De Commer² and Sergey Neshveyev³

²Vrije Universiteit Brussel

³Universitet i Oslo

The 9th MSJ-SI: Operator Algebras and Mathematical Physics 2016.08.08

Overview: categorical duality for actions

1 Tannaka-Krein duality principle (elaboration of 'predual')

- Actions of compact quantum group G
 ↔ module categories over Rep G (DC.-Y.)
- 2 Classification of actions through category
 - **1** $SU_q(2)$ -actions and weighted graphs (DC.-Y.)
 - 2 Braided commutative Yetter-Drinfeld algebras (N.-Y.)
 - Compact quantum groups with the same fusion structure of SU(n) (N.-Y.)

Compact quantum groups

- Compact topological space X
 √→ function algebra C(X) (unital commutative C*-algebra)
- 2 Compact group $G \times G \to G$ \rightsquigarrow bialgebra structure $C(G) \to C(G \times G) \simeq C(G) \otimes C(G)$

Woronowicz: forget about the commutativity!

Definition

A compact quantum group G is given by

- 1 a unital C*-algebra A = "C(G)",
- **2** a *-homomorphism Δ : $A \rightarrow A \otimes A$, which is (co)cancellative:
 - span of $(A \otimes 1)\Delta(A)$ is dense in $A \otimes A$, ditto for $(1 \otimes A)\Delta(A)$.

 \exists ! invariant state $h: (h \otimes \iota)\Delta = h = (\iota \otimes h)\Delta$ (Haar state)

Unitary representation of CQGs

If G is a compact group, its unitary representation $\pi: G \rightarrow U(H_{\pi})$ can be presented by

- **1** unitary element $U_π ∈ B(H_π) ⊗ C(G) = C(G; B(H_π))$, corresponding to $g ↦ π_g$,
- **2** $\pi_g \pi_h = \pi_{gh}$ translates to $(\iota \otimes \Delta)(U_\pi) = (U_\pi)_{12}(U_\pi)_{13}$.
- **3** contragredient: $(j \otimes \iota)(U^*) \in B(\overline{H}_{\pi}) \otimes C(G), j(T)\overline{\xi} = \overline{T^*\xi}$
- 4 tensor product: $\pi \otimes \sigma : (U_{\pi})_{13}(U_{\sigma})_{23} \in B(H_{\pi} \otimes H_{\sigma}) \otimes C(G)$

Definition

If G is a CQG with $C(G) = (A, \Delta)$, its unitary representation π is:

- **1** a Hilbert space H_{π} ,
- 2 a unitary $U_{\pi} \in B(H_{\pi}) \otimes A$, such that $(\iota \otimes \Delta)(U_{\pi}) = (U_{\pi})_{12}(U_{\pi})_{13}$.

Rigid C*-tensor category

C*-tensor category

- C*-structure on morphisms: norm ||T|| and *: $\mathscr{C}(X, Y) \to \mathscr{C}(Y, X)$ $||T^*T|| = ||T||^2$, $||S|| ||T|| \ge ||ST||$
- Tensor product bifunctor \otimes : $\mathscr{C} \times \mathscr{C} \to \mathscr{C}$, (simple) unit $1_{\mathscr{C}}$

Duality (conjugates)

Dual object \overline{X} comes with $R: 1_{\mathscr{C}} \to \overline{X} \otimes X$, $\overline{R}: 1_{\mathscr{C}} \to X \otimes \overline{X}$ s.t.

$$(R^* \otimes \iota_{\bar{X}})(\iota_{\bar{X}} \otimes \bar{R}) = \iota_{\bar{X}}, \quad (\bar{R}^* \otimes \iota_X)(\iota_X \otimes R) = \iota_X$$

Rigid C*-tensor category

C*-tensor category

- C*-structure on morphisms
- Tensor product bifunctor \otimes : $\mathscr{C} \times \mathscr{C} \to \mathscr{C}$, (simple) unit $1_{\mathscr{C}}$

Duality (conjugates)

Dual object \overline{X} comes with $R: 1_{\mathscr{C}} \to \overline{X} \otimes X$, $\overline{R}: 1_{\mathscr{C}} \to X \otimes \overline{X}$ s.t.

$$(R^* \otimes \iota_{\bar{X}})(\iota_{\bar{X}} \otimes \bar{R}) = \iota_{\bar{X}}, \quad (\bar{R}^* \otimes \iota_X)(\iota_X \otimes R) = \iota_X$$

- Intrinsic (statistical) dimension: $d(X) = \min_{(R,\bar{R})} ||R|| \cdot ||\bar{R}||$
- Standard solution: $||R|| = \sqrt{d(X)} = ||\overline{R}||$ unique up to unitary

Tannaka-Krein duality

If G is a CQG, $U_{\pi} \mapsto H_{\pi}$ (forgetful functor) is a C^{*}-tensor functor Rep $G \rightarrow$ Hilb (category of fin. dim. Hilbert spaces).

Theorem (Woronowicz's Tannka-Krein duality)

The following things are equivalent:

- A CQG G, taken in the GNS representation of the invariant state (reduced CQG)
- 2 A rigid C*-tensor category C with (U₁, U₁) ≃ C, and a C*-tensor functor F: C → Hilb

Key construction for $2 \rightarrow 1$: taking the irreducible classes $(U_{\pi})_{\pi}$ of \mathscr{C} , \rightsquigarrow Peter-Weil presentation " $\mathscr{O}(G)$ " = $\bigoplus_{\pi} \overline{F(\pi)} \otimes F(\pi)$

- algebra structure from decomposition of tensor products
- coalgebra structure by transposition of operator composition

Actions of CQGs

If G is a cpt. group, we are also interested in symmetry given by G: Group homomorphism $a: G \to \operatorname{Aut}(X)$ for some structure X If X is a cpt. top. space, the product map $G \times X \to X$ can be encoded by the *-hom. $C(X) \to C(G \times X) \simeq C(G) \otimes C(X)$.

Definition

An action of a CQG G on a C^{*}-algebra B is given by a *-homomorphism $\beta: B \to C(G) \otimes B$, satisfying $(\Delta \otimes \iota)\beta = (\iota \otimes \beta)\beta$.

Example (Quantum homogeneous space by quantum subgroups)

Closed quantum subgroup "G' \subset G" given by a surjective Hopf algebra hom. r: $\mathcal{O}(G) \rightarrow \mathcal{O}(G')$ \rightsquigarrow "Quotient" G/G', represented by $C(G)^{G'} = \{f \in C(G) \mid (\iota \otimes r)\Delta(f) = f \otimes 1\}$

First ideas of duality

von Neumann algebraic model:

- $L^{\infty}(G)$: closure of C(G) in the GNS representation of Haar state h
- coproduct $\Delta : L^{\infty}(G) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(G)$ as normal *-hom
- predual $L^1(G) = L^{\infty}(G)_*$ has 'algebra structure', which is

$$L^1(G) \supset \bigoplus_{\pi \colon \operatorname{Irr} G} B(H_{\pi})$$

Ergodic action: $C(X) \rightarrow C(G) \otimes (X)$ such that $C(X)^G = \mathbb{C}$

- von Neumann algebraic model $L^{\infty}(X)$ from the invariant state
- coaction map $L^{\infty}(X) \to L^{\infty}(G) \bar{\otimes} L^{\infty}(X)$
- predual $L^1(X) = L^{\infty}(X)_*$ is a module over $L^1(G)$ \rightsquigarrow captures multiplicity of each $\pi \in \operatorname{Irr} G$ in $L^{\infty}(G)$

...towards categorical duality

We want to capture:

- the 'coalgebra' structure on L¹(X) (corresponds to the algebra structure of C(X))
- compatibility condition with the coalgebra structure of $L^1(G)$

What we do:

- take the category of *G*-equivariant modules on *C*(*X*) ('equivariant vector bundles')
- (Rep G)-module category structure of such modules

Why?: multiplicity can be captured by

 $\operatorname{Hom}_G(H_\pi,C(X))\simeq\operatorname{Hom}_{G^-C(X)}(H_\pi\otimes C(X),C(X))$

Module category

From G-algebra $(B,\beta: B \to C(G) \otimes B)$:

- C*-category $\mathcal{D}_B = \{ \text{ fin. gen. proj. & } G\text{-equivariant } B\text{-modules} \} (E_B, \delta_E : E \to C(G) \otimes E) \in \mathcal{D}_B$
- tensor product of $E \in \mathcal{D}_B$, $\pi \in \operatorname{Rep} G$: modeled on $H_{\pi} \otimes E$, with left C(G)-comodule structure by $U_{21}^*\beta_{13}$ \rightsquigarrow right associative product $E \times (U_{\pi} \otimes U_{\sigma}) \simeq (E \times U_{\pi}) \times U_{\sigma}$

Definition (Yetter, Häring-Oldenburg, Ostrik, DC.-Y.)

Let \mathscr{C} be a C*-tensor category. A \mathscr{C} -module category is a C*-category (involution on morphisms, C*-identity) \mathscr{D} endowed with a bifunctor $\mathscr{D} \times \mathscr{C} \to \mathscr{D}, (X, U) \mapsto X \cdot U$, satisfying the associativity conditions.

Tannaka-Krein duality for actions

Theorem (DC.-Y., N., N.-Y.)

The following categories are equivalent:

1 {G-actions on C*-algebras; G-equivariant *-homs }

2 {(𝔅, X) | 𝔅 : (Rep G)-module category, X ∈ 𝔅; (Rep G)-module homomorphism functors }

Key construction for $2 \rightarrow 1$: Given (\mathcal{D}, X) ,

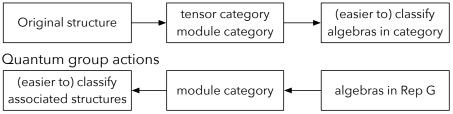
- form $\mathscr{B}_X = \bigoplus_{\pi \in \operatorname{Irr} G} \overline{H}_{\pi} \otimes \mathscr{D}(X, X \cdot U_{\pi})$
- algebra structure from decomposition of tensor product
- G-action on \bar{H}_{π}
- *-structure from action of (R_{π}, \bar{R}_{π}) (Frobenius duality argument)
- completely positive map $\mathscr{B}_X \to \mathscr{D}(X, X) =$ summand for $\pi = 1$

Dictionary

- G-C*-algebras ↔ (Rep G)-module categories
- G-equivariant *-homomorphisms \leftrightarrow (Rep G)-homomorphism functors
- Coideals of $C(G) \leftrightarrow$ factorization of $\operatorname{Rep} G \rightarrow \operatorname{Hilb}_f$ as (Rep G)-module categories
- Quantum subgroups of $G \leftrightarrow factorization$ of $Rep \, G \rightarrow Hilb_f$ as tensor functors
- induction along $C(G) \rightarrow C(H) \leftrightarrow$ restriction along $\operatorname{Rep} G \rightarrow \operatorname{Rep} H$
- restriction along $C(G) \rightarrow C(H) \leftrightarrow$ induction along $\operatorname{Rep} G \rightarrow \operatorname{Rep} H$
- braided commutative Yetter-Drinfeld G-algebras ↔ tensor functors from Rep G

Comparison with other theories

Subfactors, Conformal Field Theory



- G-algebras: (morally) algebra objects in Rep G
- (sometimes) easier to control module categories and tensor functors on Rep *G*

Ergodic actions

From (Rep G)-module category \mathcal{D} and $X \in \mathcal{D}$:

- associated G-algebra $A_{\mathcal{D},X}$ has $A_{\mathcal{D},X}^G = \mathcal{D}(X,X)$
- $\dim A^G_{\mathcal{D},X} < \infty \Leftrightarrow X$ spans a semisimple category: $\dim \mathcal{D}(Y,Z) < \infty$ From semisimple C*-category \mathcal{D} with $I = \operatorname{Irr} \mathcal{D}$:
 - Rigid subcategory of $End(\mathcal{D}) \equiv Hilb_{f}^{I \times I}$: row and column-finite $I \times I$ -graded Hilbert spaces & uniformly bounded maps

$$(T\colon \mathcal{D} \to \mathcal{D}) \leftrightarrow (H_{st} = \mathcal{D}(T(X_s), X_t))_{s,t \in I}$$

• (Rep G)-module structure on $\mathcal{D} \equiv C^*$ -tensor functor Rep $G \rightarrow \text{End}(\mathcal{D})$

Ergodic actions of $SU_q(2)$

Theorem (folklore)

When $q \in \mathbb{R}^{\times}$, the C^{*}-tensor category Rep SU_q(2) is universally generated by the object $U_{1/2}$ and the morphism R: $1 = U_0 \rightarrow U_{1/2} \otimes U_{1/2}$ satisfying

$$(l_{1/2} \otimes R^*)(R \otimes l_{1/2}) = -\operatorname{sgn}(q), \quad R^*R = |q + q^{-1}| l_0$$

Rep SU_q(2): the Temperley-Lieb category $\mathcal{TL}_{|q+q^{-1}|, \text{sgn}(q)}$

Ergodic actions of $SU_q(2)$

Theorem (folklore)

When $q \in \mathbb{R}^{\times}$, the C^{*}-tensor category Rep SU_q(2) is universally generated by the object $U_{1/2}$ and the morphism R: $1 = U_0 \rightarrow U_{1/2} \otimes U_{1/2}$ satisfying

$$(\iota_{1/2} \otimes R^*)(R \otimes \iota_{1/2}) = -\operatorname{sgn}(q), \quad R^*R = |q + q^{-1}|\iota_0$$

To classify C*-tensor functors $\operatorname{Rep} SU_q(2) \to \operatorname{Hilb}_f^{|\times|}$

- specify how $U_{1/2}$ is represented (as an $I \times I$ -graded Hilbert space H_{**})
- specify how *R* is represented: $\mathbb{C} \to \bigoplus_{t} H_{st} \otimes H_{ts}$
- sort out relation in terms of associated antilinear maps $J_{et}: H_{et} \rightarrow H_{ts}$

 \rightsquigarrow weighted graphs from eigendecomposition of $J_{st}^* J_{st}$

Makoto Yamashita (Ocha)

Duality for actions

Classification by graphs

Definition (Fair & balanced graph)

Let $t \in \mathbb{R}$. A fair and balanced t-graph is:

- an oriented graph $\Gamma = (V, E; s, t: E \rightarrow V)$
- 'weight' function $w: E \to \mathbb{R}_{>0}$ such that

$$1 |t| = \sum_{e: s(e)=v} w(e) \text{ for any } v \in V$$

- 2 \exists ori. reversing involution $e \rightarrow \bar{e}$ on E such that $w(\bar{e}) = w(e)^{-1}$
- 3 if t > 0, this involution is fixed-point free

Theorem (DC.-Y.)

The following categories are equivalent:

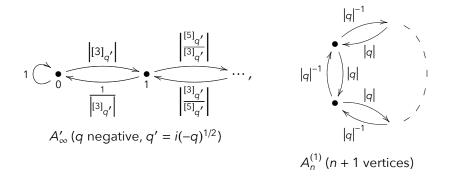
- **1** Ergodic $SU_q(2)$ -algebras
- 2 'Fair and balanced' $(q + q^{-1})$ -graphs, solution of certain quadratic equations associated with the graphs

Makoto Yamashita (Ocha)

Duality for actions

Fair and balanced [2]_q-graphs

Finding fair and balanced $[2]_q$ -graphs:



Poisson boundary

Izumi: noncommutative Poisson boundary of \hat{G}

- prob. measure μ on Irr G defines $P_{\mu} = \sum_{\pi: \operatorname{Irr} G} \mu(\pi)(\phi_{\pi} \otimes \iota)\hat{\Delta}$ on $\ell^{\infty}\hat{G} = \ell^{\infty} \prod_{\pi} B(H_{\pi})$
- Poisson boundary: $H^{\infty}(\hat{G};\mu) = \{T \in \ell^{\infty}\hat{G} \mid P_{\mu}(T) = T\}$ as an injective operator system
- (with Choi-Effros product) $H^{\infty}(\hat{G};\mu)$ is a Yetter-Drinfeld G-algebra

Theorem (N.-Y.; cf. Tomatsu, De Rijdt-Vander Vennet)

The (Rep G)-module for $H^{\infty}(\hat{G};\mu)$ is given by a tensor functor Π : Rep $G \to \mathscr{P}$ which only depends \mathscr{C} and μ . If G is coamenable, Π is universal among the tensor functors $F: \mathscr{C} \to \mathscr{D}$ such that $d(F(\pi)) = \dim H_{\pi}$.

Classifying SU(*n*)**-type** quantum groups

Woronowicz's problem

classify the compact quantum groups G such that:

- **1** fusion ring isomorphism $\phi \colon \mathbb{N}[\operatorname{Irr} G] \to \mathbb{N}[\operatorname{Irr} SU(n)]$
- (classical) dimension equality dim $H_{\pi} = \dim H_{\phi(\pi)}$

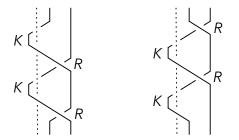
For $\operatorname{Rep} G = \operatorname{Rep} \operatorname{SU}_q(n)$, understand the strict quantizations of Poisson-Lie group structures on $\operatorname{SU}(n)$.

N.-Y.: complete answer for non-Kac ($S^2 \neq l$) case

- Kazhdan-Wenzl classification for the candidates of Rep G $(\mathbb{Z}/n$ -parameter other than $q \in \mathbb{R}_{>0}$)
- classify fiber functors on Rep G through the Poisson boundary $\mathscr{P} \simeq \text{Rep } T$ (maximal torus)

Reflection equation and module category

Cherednik: reflection equation $K_1RK_1R = RK_1RK_1$



- representation of *R* (braiding) and *K* (reflection operator): Brieskorn braid group
- 'pure Brieskorn braid group':

 $P(B_n) = \pi_1(\mathbb{C}^n \setminus (\text{type B hyperplane configuration}))$

Reflection equation and module category

Cherednik: reflection equation $K_1RK_1R = RK_1RK_1$

- representation of *R* (braiding) and *K* (reflection operator): Brieskorn braid group
- 'pure Brieskorn braid group':

 $P(B_n) = \pi_1(\mathbb{C}^n \setminus (\text{type B hyperplane configuration}))$

Rep *G* braided & solution *K* in $B(H_U) \rightsquigarrow$ new category by:

- **1** adding *K* to $\operatorname{End}_{G}(H_{U})$,
- 2 generating a right (Rep G)-module category

Example ($G = SU_q(2)$ **)**

Nonstandard Podleś spheres from $U = U_{1/2}$,

$$\mathcal{K} = \left(\begin{array}{cc} 0 & 1 \\ 1 & q^{s} - q^{-s} \end{array} \right)$$

Makoto Yamashita (Ocha)

Duality for actions

Cyclotomic Knizhnik-Zamolodchikov equation

Leibman, Golubeva-Leksin: the reflection operators for SU(2) can be obtained from the monodromy of

$$\frac{\partial v}{\partial z_i} = \left(\hbar\left(\sum_{j\neq i} \frac{t_{ij}}{z_i - z_j} + \frac{t_{ij}^+}{z_i + z_j}\right) + s\frac{(E+F)_i}{z_i}\right) v$$

for

- invariant 2-tensor $t = \frac{1}{2}H \otimes H + E \otimes F + F \otimes E$
- $t^+ = (\sigma \otimes \iota)(t)$ with Chevalley involution σ

with De Commer, in progress

Generalization to SU(*n*): for a *cyclotomic* Knizhnik-Zamolodchikov equation (after Enriquez) on $\mathbb{C}^n \setminus \{z_i = \zeta_n^k z_j, z_i = 0\} \rightsquigarrow$ quantizations of nonstandard Poisson structures on SU(*n*)/*T*.