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Shlyakhtenko’s free Araki-Woods factors

» Orthogonal representation (U;);cr
~—» von Neumann algebra (M, ) with faithful normal state.

v

Direct sum (U; @ Vi)ter 7~ free product (M, ) * (N, ).

v

Intertwiner T between U and V with || T| <1
~—~ state preserving completely positive 0 : (M, @) — (N, ).

v

A free probability analog of the CAR,

generalizing Voiculescu's free Gaussian functor.

v

Open problem:
classify these von Neumann algebras M in terms of (U;):cr.
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» The operator s(&) = ((&) + ¢(£)* has Wigner's semicircular
distribution with radius 2 [|£]| w.r.t. ¢.

» If & L 7, then s(§) and s(n) are x-free w.r.t. ©.

» For H=C", we have L(F,) = {{(e;) + l(e)* | i=1,...,n}".
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Define I'(Kr C H)" = {¢(§) + ¢(§)* | £ € Kr}” acting on F(H).

The vacuum state p(T) = (T, Q) is faithful and called the free
quasi-free state.
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Let (U:)tcr be an orthogonal representation on the real Hilbert space Hg.

» Put H= Hr +iHg
and J: H— H:J(+in) =& —inforall ,n € Hy.

» Define A on H such that At = U,.
» Put S = JAY? and Kp = {£ € D(S) | S(€) = ¢}
» Then, Kp NiKg = {0} and Kg +iKgr C H is dense.

~—» Every such Kr C H arises in this way.
~— Write I'(U, Hr)" =T(Kr C H)" = {£(&) + £(5(€))* | £ € D(S)}".

Note: conversely S(& +in) = & —in for all £, € Kg and then S = JAY/?.
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Connes’ invariants for free Araki-Woods factors

Write M = T'(U, Hg)"” with free quasi-free state ¢.
Generators: s(&) = ((&) + £(S(€))* with o7 (s(€)) = s(Usf).

Theorem (Shlyakhtenko, 1996-1998)

Unless Hg = R and U; = id, we have that M is a factor

» of type Il iff Uy = id for all t € R,

v

of type Ill iff U is periodic with period 27/|log A|,

v

of type Il iff U is not periodic,
that is full: Inn(M) C Aut(M) is closed,

v

v

with Connes’ T-invariant, i.e. the topology on R induced by
R — Out(M) : t — o, equal to the topology induced by t — U,

» that is almost periodic iff U is almost periodic, in which case
Sd(M) = Sd(U) := subgroup of R generated by the eigenvalues of U.
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Almost periodic free Araki-Woods factors

A full factor M is called almost periodic if it admits a faithful normal
state ¢ such that (07 ):cr is almost periodic.

Then, Sd(M) C IRY is defined such that the compactification given by

—

t — of € Out(M) corresponds to R C Sd(M).

Theorem (Shlyakhtenko, 1996)

The almost periodic free Araki-Woods factors M are fully classified by
their Sd invariant Sd(M) C R,

So, for almost periodic orthogonal representations U and V/, we have
F(U)" = T(V)"if and only if Sd(U) = Sd(V).

Attention: only the “non trivial” case, because I'(id, H)" = L(Fgim(H.))-
Isomorphisms through Shlyakhtenko's matrix models.

Note: unique free Araki-Woods factor of type Ill, A € (0,1).

7/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

8/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results,

8/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results, mostly based on

the Connes-Takesaki continuous core core(M) = M x, R.

8/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results, mostly based on
the Connes-Takesaki continuous core core(M) = M x, R.

Write M = T (U, Hg)".

8/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results, mostly based on
the Connes-Takesaki continuous core core(M) = M x, R.

Write M = T (U, Hg)".

» Shlyakhtenko (1997). When U is a multiple of the regular
representation, then core(M) = L(F.) @ B(K).

8/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results, mostly based on
the Connes-Takesaki continuous core core(M) = M x, R.

Write M = T (U, Hg)".

» Shlyakhtenko (1997). When U is a multiple of the regular
representation, then core(M) = L(F.) @ B(K).

When all tensor powers U; & --- @ U; are disjoint from the regular
representation, then core(M) ¢ L(F:) @ B(K).

8/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results, mostly based on
the Connes-Takesaki continuous core core(M) = M x, R.
Write M = T'(U, Hg)".

» Shlyakhtenko (1997). When U is a multiple of the regular
representation, then core(M) = L(F.) @ B(K).

When all tensor powers U; & --- @ U; are disjoint from the regular
representation, then core(M) ¢ L(F:) @ B(K).

» Shlyakhtenko (2002): two non isomorphic free Araki-Woods factors
having the same 7 invariant.

8/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results, mostly based on
the Connes-Takesaki continuous core core(M) = M x, R.

Write M = T (U, Hg)".

» Shlyakhtenko (1997). When U is a multiple of the regular
representation, then core(M) = L(F.) @ B(K).

When all tensor powers U; & --- @ U; are disjoint from the regular
representation, then core(M) ¢ L(F:) @ B(K).

» Shlyakhtenko (2002): two non isomorphic free Araki-Woods factors
having the same 7 invariant.

» Houdayer (2008): when U is mixing, then core(M) is solid.

8/17



Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results, mostly based on
the Connes-Takesaki continuous core core(M) = M x, R.

Write M = (U, Hg)".
» Shlyakhtenko (1997). When U is a multiple of the regular
representation, then core(M) = L(F.) @ B(K).

When all tensor powers U; & --- @ U; are disjoint from the regular
representation, then core(M) ¢ L(F:) @ B(K).

» Shlyakhtenko (2002): two non isomorphic free Araki-Woods factors
having the same 7 invariant.

» Houdayer (2008): when U is mixing, then core(M) is solid.

» Hayes (2015): when U is disjoint from the regular representation,
then core(M) % L(F:) ® B(K).
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» Every orthogonal representation of R is orthogonally isomorphic with
a direct sum of such (U, Hg).

» Orthogonal representations of R are thus fully classified by
a symmetric measure 1 on R and

a symmetric multiplicity function m: R — NU {400}

(that we always assume to satisfy m(x) > 1 for p a.e. x)
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Consider the set S(IR) of symmetric probability measures ;2 on R such that
> writing /1 = fic + [a,
> we have fic * fic < fic,

> /15 is not concentrated on {0}.

Write A(ua) = subgroup of R generated by the atoms of .

Theorem (Houdayer—Shlyakhtenko-V, 2016)

For 1 € 8(R), the free Araki-Woods factors (1, m)” are exactly classified
by the subgroup A(122) C R and the measure class of fic * 0p(,,)-

Here: d, is any atomic probability measure with set of atoms A.

Source of many examples:
Start with /9 and a non trivial j1,. Take 1= s V' \/ =g g™

In particular: many non isomorphic I'(;, m)” with the same 7 invariant.
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Recall: MY = {x € M | Yy € M : {(xy) = (yx)}.

Theorem (Houdayer—Shlyakhtenko-V, 2016)

Let M =T (x, m)” be a free Araki-Woods factor with free quasi-free state .

If ¢ is any faithful normal state on M such that M is non amenable, then
> there exist non zero projections p € M¥? and g € M?,

» and a partial isometry v € M with v*v = p and vww* = g, such that

P(x) = Ap(v¥xv) for all x € gMq, with A = ¢(q)/¢(p).

Main consequence:

if [(p, m)”" =T (v,n)" and if u(t) > 0 for some t # 0,

there also exists an isomorphism preserving the free quasi-free states.
And then the measure class of \/, . ;1" becomes an invariant.
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» Haagerup: yes for the hyperfinite Ill; factor !

» Haagerup’s reformulation: trivial bicentralizer
iff there exists a faithful normal state v such that (M%) N M = C1,

iff the set of such 7 is dense among all normal states on M.

~_» Often, M¥ is a ll; factor. But:

Theorem (Houdayer-Shlyakhtenko-V, 2016)

Let M = I'(x, m)” with 12 continuous. For every faithful normal state ¢ on
M, we have that MY is amenable.

Houdayer (2008): free Araki-Woods factors have a trivial bicentralizer.
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> All T((X\, +00) + (dg, m))” with 2 < m < 400 are isomorphic,
but whether they are isomorphic with m = +oo is equivalent with the
question L(F,,) = L(F).
Intriguing open cases:
> Does '(A[[_,,m)" depend on a > 0 and/or m € N 7
» Are (A, 1)” and T'(\ + do, 1)” isomorphic ?
Both have all centralizers amenable and core L(F) @ B(K).

The free quasi-free state has trivial centralizer, resp. diffuse abelian
centralizer.
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> Two realizations of core(M): as M x, R and as M x,, R.

» In this way, L (R) C core(M) and L, (R) C core(M).

Theorem (Houdayer—Shlyakhtenko-V, 2016)

A corner of ¢ is conjugate to a corner of 1 if and only if L (R) < L,(RR)

inside core(M) in the sense of Popa's intertwining-by-bimodules.
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Theorem (Houdayer—Shlyakhtenko-V, 2016)

If (A,7) and (B, 7) are nonamenable Il; factors with their trace, then
(M, @) * (A, 7) is isomorphic with (M, ) = (B, 7) if and only if
there exists t > 0 such that A = B".

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.
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Free group factors M = L(IF,)
» (Voiculescu, 1995) have no Cartan subalgebra,
» (Ozawa, 2003) are solid: A’ M is amenable whenever A C M diffuse,

» (Ozawa-Popa, 2007) are strongly solid: Ay, (A)” is amenable
whenever A C M is diffuse and amenable.

Free Araki-Woods factors M = I'(p, m)”
» (Shlyakhtenko, 2003) are solid,

» (Houdayer—Ricard, 2010) have no Cartan subalgebra.

Note: only consider subalgebras that are the range of a faithful normal
conditional expectation.
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» Let M =T (u, m)” be a free Araki-Woods factor with its free
quasi-free state ¢.

» Finite corners p core(M) p of the continuous core fall under the
Ozawa-Popa theorem: tracial von Neumann algebras with CMAP and
good deformation properties.

» But: the normalizer of A C M induces a generalized
(groupoid/pseudogroup type) normalizer of core(A) inside core(M).

» Extend the Ozawa-Popa theorem to cover as well these generalized
normalizers:

we prove that tracial von Neumann algebras with CMAP and a
malleable deformation in the sense of Popa are stably strongly solid.
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