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Shlyakhtenko’s free Araki-Woods factors

I Orthogonal representation (Ut)t∈R

von Neumann algebra (M, ϕ) with faithful normal state.

I Direct sum (Ut ⊕ Vt)t∈R free product (M, ϕ) ∗ (N, ψ).

I Intertwiner T between U and V with ‖T‖ ≤ 1

state preserving completely positive θ : (M, ϕ)→ (N, ψ).

I A free probability analog of the CAR,

generalizing Voiculescu’s free Gaussian functor.

I Open problem:

classify these von Neumann algebras M in terms of (Ut)t∈R.
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Construction: full Fock space

I Given a Hilbert space H, construct the full Fock space

F(H) = CΩ⊕
∞⊕
n=1

H⊗n

I For ξ ∈ H, left creation operator `(ξ) : F(H)→ F(H) given by

`(ξ)Ω = ξ and `(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn.

I Vacuum state ϕ(T ) = 〈TΩ,Ω〉.

Theorem (Voiculescu, 1983)

I The operator s(ξ) = `(ξ) + `(ξ)∗ has Wigner’s semicircular
distribution with radius 2 ‖ξ‖ w.r.t. ϕ.

I If ξ ⊥ η, then s(ξ) and s(η) are ∗-free w.r.t. ϕ.

I For H = Cn, we have L(Fn) ∼= {`(ei ) + `(ei )
∗ | i = 1, . . . , n}′′.
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Construction: free Araki-Woods factors

Let H be a Hilbert space and KR ⊂ H a real subspace satisfying

I KR ∩ iKR = {0}

I KR + iKR ⊂ H is dense.

Definition (Shlyakhtenko, 1996)

Define Γ(KR ⊂ H)′′ = {`(ξ) + `(ξ)∗ | ξ ∈ KR}′′ acting on F(H).

The vacuum state ϕ(T ) = 〈TΩ,Ω〉 is faithful and called the free
quasi-free state.

Basic question: classify Γ(KR ⊂ H)′′ in terms of KR ⊂ H;
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An equivalent point of view

Let (Ut)t∈R be an orthogonal representation on the real Hilbert space HR.

I Put H = HR + iHR

and J : H → H : J(ξ + iη) = ξ − iη for all ξ, η ∈ HR.

I Define ∆ on H such that ∆it = Ut .

I Put S = J∆1/2 and KR = {ξ ∈ D(S) | S(ξ) = ξ}.

I Then, KR ∩ iKR = {0} and KR + iKR ⊂ H is dense.

Every such KR ⊂ H arises in this way.

Write Γ(U,HR)′′ = Γ(KR ⊂ H)′′ = {`(ξ) + `(S(ξ))∗ | ξ ∈ D(S)}′′.

Note: conversely S(ξ + iη) = ξ− iη for all ξ, η ∈ KR and then S = J∆1/2.
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Connes’ invariants for free Araki-Woods factors

Write M = Γ(U,HR)′′ with free quasi-free state ϕ.

Generators: s(ξ) = `(ξ) + `(S(ξ))∗ with σϕt (s(ξ)) = s(Utξ).

Theorem (Shlyakhtenko, 1996-1998)

Unless HR = R and Ut = id, we have that M is a factor

I of type II1 iff Ut = id for all t ∈ R,

I of type IIIλ iff U is periodic with period 2π/| log λ|,
I of type III1 iff U is not periodic,

I that is full: Inn(M) ⊂ Aut(M) is closed,

I with Connes’ τ -invariant, i.e. the topology on R induced by
R→ Out(M) : t 7→ σϕt , equal to the topology induced by t 7→ Ut ,

I that is almost periodic iff U is almost periodic, in which case

Sd(M) = Sd(U) := subgroup of R∗+ generated by the eigenvalues of U.
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Almost periodic free Araki-Woods factors

A full factor M is called almost periodic if it admits a faithful normal
state ϕ such that (σϕt )t∈R is almost periodic.

Then, Sd(M) ⊂ R∗+ is defined such that the compactification given by

t 7→ σϕt ∈ Out(M) corresponds to R ⊂ Ŝd(M).

Theorem (Shlyakhtenko, 1996)

The almost periodic free Araki-Woods factors M are fully classified by
their Sd invariant Sd(M) ⊂ R∗+.

So, for almost periodic orthogonal representations U and V , we have
Γ(U)′′ ∼= Γ(V )′′ if and only if Sd(U) = Sd(V ).

Attention: only the “non trivial” case, because Γ(id,HR)′′ ∼= L(Fdim(HR)).

Isomorphisms through Shlyakhtenko’s matrix models.

Note: unique free Araki-Woods factor of type IIIλ, λ ∈ (0, 1).
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Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results, mostly based on

the Connes-Takesaki continuous core core(M) = M oϕ R.

Write M = Γ(U,HR)′′.

I Shlyakhtenko (1997). When U is a multiple of the regular
representation, then core(M) ∼= L(F∞)⊗ B(K ).

When all tensor powers Ut ⊗ · · · ⊗ Ut are disjoint from the regular
representation, then core(M) 6∼= L(Ft)⊗ B(K ).

I Shlyakhtenko (2002): two non isomorphic free Araki-Woods factors
having the same τ invariant.

I Houdayer (2008): when U is mixing, then core(M) is solid.

I Hayes (2015): when U is disjoint from the regular representation,
then core(M) 6∼= L(Ft)⊗ B(K ).
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Classification of orthogonal representations

Given a Borel measure µ on R that is symmetric, i.e. µ(X ) = µ(−X ),

put HR = {ξ ∈ L2(R, µ) | ξ(−x) = ξ(x)} with (Utξ)(x) = exp(itx)ξ(x).

I Every orthogonal representation of R is orthogonally isomorphic with
a direct sum of such (U,HR).

I Orthogonal representations of R are thus fully classified by

a symmetric measure µ on R and

a symmetric multiplicity function m : R→ N ∪ {+∞}
(that we always assume to satisfy m(x) ≥ 1 for µ a.e. x)

I Two such (µi ,mi ) define the same rep iff µ1 ∼ µ2 and m1 = m2 a.e.

We write Γ(µ,m)′′ for the free Araki-Woods factor.

Note: the spectral measure of U ⊗ V is µU ∗ µV .

Note: almost periodic = atomic measure µ.
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Non almost periodic free Araki-Woods factors

Consider the set S(R) of symmetric probability measures µ on R such that

I writing µ = µc + µa,

I we have µc ∗ µc ≺ µc ,

I µa is not concentrated on {0}.

Write Λ(µa) = subgroup of R generated by the atoms of µa.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

For µ ∈ S(R), the free Araki-Woods factors Γ(µ,m)′′ are exactly classified
by the subgroup Λ(µa) ⊂ R and the measure class of µc ∗ δΛ(µa).

Here: δΛ is any atomic probability measure with set of atoms Λ.

Source of many examples:

Start with µ0 and a non trivial µa. Take µ = µa ∨
∨

n≥1 µ
∗n
0 .

In particular: many non isomorphic Γ(µ,m)′′ with the same τ invariant.
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States with non amenable centralizer

Recall: Mψ = {x ∈ M | ∀y ∈ M : ψ(xy) = ψ(yx)}.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let M = Γ(µ,m)′′ be a free Araki-Woods factor with free quasi-free state ϕ.

If ψ is any faithful normal state on M such that Mψ is non amenable, then

I there exist non zero projections p ∈ Mϕ and q ∈ Mψ,

I and a partial isometry v ∈ M with v∗v = p and vv∗ = q, such that

ψ(x) = λϕ(v∗xv) for all x ∈ qMq, with λ = ψ(q)/ϕ(p).

Main consequence:

if Γ(µ,m)′′ ∼= Γ(ν, n)′′ and if µ(t) > 0 for some t 6= 0,

there also exists an isomorphism preserving the free quasi-free states.

And then the measure class of
∨

n≥1 µ
∗n becomes an invariant.
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The bicentralizer problem

I Connes’ question: does every III1 factor have a trivial bicentralizer ?

I Haagerup: yes for the hyperfinite III1 factor !

I Haagerup’s reformulation: trivial bicentralizer

iff there exists a faithful normal state ψ such that (Mψ)′ ∩M = C1,

iff the set of such ψ is dense among all normal states on M.

Often, Mψ is a II1 factor. But:

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let M = Γ(µ,m)′′ with µ continuous. For every faithful normal state ψ on
M, we have that Mψ is amenable.

Houdayer (2008): free Araki-Woods factors have a trivial bicentralizer.
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Dependence on the multiplicity function

To start with: Γ(δ0,m)′′ ∼= L(Fm(0)).

I Let λ be the Lebesgue measure. Then, Γ(λ+ δ0, 1)′′ 6∼= Γ(λ+ δ0, 2)′′.

Reason: one has all centralizers amenable and the other not.

I All Γ((λ,+∞) + (δ0,m))′′ with 2 ≤ m < +∞ are isomorphic,

but whether they are isomorphic with m = +∞ is equivalent with the
question L(Fm) ∼= L(F∞).

Intriguing open cases:

I Does Γ(λ|[−a,a],m)′′ depend on a > 0 and/or m ∈ N ?

I Are Γ(λ, 1)′′ and Γ(λ+ δ0, 1)′′ isomorphic ?

Both have all centralizers amenable and core L(F∞)⊗ B(K ).

The free quasi-free state has trivial centralizer, resp. diffuse abelian
centralizer.
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Deformation/rigidity and the conjugacy of states

Let ϕ and ψ be faithful normal states on a von Neumann algebra M.

We say that a corner of ϕ is conjugate to a corner of ψ if

I there exist non zero projections p ∈ Mϕ and q ∈ Mψ,

I and a partial isometry v ∈ M with v∗v = p and vv∗ = q, such that

ψ(x) = λϕ(v∗xv) for all x ∈ qMq, with λ = ψ(q)/ϕ(p).

I Two realizations of core(M): as M oϕ R and as M oψ R.

I In this way, Lϕ(R) ⊂ core(M) and Lψ(R) ⊂ core(M).

Theorem (Houdayer–Shlyakhtenko–V, 2016)

A corner of ϕ is conjugate to a corner of ψ if and only if

Lϕ(R) ≺ Lψ(R)

inside core(M) in the sense of Popa’s intertwining-by-bimodules.
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Further applications: free products

Let µ be a continuous symmetric probability measure.

Define M = Γ(µ,+∞)′′ with its free quasi-free state ϕ.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II1 factors with their trace, then

(M, ϕ) ∗ (A, τ) is isomorphic with (M, ϕ) ∗ (B, τ) if and only if

there exists t > 0 such that A ∼= Bt .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.

15/17



Further applications: free products

Let µ be a continuous symmetric probability measure.

Define M = Γ(µ,+∞)′′ with its free quasi-free state ϕ.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II1 factors with their trace, then

(M, ϕ) ∗ (A, τ) is isomorphic with (M, ϕ) ∗ (B, τ) if and only if

there exists t > 0 such that A ∼= Bt .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.

15/17



Further applications: free products

Let µ be a continuous symmetric probability measure.

Define M = Γ(µ,+∞)′′ with its free quasi-free state ϕ.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II1 factors with their trace, then

(M, ϕ) ∗ (A, τ) is isomorphic with (M, ϕ) ∗ (B, τ) if and only if

there exists t > 0 such that A ∼= Bt .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.

15/17



Further applications: free products

Let µ be a continuous symmetric probability measure.

Define M = Γ(µ,+∞)′′ with its free quasi-free state ϕ.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II1 factors with their trace, then

(M, ϕ) ∗ (A, τ) is isomorphic with (M, ϕ) ∗ (B, τ) if and only if

there exists t > 0 such that A ∼= Bt .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.

15/17



Further applications: free products

Let µ be a continuous symmetric probability measure.

Define M = Γ(µ,+∞)′′ with its free quasi-free state ϕ.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II1 factors with their trace, then

(M, ϕ) ∗ (A, τ) is isomorphic with (M, ϕ) ∗ (B, τ) if and only if

there exists t > 0 such that A ∼= Bt .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.

15/17



Further applications: free products

Let µ be a continuous symmetric probability measure.

Define M = Γ(µ,+∞)′′ with its free quasi-free state ϕ.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II1 factors with their trace, then

(M, ϕ) ∗ (A, τ) is isomorphic with (M, ϕ) ∗ (B, τ) if and only if

there exists t > 0 such that A ∼= Bt .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.

15/17



Further applications: free products

Let µ be a continuous symmetric probability measure.

Define M = Γ(µ,+∞)′′ with its free quasi-free state ϕ.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II1 factors with their trace, then

(M, ϕ) ∗ (A, τ) is isomorphic with (M, ϕ) ∗ (B, τ) if and only if

there exists t > 0 such that A ∼= Bt .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.

15/17



Further applications: free products

Let µ be a continuous symmetric probability measure.

Define M = Γ(µ,+∞)′′ with its free quasi-free state ϕ.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II1 factors with their trace, then

(M, ϕ) ∗ (A, τ) is isomorphic with (M, ϕ) ∗ (B, τ) if and only if

there exists t > 0 such that A ∼= Bt .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving
isomorphism.

Further applications: many free products of amenable von Neumann
algebras are not isomorphic to free Araki-Woods factors.

15/17



Strong solidity

Free Araki-Woods factors really are “type III free group factors”.

Free group factors M = L(Fn)

I (Voiculescu, 1995) have no Cartan subalgebra,

I (Ozawa, 2003) are solid: A′ ∩M is amenable whenever A ⊂ M diffuse,

I (Ozawa–Popa, 2007) are strongly solid: NM(A)′′ is amenable
whenever A ⊂ M is diffuse and amenable.

Free Araki-Woods factors M = Γ(µ,m)′′

I (Shlyakhtenko, 2003) are solid,

I (Houdayer–Ricard, 2010) have no Cartan subalgebra.

Note: only consider subalgebras that are the range of a faithful normal
conditional expectation.
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Strong solidity for free Araki-Woods factors

Theorem (Boutonnet–Houdayer–V, 2015)

All free Araki-Woods factors are strongly solid.

I Let M = Γ(µ,m)′′ be a free Araki-Woods factor with its free
quasi-free state ϕ.

I Finite corners p core(M) p of the continuous core fall under the
Ozawa-Popa theorem: tracial von Neumann algebras with CMAP and
good deformation properties.

I But: the normalizer of A ⊂ M induces a generalized
(groupoid/pseudogroup type) normalizer of core(A) inside core(M).

I Extend the Ozawa-Popa theorem to cover as well these generalized
normalizers:

we prove that tracial von Neumann algebras with CMAP and a
malleable deformation in the sense of Popa are stably strongly solid.
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