Structure and classification of free Araki-Woods factors

Operator Algebras and Mathematical Physics Sendai, 8-12 August 2016

Stefaan Vaes*

Joint work with C. Houdayer and D. Shlyakhtenko R. Boutonnet and C. Houdayer

* Supported by ERC Consolidator Grant 614195

• Orthogonal representation $(U_t)_{t \in \mathbb{R}}$

 \checkmark von Neumann algebra (M, φ) with faithful normal state.

• Orthogonal representation $(U_t)_{t \in \mathbb{R}}$

 \checkmark von Neumann algebra (M, φ) with faithful normal state.

▶ Direct sum $(U_t \oplus V_t)_{t \in \mathbb{R}}$ \checkmark free product $(M, \varphi) * (N, \psi)$.

- Orthogonal representation (U_t)_{t∈ℝ}
 ✓ von Neumann algebra (M, φ) with faithful normal state.
- ▶ Direct sum $(U_t \oplus V_t)_{t \in \mathbb{R}}$ \checkmark free product $(M, \varphi) * (N, \psi)$.
- ▶ Intertwiner T between U and V with $||T|| \le 1$

 \checkmark state preserving completely positive $\theta : (M, \varphi) \rightarrow (N, \psi)$.

- Orthogonal representation (U_t)_{t∈ℝ}
 ✓ von Neumann algebra (M, φ) with faithful normal state.
- ▶ Direct sum $(U_t \oplus V_t)_{t \in \mathbb{R}}$ free product $(M, \varphi) * (N, \psi)$.
- Intertwiner *T* between *U* and *V* with ||*T*|| ≤ 1
 state preserving completely positive θ : (M, φ) → (N, ψ).
- ► A free probability analog of the CAR,

- Orthogonal representation (U_t)_{t∈ℝ}
 ✓ von Neumann algebra (M, φ) with faithful normal state.
- ▶ Direct sum $(U_t \oplus V_t)_{t \in \mathbb{R}}$ free product $(M, \varphi) * (N, \psi)$.
- Intertwiner *T* between *U* and *V* with ||*T*|| ≤ 1
 state preserving completely positive θ : (M, φ) → (N, ψ).
- A free probability analog of the CAR, generalizing Voiculescu's free Gaussian functor.

- Orthogonal representation (U_t)_{t∈ℝ}
 ✓ von Neumann algebra (M, φ) with faithful normal state.
- ▶ Direct sum $(U_t \oplus V_t)_{t \in \mathbb{R}}$ free product $(M, \varphi) * (N, \psi)$.
- ▶ Intertwiner *T* between *U* and *V* with $||T|| \le 1$ state preserving completely positive $\theta : (M, \varphi) \to (N, \psi)$.
- A free probability analog of the CAR, generalizing Voiculescu's free Gaussian functor.

Open problem:

classify these von Neumann algebras M in terms of $(U_t)_{t \in \mathbb{R}}$.

• Given a Hilbert space H, construct the full Fock space

• Given a Hilbert space H, construct the full Fock space

 $\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}$

• Given a Hilbert space H, construct the full Fock space

$$\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}$$

▶ For $\xi \in H$, left creation operator $\ell(\xi) : \mathcal{F}(H) \to \mathcal{F}(H)$ given by

• Given a Hilbert space H, construct the full Fock space

$$\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}$$

► For $\xi \in H$, left creation operator $\ell(\xi) : \mathcal{F}(H) \to \mathcal{F}(H)$ given by $\ell(\xi)\Omega = \xi$ and $\ell(\xi)(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n$.

• Given a Hilbert space H, construct the full Fock space

$$\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}$$

- ► For $\xi \in H$, left creation operator $\ell(\xi) : \mathcal{F}(H) \to \mathcal{F}(H)$ given by $\ell(\xi)\Omega = \xi$ and $\ell(\xi)(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n$.
- Vacuum state $\varphi(T) = \langle T\Omega, \Omega \rangle$.

► Given a Hilbert space *H*, construct the full Fock space

$$\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}$$

- ► For $\xi \in H$, left creation operator $\ell(\xi) : \mathcal{F}(H) \to \mathcal{F}(H)$ given by $\ell(\xi)\Omega = \xi$ and $\ell(\xi)(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n$.
- Vacuum state $\varphi(T) = \langle T\Omega, \Omega \rangle$.

Theorem (Voiculescu, 1983)

The operator s(ξ) = ℓ(ξ) + ℓ(ξ)* has Wigner's semicircular distribution with radius 2 ||ξ|| w.r.t. φ.

► Given a Hilbert space *H*, construct the full Fock space

$$\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}$$

• For $\xi \in H$, left creation operator $\ell(\xi) : \mathcal{F}(H) \to \mathcal{F}(H)$ given by $\ell(\xi)\Omega = \xi$ and $\ell(\xi)(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n$.

• Vacuum state
$$\varphi(T) = \langle T\Omega, \Omega \rangle$$
.

Theorem (Voiculescu, 1983)

- The operator s(ξ) = ℓ(ξ) + ℓ(ξ)* has Wigner's semicircular distribution with radius 2 ||ξ|| w.r.t. φ.
- If $\xi \perp \eta$, then $s(\xi)$ and $s(\eta)$ are *-free w.r.t. φ .

• Given a Hilbert space H, construct the full Fock space

$$\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}$$

- For $\xi \in H$, left creation operator $\ell(\xi) : \mathcal{F}(H) \to \mathcal{F}(H)$ given by $\ell(\xi)\Omega = \xi$ and $\ell(\xi)(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n$.
- Vacuum state $\varphi(T) = \langle T\Omega, \Omega \rangle$.

Theorem (Voiculescu, 1983)

- The operator s(ξ) = ℓ(ξ) + ℓ(ξ)* has Wigner's semicircular distribution with radius 2 ||ξ|| w.r.t. φ.
- If $\xi \perp \eta$, then $s(\xi)$ and $s(\eta)$ are *-free w.r.t. φ .
- For $H = \mathbb{C}^n$, we have $L(\mathbb{F}_n) \cong \{\ell(e_i) + \ell(e_i)^* \mid i = 1, \dots, n\}''$.

Let *H* be a Hilbert space and $K_{\mathbb{R}} \subset H$ a real subspace satisfying

Let H be a Hilbert space and $K_{\mathbb{R}} \subset H$ a real subspace satisfying

 $\blacktriangleright K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$

Let *H* be a Hilbert space and $K_{\mathbb{R}} \subset H$ a real subspace satisfying

- $\blacktriangleright \ \mathcal{K}_{\mathbb{R}} \cap i\mathcal{K}_{\mathbb{R}} = \{0\}$
- $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$ is dense.

Let H be a Hilbert space and $K_{\mathbb{R}} \subset H$ a real subspace satisfying

- $K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$
- $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$ is dense.

Definition (Shlyakhtenko, 1996)

Define $\Gamma(K_{\mathbb{R}} \subset H)'' = \{\ell(\xi) + \ell(\xi)^* \mid \xi \in K_{\mathbb{R}}\}''$ acting on $\mathcal{F}(H)$.

Let H be a Hilbert space and $K_{\mathbb{R}} \subset H$ a real subspace satisfying

- $K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$
- $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$ is dense.

Definition (Shlyakhtenko, 1996)

Define $\Gamma(K_{\mathbb{R}} \subset H)'' = \{\ell(\xi) + \ell(\xi)^* \mid \xi \in K_{\mathbb{R}}\}''$ acting on $\mathcal{F}(H)$.

The vacuum state $\varphi(T) = \langle T\Omega, \Omega \rangle$ is faithful and called the free quasi-free state.

Let H be a Hilbert space and $K_{\mathbb{R}} \subset H$ a real subspace satisfying

- $K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$
- $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$ is dense.

Definition (Shlyakhtenko, 1996)

Define $\Gamma(K_{\mathbb{R}} \subset H)'' = \{\ell(\xi) + \ell(\xi)^* \mid \xi \in K_{\mathbb{R}}\}''$ acting on $\mathcal{F}(H)$.

The vacuum state $\varphi(T) = \langle T\Omega, \Omega \rangle$ is faithful and called the **free** quasi-free state.

Basic question: classify $\Gamma(K_{\mathbb{R}} \subset H)''$ in terms of $K_{\mathbb{R}} \subset H$;

Let $(U_t)_{t \in \mathbb{R}}$ be an orthogonal representation on the real Hilbert space $H_{\mathbb{R}}$.

Let $(U_t)_{t \in \mathbb{R}}$ be an orthogonal representation on the real Hilbert space $H_{\mathbb{R}}$.

▶ Put $H = H_{\mathbb{R}} + iH_{\mathbb{R}}$

and $J: H \to H: J(\xi + i\eta) = \xi - i\eta$ for all $\xi, \eta \in H_{\mathbb{R}}$.

Let $(U_t)_{t \in \mathbb{R}}$ be an orthogonal representation on the real Hilbert space $H_{\mathbb{R}}$.

▶ Put $H = H_{\mathbb{R}} + iH_{\mathbb{R}}$

and $J: H \to H: J(\xi + i\eta) = \xi - i\eta$ for all $\xi, \eta \in H_{\mathbb{R}}$.

• Define Δ on H such that $\Delta^{it} = U_t$.

Let $(U_t)_{t \in \mathbb{R}}$ be an orthogonal representation on the real Hilbert space $H_{\mathbb{R}}$.

• Put $H = H_{\mathbb{R}} + iH_{\mathbb{R}}$

and $J: H \to H: J(\xi + i\eta) = \xi - i\eta$ for all $\xi, \eta \in H_{\mathbb{R}}$.

- Define Δ on H such that $\Delta^{it} = U_t$.
- Put $S = J\Delta^{1/2}$ and $K_{\mathbb{R}} = \{\xi \in D(S) \mid S(\xi) = \xi\}.$

Let $(U_t)_{t \in \mathbb{R}}$ be an orthogonal representation on the real Hilbert space $H_{\mathbb{R}}$.

- ▶ Put $H = H_{\mathbb{R}} + iH_{\mathbb{R}}$ and $J : H \to H : J(\xi + i\eta) = \xi - i\eta$ for all $\xi, \eta \in H_{\mathbb{R}}$.
- Define Δ on H such that $\Delta^{it} = U_t$.
- Put $S = J\Delta^{1/2}$ and $K_{\mathbb{R}} = \{\xi \in D(S) \mid S(\xi) = \xi\}.$
- ▶ Then, $K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$ and $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$ is dense.

Let $(U_t)_{t \in \mathbb{R}}$ be an orthogonal representation on the real Hilbert space $H_{\mathbb{R}}$.

- ▶ Put $H = H_{\mathbb{R}} + iH_{\mathbb{R}}$ and $J : H \to H : J(\xi + i\eta) = \xi - i\eta$ for all $\xi, \eta \in H_{\mathbb{R}}$.
- Define Δ on H such that $\Delta^{it} = U_t$.
- Put $S = J\Delta^{1/2}$ and $K_{\mathbb{R}} = \{\xi \in D(S) \mid S(\xi) = \xi\}.$
- ▶ Then, $K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$ and $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$ is dense.
- \longrightarrow Every such $K_{\mathbb{R}} \subset H$ arises in this way.

Let $(U_t)_{t \in \mathbb{R}}$ be an orthogonal representation on the real Hilbert space $H_{\mathbb{R}}$.

- ▶ Put $H = H_{\mathbb{R}} + iH_{\mathbb{R}}$ and $J : H \to H : J(\xi + i\eta) = \xi - i\eta$ for all $\xi, \eta \in H_{\mathbb{R}}$.
- Define Δ on H such that $\Delta^{it} = U_t$.
- Put $S = J\Delta^{1/2}$ and $K_{\mathbb{R}} = \{\xi \in D(S) \mid S(\xi) = \xi\}.$
- ▶ Then, $K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$ and $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$ is dense.
- \checkmark Every such $K_{\mathbb{R}} \subset H$ arises in this way.

Let $(U_t)_{t \in \mathbb{R}}$ be an orthogonal representation on the real Hilbert space $H_{\mathbb{R}}$.

- ▶ Put $H = H_{\mathbb{R}} + iH_{\mathbb{R}}$ and $J : H \to H : J(\xi + i\eta) = \xi - i\eta$ for all $\xi, \eta \in H_{\mathbb{R}}$.
- Define Δ on H such that $\Delta^{it} = U_t$.
- Put $S = J\Delta^{1/2}$ and $K_{\mathbb{R}} = \{\xi \in D(S) \mid S(\xi) = \xi\}.$
- ▶ Then, $K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$ and $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$ is dense.
- \checkmark Every such $K_{\mathbb{R}} \subset H$ arises in this way.

Note: conversely $S(\xi + i\eta) = \xi - i\eta$ for all $\xi, \eta \in K_{\mathbb{R}}$ and then $S = J\Delta^{1/2}$.

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

Unless $H_{\mathbb{R}} = \mathbb{R}$ and $U_t = id$, we have that M is a factor

• of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

- of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,
- of type III_{λ} iff *U* is periodic with period $2\pi/|\log \lambda|$,

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

- of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,
- of type III_{λ} iff *U* is periodic with period $2\pi/|\log \lambda|$,
- of type III_1 iff U is not periodic,

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

- of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,
- of type III_{λ} iff *U* is periodic with period $2\pi/|\log \lambda|$,
- of type III₁ iff U is not periodic,
- that is full: $Inn(M) \subset Aut(M)$ is closed,

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

- of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,
- of type III_{λ} iff *U* is periodic with period $2\pi/|\log \lambda|$,
- of type III_1 iff U is not periodic,
- that is full: $Inn(M) \subset Aut(M)$ is closed,
- with Connes' τ -invariant,

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

- of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,
- of type III_{λ} iff *U* is periodic with period $2\pi/|\log \lambda|$,
- of type III₁ iff U is not periodic,
- that is full: $Inn(M) \subset Aut(M)$ is closed,
- ▶ with Connes' τ -invariant, i.e. the topology on \mathbb{R} induced by $\mathbb{R} \to \operatorname{Out}(M) : t \mapsto \sigma_t^{\varphi}$,

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

- of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,
- of type III_{λ} iff *U* is periodic with period $2\pi/|\log \lambda|$,
- of type III₁ iff U is not periodic,
- that is full: $Inn(M) \subset Aut(M)$ is closed,
- ▶ with Connes' τ -invariant, i.e. the topology on \mathbb{R} induced by $\mathbb{R} \to \operatorname{Out}(M) : t \mapsto \sigma_t^{\varphi}$, equal to the topology induced by $t \mapsto U_t$,

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

- of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,
- of type III_{λ} iff *U* is periodic with period $2\pi/|\log \lambda|$,
- of type III₁ iff U is not periodic,
- that is full: $Inn(M) \subset Aut(M)$ is closed,
- ▶ with Connes' τ -invariant, i.e. the topology on \mathbb{R} induced by $\mathbb{R} \to \operatorname{Out}(M) : t \mapsto \sigma_t^{\varphi}$, equal to the topology induced by $t \mapsto U_t$,
- \blacktriangleright that is almost periodic iff U is almost periodic, in which case

Write $M = \Gamma(U, H_{\mathbb{R}})''$ with free quasi-free state φ .

Generators: $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$ with $\sigma_t^{\varphi}(s(\xi)) = s(U_t\xi)$.

Theorem (Shlyakhtenko, 1996-1998)

- of type II₁ iff $U_t = id$ for all $t \in \mathbb{R}$,
- of type III_{λ} iff *U* is periodic with period $2\pi/|\log \lambda|$,
- of type III₁ iff U is not periodic,
- that is full: $Inn(M) \subset Aut(M)$ is closed,
- ▶ with Connes' τ -invariant, i.e. the topology on \mathbb{R} induced by $\mathbb{R} \to \operatorname{Out}(M) : t \mapsto \sigma_t^{\varphi}$, equal to the topology induced by $t \mapsto U_t$,
- ▶ that is almost periodic iff *U* is almost periodic, in which case Sd(M) = Sd(U) := subgroup of \mathbb{R}^*_+ generated by the eigenvalues of *U*.

A full factor *M* is called **almost periodic** if it admits a faithful normal state φ such that $(\sigma_t^{\varphi})_{t \in \mathbb{R}}$ is almost periodic.

A full factor *M* is called **almost periodic** if it admits a faithful normal state φ such that $(\sigma_t^{\varphi})_{t \in \mathbb{R}}$ is almost periodic.

Then, $Sd(M) \subset \mathbb{R}^*_+$ is defined such that the compactification given by $t \mapsto \sigma_t^{\varphi} \in Out(M)$ corresponds to $\mathbb{R} \subset \widehat{Sd(M)}$.

A full factor *M* is called **almost periodic** if it admits a faithful normal state φ such that $(\sigma_t^{\varphi})_{t \in \mathbb{R}}$ is almost periodic.

Then, $Sd(M) \subset \mathbb{R}^*_+$ is defined such that the compactification given by $t \mapsto \sigma_t^{\varphi} \in Out(M)$ corresponds to $\mathbb{R} \subset \widehat{Sd(M)}$.

Theorem (Shlyakhtenko, 1996)

The almost periodic free Araki-Woods factors M are fully classified by their Sd invariant $Sd(M) \subset \mathbb{R}^*_+$.

A full factor *M* is called **almost periodic** if it admits a faithful normal state φ such that $(\sigma_t^{\varphi})_{t \in \mathbb{R}}$ is almost periodic.

Then, $Sd(M) \subset \mathbb{R}^*_+$ is defined such that the compactification given by $t \mapsto \sigma_t^{\varphi} \in Out(M)$ corresponds to $\mathbb{R} \subset \widehat{Sd(M)}$.

Theorem (Shlyakhtenko, 1996)

The almost periodic free Araki-Woods factors M are fully classified by their Sd invariant $Sd(M) \subset \mathbb{R}^*_+$.

So, for almost periodic orthogonal representations U and V, we have $\Gamma(U)'' \cong \Gamma(V)''$ if and only if Sd(U) = Sd(V).

A full factor *M* is called **almost periodic** if it admits a faithful normal state φ such that $(\sigma_t^{\varphi})_{t \in \mathbb{R}}$ is almost periodic.

Then, $Sd(M) \subset \mathbb{R}^*_+$ is defined such that the compactification given by $t \mapsto \sigma_t^{\varphi} \in Out(M)$ corresponds to $\mathbb{R} \subset \widehat{Sd(M)}$.

Theorem (Shlyakhtenko, 1996)

The almost periodic free Araki-Woods factors M are fully classified by their Sd invariant $Sd(M) \subset \mathbb{R}^*_+$.

So, for almost periodic orthogonal representations U and V, we have $\Gamma(U)'' \cong \Gamma(V)''$ if and only if Sd(U) = Sd(V).

Attention: only the "non trivial" case, because $\Gamma(\operatorname{id}, H_{\mathbb{R}})'' \cong L(\mathbb{F}_{\operatorname{dim}(H_{\mathbb{R}})})$.

A full factor *M* is called **almost periodic** if it admits a faithful normal state φ such that $(\sigma_t^{\varphi})_{t \in \mathbb{R}}$ is almost periodic.

Then, $Sd(M) \subset \mathbb{R}^*_+$ is defined such that the compactification given by $t \mapsto \sigma_t^{\varphi} \in Out(M)$ corresponds to $\mathbb{R} \subset \widehat{Sd(M)}$.

Theorem (Shlyakhtenko, 1996)

The almost periodic free Araki-Woods factors M are fully classified by their Sd invariant $Sd(M) \subset \mathbb{R}^*_+$.

So, for almost periodic orthogonal representations U and V, we have $\Gamma(U)'' \cong \Gamma(V)''$ if and only if Sd(U) = Sd(V).

Attention: only the "non trivial" case, because $\Gamma(\operatorname{id}, H_{\mathbb{R}})'' \cong L(\mathbb{F}_{\dim(H_{\mathbb{R}})})$. **Isomorphisms** through Shlyakhtenko's matrix models.

A full factor *M* is called **almost periodic** if it admits a faithful normal state φ such that $(\sigma_t^{\varphi})_{t \in \mathbb{R}}$ is almost periodic.

Then, $Sd(M) \subset \mathbb{R}^*_+$ is defined such that the compactification given by $t \mapsto \sigma_t^{\varphi} \in Out(M)$ corresponds to $\mathbb{R} \subset \widehat{Sd(M)}$.

Theorem (Shlyakhtenko, 1996)

The almost periodic free Araki-Woods factors M are fully classified by their Sd invariant $Sd(M) \subset \mathbb{R}^*_+$.

So, for almost periodic orthogonal representations U and V, we have $\Gamma(U)'' \cong \Gamma(V)''$ if and only if Sd(U) = Sd(V).

Attention: only the "non trivial" case, because $\Gamma(\operatorname{id}, H_{\mathbb{R}})'' \cong L(\mathbb{F}_{\dim(H_{\mathbb{R}})})$. **Isomorphisms** through Shlyakhtenko's matrix models.

Note: unique free Araki-Woods factor of type III_{λ} , $\lambda \in (0, 1)$.

Until now: no new quantitative invariants for free Araki-Woods factors.

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of qualitative results,

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of **qualitative** results, mostly based on

the Connes-Takesaki continuous core $core(M) = M \rtimes_{\varphi} \mathbb{R}$.

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of **qualitative** results, mostly based on the Connes-Takesaki **continuous** core core(M) = $M \rtimes_{\varphi} \mathbb{R}$.

Write $M = \Gamma(U, H_{\mathbb{R}})''$.

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of **qualitative** results, mostly based on the Connes-Takesaki **continuous core** $\operatorname{core}(M) = M \rtimes_{\varphi} \mathbb{R}$.

Write $M = \Gamma(U, H_{\mathbb{R}})''$.

Shlyakhtenko (1997). When U is a multiple of the regular representation, then core(M) ≅ L(𝔽_∞) ⊗ B(K).

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of **qualitative** results, mostly based on the Connes-Takesaki **continuous core** $\operatorname{core}(M) = M \rtimes_{\varphi} \mathbb{R}$.

Write $M = \Gamma(U, H_{\mathbb{R}})''$.

Shlyakhtenko (1997). When U is a multiple of the regular representation, then core(M) ≅ L(𝔽_∞) ⊗ B(K).

When all tensor powers $U_t \otimes \cdots \otimes U_t$ are disjoint from the regular representation, then $\operatorname{core}(M) \ncong L(\mathbb{F}_t) \overline{\otimes} B(K)$.

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of **qualitative** results, mostly based on the Connes-Takesaki **continuous core** $\operatorname{core}(M) = M \rtimes_{\varphi} \mathbb{R}$.

Write $M = \Gamma(U, H_{\mathbb{R}})''$.

Shlyakhtenko (1997). When U is a multiple of the regular representation, then core(M) ≅ L(𝔽_∞) ⊗ B(K).

When all tensor powers $U_t \otimes \cdots \otimes U_t$ are disjoint from the regular representation, then $\operatorname{core}(M) \ncong L(\mathbb{F}_t) \otimes B(K)$.

Shlyakhtenko (2002): two non isomorphic free Araki-Woods factors having the same τ invariant.

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of **qualitative** results, mostly based on the Connes-Takesaki **continuous core** $\operatorname{core}(M) = M \rtimes_{\omega} \mathbb{R}$.

Write $M = \Gamma(U, H_{\mathbb{R}})''$.

Shlyakhtenko (1997). When U is a multiple of the regular representation, then core(M) ≅ L(𝔽_∞) ⊗ B(K).

When all tensor powers $U_t \otimes \cdots \otimes U_t$ are disjoint from the regular representation, then $\operatorname{core}(M) \ncong L(\mathbb{F}_t) \overline{\otimes} B(K)$.

- Shlyakhtenko (2002): two non isomorphic free Araki-Woods factors having the same τ invariant.
- Houdayer (2008): when U is mixing, then core(M) is solid.

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of **qualitative** results, mostly based on the Connes-Takesaki **continuous core** $\operatorname{core}(M) = M \rtimes_{\omega} \mathbb{R}$.

Write $M = \Gamma(U, H_{\mathbb{R}})''$.

Shlyakhtenko (1997). When U is a multiple of the regular representation, then core(M) ≅ L(𝔽_∞) ⊗ B(K).

When all tensor powers $U_t \otimes \cdots \otimes U_t$ are disjoint from the regular representation, then $\operatorname{core}(M) \ncong L(\mathbb{F}_t) \overline{\otimes} B(K)$.

- Shlyakhtenko (2002): two non isomorphic free Araki-Woods factors having the same τ invariant.
- Houdayer (2008): when U is mixing, then core(M) is solid.
- ▶ Hayes (2015): when *U* is disjoint from the regular representation, then $\operatorname{core}(M) \cong L(\mathbb{F}_t) \otimes B(K)$.

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

- Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.
- ▶ Orthogonal representations of $\mathbb R$ are thus fully classified by

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

- Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.
- \blacktriangleright Orthogonal representations of $\mathbb R$ are thus fully classified by

a symmetric measure μ on $\mathbb R$ and

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

- Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.
- \blacktriangleright Orthogonal representations of $\mathbb R$ are thus fully classified by

a symmetric measure μ on $\mathbb R$ and

a symmetric multiplicity function $m: \mathbb{R} \to \mathbb{N} \cup \{+\infty\}$

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

- Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.
- \blacktriangleright Orthogonal representations of $\mathbb R$ are thus fully classified by

a symmetric measure μ on $\mathbb R$ and

a symmetric multiplicity function $m : \mathbb{R} \to \mathbb{N} \cup \{+\infty\}$

(that we always assume to satisfy $m(x) \ge 1$ for μ a.e. x)

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

- Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.
- ► Orthogonal representations of R are thus fully classified by a symmetric measure µ on R and a symmetric multiplicity function m : R → N ∪ {+∞} (that we always assume to satisfy m(x) ≥ 1 for µ a.e. x)
- Two such (μ_i, m_i) define the same rep iff $\mu_1 \sim \mu_2$ and $m_1 = m_2$ a.e.

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

- Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.
- Orthogonal representations of R are thus fully classified by

 a symmetric measure µ on R and
 a symmetric multiplicity function m : R → N ∪ {+∞}
 (that we always assume to satisfy m(x) ≥ 1 for µ a.e. x)
- Two such (μ_i, m_i) define the same rep iff $\mu_1 \sim \mu_2$ and $m_1 = m_2$ a.e.

 \checkmark We write $\Gamma(\mu, m)''$ for the free Araki-Woods factor.

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

- Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.
- ► Orthogonal representations of R are thus fully classified by a symmetric measure µ on R and a symmetric multiplicity function m : R → N ∪ {+∞} (that we always assume to satisfy m(x) ≥ 1 for µ a.e. x)
- Two such (μ_i, m_i) define the same rep iff $\mu_1 \sim \mu_2$ and $m_1 = m_2$ a.e.

 \checkmark We write $\Gamma(\mu, m)''$ for the free Araki-Woods factor.

Note: the spectral measure of $U \otimes V$ is $\mu_U * \mu_V$.

Given a Borel measure μ on \mathbb{R} that is symmetric, i.e. $\mu(X) = \mu(-X)$,

put $H_{\mathbb{R}} = \{\xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)}\}$ with $(U_t\xi)(x) = \exp(itx)\xi(x)$.

- Every orthogonal representation of \mathbb{R} is orthogonally isomorphic with a direct sum of such $(U, H_{\mathbb{R}})$.
- Orthogonal representations of R are thus fully classified by

 a symmetric measure µ on R and
 a symmetric multiplicity function m : R → N ∪ {+∞}
 (that we always assume to satisfy m(x) ≥ 1 for µ a.e. x)
- Two such (μ_i, m_i) define the same rep iff $\mu_1 \sim \mu_2$ and $m_1 = m_2$ a.e.

 \checkmark We write $\Gamma(\mu, m)''$ for the free Araki-Woods factor.

Note: the spectral measure of $U \otimes V$ is $\mu_U * \mu_V$.

Note: almost periodic = atomic measure μ .

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that • writing $\mu = \mu_c + \mu_a$,

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

- writing $\mu = \mu_c + \mu_a$,
- we have $\mu_c * \mu_c \prec \mu_c$,

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

- writing $\mu = \mu_c + \mu_a$,
- we have $\mu_c * \mu_c \prec \mu_c$,
- μ_a is not concentrated on $\{0\}$.

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

- writing $\mu = \mu_c + \mu_a$,
- we have $\mu_c * \mu_c \prec \mu_c$,
- μ_a is not concentrated on $\{0\}$.

Write $\Lambda(\mu_a)$ = subgroup of \mathbb{R} generated by the atoms of μ_a .

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

- writing $\mu = \mu_c + \mu_a$,
- we have $\mu_c * \mu_c \prec \mu_c$,
- μ_a is not concentrated on $\{0\}$.

Write $\Lambda(\mu_a)$ = subgroup of \mathbb{R} generated by the atoms of μ_a .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

For $\mu \in \mathcal{S}(\mathbb{R})$, the free Araki-Woods factors $\Gamma(\mu, m)''$ are exactly classified by the subgroup $\Lambda(\mu_a) \subset \mathbb{R}$ and the measure class of $\mu_c * \delta_{\Lambda(\mu_a)}$.

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

- writing $\mu = \mu_c + \mu_a$,
- we have $\mu_c * \mu_c \prec \mu_c$,
- μ_a is not concentrated on $\{0\}$.

Write $\Lambda(\mu_a)$ = subgroup of \mathbb{R} generated by the atoms of μ_a .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

For $\mu \in \mathcal{S}(\mathbb{R})$, the free Araki-Woods factors $\Gamma(\mu, m)''$ are exactly classified by the subgroup $\Lambda(\mu_a) \subset \mathbb{R}$ and the measure class of $\mu_c * \delta_{\Lambda(\mu_a)}$.

Here: δ_{Λ} is any atomic probability measure with set of atoms Λ .

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

- writing $\mu = \mu_c + \mu_a$,
- we have $\mu_c * \mu_c \prec \mu_c$,
- μ_a is not concentrated on $\{0\}$.

Write $\Lambda(\mu_a)$ = subgroup of \mathbb{R} generated by the atoms of μ_a .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

For $\mu \in \mathcal{S}(\mathbb{R})$, the free Araki-Woods factors $\Gamma(\mu, m)''$ are exactly classified by the subgroup $\Lambda(\mu_a) \subset \mathbb{R}$ and the measure class of $\mu_c * \delta_{\Lambda(\mu_a)}$.

Here: δ_{Λ} is any atomic probability measure with set of atoms Λ . Source of many examples:

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

- writing $\mu = \mu_c + \mu_a$,
- we have $\mu_c * \mu_c \prec \mu_c$,
- μ_a is not concentrated on $\{0\}$.

Write $\Lambda(\mu_a)$ = subgroup of \mathbb{R} generated by the atoms of μ_a .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

For $\mu \in \mathcal{S}(\mathbb{R})$, the free Araki-Woods factors $\Gamma(\mu, m)''$ are exactly classified by the subgroup $\Lambda(\mu_a) \subset \mathbb{R}$ and the measure class of $\mu_c * \delta_{\Lambda(\mu_a)}$.

Here: δ_{Λ} is any atomic probability measure with set of atoms Λ .

Source of many examples:

Start with μ_0 and a non trivial μ_a . Take $\mu = \mu_a \vee \bigvee_{n>1} \mu_0^{*n}$.

Consider the set $S(\mathbb{R})$ of symmetric probability measures μ on \mathbb{R} such that

- writing $\mu = \mu_c + \mu_a$,
- we have $\mu_c * \mu_c \prec \mu_c$,
- μ_a is not concentrated on $\{0\}$.

Write $\Lambda(\mu_a)$ = subgroup of \mathbb{R} generated by the atoms of μ_a .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

For $\mu \in \mathcal{S}(\mathbb{R})$, the free Araki-Woods factors $\Gamma(\mu, m)''$ are exactly classified by the subgroup $\Lambda(\mu_a) \subset \mathbb{R}$ and the measure class of $\mu_c * \delta_{\Lambda(\mu_a)}$.

Here: δ_{Λ} is any atomic probability measure with set of atoms Λ .

Source of many examples:

Start with μ_0 and a non trivial μ_a . Take $\mu = \mu_a \vee \bigvee_{n>1} \mu_0^{*n}$.

In particular: many non isomorphic $\Gamma(\mu, m)''$ with the same τ invariant.

Recall: $M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$

Recall: $M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ be a free Araki-Woods factor with free quasi-free state φ .

Recall: $M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ be a free Araki-Woods factor with free quasi-free state φ . If ψ is any faithful normal state on M such that M^{ψ} is non amenable, then

Recall: $M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ be a free Araki-Woods factor with free quasi-free state φ . If ψ is any faithful normal state on M such that M^{ψ} is non amenable, then

$$\psi(x) = \lambda \, \varphi(v^* x v)$$
 for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

Recall: $M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ be a free Araki-Woods factor with free quasi-free state φ . If ψ is any faithful normal state on M such that M^{ψ} is non amenable, then

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^* x v)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

Recall:
$$M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$$

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ be a free Araki-Woods factor with free quasi-free state φ . If ψ is any faithful normal state on M such that M^{ψ} is non amenable, then

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^* x v)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

Main consequence:

if $\Gamma(\mu, m)'' \cong \Gamma(\nu, n)''$ and if $\mu(t) > 0$ for some $t \neq 0$,

Recall:
$$M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$$

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ be a free Araki-Woods factor with free quasi-free state φ . If ψ is any faithful normal state on M such that M^{ψ} is non amenable, then

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^* x v)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

Main consequence:

if $\Gamma(\mu, m)'' \cong \Gamma(\nu, n)''$ and if $\mu(t) > 0$ for some $t \neq 0$, there also exists an isomorphism preserving the free quasi-free states.

Recall:
$$M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$$

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ be a free Araki-Woods factor with free quasi-free state φ . If ψ is any faithful normal state on M such that M^{ψ} is non amenable, then

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^* x v)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

Main consequence:

if $\Gamma(\mu, m)'' \cong \Gamma(\nu, n)''$ and if $\mu(t) > 0$ for some $t \neq 0$, there also exists an isomorphism preserving the free quasi-free states.

And then the measure class of $\bigvee_{n\geq 1} \mu^{*n}$ becomes an invariant.

▶ Connes' question: does every III₁ factor have a trivial bicentralizer ?

- ▶ Connes' question: does every III₁ factor have a trivial bicentralizer ?
- ► **Haagerup:** yes for the hyperfinite III₁ factor !

- ▶ Connes' question: does every III₁ factor have a trivial bicentralizer ?
- ► Haagerup: yes for the hyperfinite III₁ factor !
- Haagerup's reformulation: trivial bicentralizer

- ▶ Connes' question: does every III₁ factor have a trivial bicentralizer ?
- ► Haagerup: yes for the hyperfinite III₁ factor !
- ▶ Haagerup's reformulation: trivial bicentralizer iff there exists a faithful normal state ψ such that $(M^{\psi})' \cap M = \mathbb{C}1$,

- ▶ Connes' question: does every III₁ factor have a trivial bicentralizer ?
- ► Haagerup: yes for the hyperfinite III₁ factor !
- ▶ Haagerup's reformulation: trivial bicentralizer iff there exists a faithful normal state ψ such that $(M^{\psi})' \cap M = \mathbb{C}1$, iff the set of such ψ is dense among all normal states on M.

- ▶ Connes' question: does every III₁ factor have a trivial bicentralizer ?
- ► Haagerup: yes for the hyperfinite III₁ factor !
- Haagerup's reformulation: trivial bicentralizer iff there exists a faithful normal state ψ such that $(M^{\psi})' \cap M = \mathbb{C}1$, iff the set of such ψ is dense among all normal states on M.

 \sim Often, M^{ψ} is a II₁ factor. But:

- ▶ Connes' question: does every III₁ factor have a trivial bicentralizer ?
- ▶ Haagerup: yes for the hyperfinite III₁ factor !
- ▶ Haagerup's reformulation: trivial bicentralizer iff there exists a faithful normal state ψ such that $(M^{\psi})' \cap M = \mathbb{C}1$, iff the set of such ψ is dense among all normal states on M.

$$\frown$$
 Often, M^{ψ} is a II₁ factor. But:

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ with μ continuous. For every faithful normal state ψ on M, we have that M^{ψ} is amenable.

- ▶ Connes' question: does every III₁ factor have a trivial bicentralizer ?
- ▶ Haagerup: yes for the hyperfinite III₁ factor !
- ▶ Haagerup's reformulation: trivial bicentralizer iff there exists a faithful normal state ψ such that $(M^{\psi})' \cap M = \mathbb{C}1$, iff the set of such ψ is dense among all normal states on M.

$$\frown$$
 Often, M^{ψ} is a II₁ factor. But:

Theorem (Houdayer–Shlyakhtenko–V, 2016)

Let $M = \Gamma(\mu, m)''$ with μ continuous. For every faithful normal state ψ on M, we have that M^{ψ} is amenable.

Houdayer (2008): free Araki-Woods factors have a trivial bicentralizer.

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

▶ Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$.

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

► Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$. Reason: one has all centralizers amenable and the other not.

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

- ► Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$. Reason: one has all centralizers amenable and the other not.
- All $\Gamma((\lambda, +\infty) + (\delta_0, m))''$ with $2 \le m < +\infty$ are isomorphic,

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

- ► Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$. Reason: one has all centralizers amenable and the other not.
- All Γ((λ, +∞) + (δ₀, m))" with 2 ≤ m < +∞ are isomorphic, but whether they are isomorphic with m = +∞ is equivalent with the question L(𝔽_m) ≅ L(𝔽_∞).

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

- ► Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$. Reason: one has all centralizers amenable and the other not.
- All Γ((λ, +∞) + (δ₀, m))" with 2 ≤ m < +∞ are isomorphic, but whether they are isomorphic with m = +∞ is equivalent with the question L(𝔅m) ≅ L(𝔅∞).

Intriguing open cases:

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

- ► Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$. Reason: one has all centralizers amenable and the other not.
- All Γ((λ, +∞) + (δ₀, m))" with 2 ≤ m < +∞ are isomorphic, but whether they are isomorphic with m = +∞ is equivalent with the question L(𝔅m) ≅ L(𝔅∞).

Intriguing open cases:

► Does $\Gamma(\lambda|_{[-a,a]}, m)''$ depend on a > 0 and/or $m \in \mathbb{N}$?

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

- ► Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$. Reason: one has all centralizers amenable and the other not.
- All Γ((λ, +∞) + (δ₀, m))" with 2 ≤ m < +∞ are isomorphic, but whether they are isomorphic with m = +∞ is equivalent with the question L(𝔅m) ≅ L(𝔅∞).

Intriguing open cases:

- ► Does $\Gamma(\lambda|_{[-a,a]}, m)''$ depend on a > 0 and/or $m \in \mathbb{N}$?
- Are $\Gamma(\lambda, 1)''$ and $\Gamma(\lambda + \delta_0, 1)''$ isomorphic ?

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

- ► Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$. Reason: one has all centralizers amenable and the other not.
- All Γ((λ, +∞) + (δ₀, m))" with 2 ≤ m < +∞ are isomorphic, but whether they are isomorphic with m = +∞ is equivalent with the question L(𝔅m) ≅ L(𝔅∞).

Intriguing open cases:

- ► Does $\Gamma(\lambda|_{[-a,a]}, m)''$ depend on a > 0 and/or $m \in \mathbb{N}$?
- Are $\Gamma(\lambda, 1)''$ and $\Gamma(\lambda + \delta_0, 1)''$ isomorphic ?

Both have all centralizers amenable and core $L(\mathbb{F}_{\infty}) \overline{\otimes} B(K)$.

To start with: $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)}).$

- ► Let λ be the Lebesgue measure. Then, $\Gamma(\lambda + \delta_0, 1)'' \cong \Gamma(\lambda + \delta_0, 2)''$. Reason: one has all centralizers amenable and the other not.
- All Γ((λ, +∞) + (δ₀, m))" with 2 ≤ m < +∞ are isomorphic, but whether they are isomorphic with m = +∞ is equivalent with the question L(𝔅m) ≅ L(𝔅∞).

Intriguing open cases:

- ► Does $\Gamma(\lambda|_{[-a,a]}, m)''$ depend on a > 0 and/or $m \in \mathbb{N}$?
- Are $\Gamma(\lambda, 1)''$ and $\Gamma(\lambda + \delta_0, 1)''$ isomorphic ?

Both have all centralizers amenable and core $L(\mathbb{F}_{\infty}) \overline{\otimes} B(K)$.

The free quasi-free state has trivial centralizer, resp. diffuse abelian centralizer.

Deformation/rigidity and the conjugacy of states

Let φ and ψ be faithful normal states on a von Neumann algebra M.

Deformation/rigidity and the conjugacy of states

Let φ and ψ be faithful normal states on a von Neumann algebra M.

We say that a corner of arphi is conjugate to a corner of ψ if

Deformation/rigidity and the conjugacy of states

Let φ and ψ be faithful normal states on a von Neumann algebra M.

We say that a corner of arphi is conjugate to a corner of ψ if

 $\psi(x) = \lambda \varphi(v^* x v)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

Let φ and ψ be faithful normal states on a von Neumann algebra M.

We say that a corner of arphi is conjugate to a corner of ψ if

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^*xv)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

Let φ and ψ be faithful normal states on a von Neumann algebra M.

We say that a corner of arphi is conjugate to a corner of ψ if

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^*xv)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

▶ Two realizations of $\operatorname{core}(M)$: as $M \rtimes_{\varphi} \mathbb{R}$ and as $M \rtimes_{\psi} \mathbb{R}$.

Let φ and ψ be faithful normal states on a von Neumann algebra M. We say that a corner of φ is conjugate to a corner of ψ if

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^*xv)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

- ▶ Two realizations of core(*M*): as $M \rtimes_{\varphi} \mathbb{R}$ and as $M \rtimes_{\psi} \mathbb{R}$.
- ▶ In this way, $L_{\varphi}(\mathbb{R}) \subset \operatorname{core}(M)$ and $L_{\psi}(\mathbb{R}) \subset \operatorname{core}(M)$.

Let φ and ψ be faithful normal states on a von Neumann algebra M. We say that a corner of φ is conjugate to a corner of ψ if

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^*xv)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

- ▶ Two realizations of core(*M*): as $M \rtimes_{\varphi} \mathbb{R}$ and as $M \rtimes_{\psi} \mathbb{R}$.
- ▶ In this way, $L_{\varphi}(\mathbb{R}) \subset \operatorname{core}(M)$ and $L_{\psi}(\mathbb{R}) \subset \operatorname{core}(M)$.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

A corner of arphi is conjugate to a corner of ψ if and only if

Let φ and ψ be faithful normal states on a von Neumann algebra M. We say that a corner of φ is conjugate to a corner of ψ if

- ▶ there exist non zero projections $p \in M^{\varphi}$ and $q \in M^{\psi}$,
- ▶ and a partial isometry $v \in M$ with $v^*v = p$ and $vv^* = q$, such that

 $\psi(x) = \lambda \varphi(v^*xv)$ for all $x \in qMq$, with $\lambda = \psi(q)/\varphi(p)$.

- ▶ Two realizations of $\operatorname{core}(M)$: as $M \rtimes_{\varphi} \mathbb{R}$ and as $M \rtimes_{\psi} \mathbb{R}$.
- ▶ In this way, $L_{\varphi}(\mathbb{R}) \subset \operatorname{core}(M)$ and $L_{\psi}(\mathbb{R}) \subset \operatorname{core}(M)$.

Theorem (Houdayer–Shlyakhtenko–V, 2016)

A corner of φ is conjugate to a corner of ψ if and only if $L_{\varphi}(\mathbb{R}) \prec L_{\psi}(\mathbb{R})$ inside core(*M*) in the sense of Popa's intertwining-by-bimodules.

Let μ be a continuous symmetric probability measure.

Let μ be a continuous symmetric probability measure.

Define $M = \Gamma(\mu, +\infty)''$ with its free quasi-free state φ .

Let μ be a continuous symmetric probability measure.

Define $M = \Gamma(\mu, +\infty)''$ with its free quasi-free state φ .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II₁ factors with their trace, then

Let μ be a continuous symmetric probability measure.

Define $M = \Gamma(\mu, +\infty)''$ with its free quasi-free state φ .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II₁ factors with their trace, then $(M, \varphi) * (A, \tau)$ is isomorphic with $(M, \varphi) * (B, \tau)$ if and only if

Let μ be a continuous symmetric probability measure.

Define $M = \Gamma(\mu, +\infty)''$ with its free quasi-free state φ .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II₁ factors with their trace, then $(M, \varphi) * (A, \tau)$ is isomorphic with $(M, \varphi) * (B, \tau)$ if and only if there exists t > 0 such that $A \cong B^t$.

Let μ be a continuous symmetric probability measure.

Define $M = \Gamma(\mu, +\infty)''$ with its free quasi-free state φ .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II₁ factors with their trace, then $(M, \varphi) * (A, \tau)$ is isomorphic with $(M, \varphi) * (B, \tau)$ if and only if there exists t > 0 such that $A \cong B^t$.

Note: isomorphisms are not assumed to be state preserving.

Let μ be a continuous symmetric probability measure.

Define $M = \Gamma(\mu, +\infty)''$ with its free quasi-free state φ .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II₁ factors with their trace, then $(M, \varphi) * (A, \tau)$ is isomorphic with $(M, \varphi) * (B, \tau)$ if and only if there exists t > 0 such that $A \cong B^t$.

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving isomorphism.

Let μ be a continuous symmetric probability measure.

Define $M = \Gamma(\mu, +\infty)''$ with its free quasi-free state φ .

Theorem (Houdayer–Shlyakhtenko–V, 2016)

If (A, τ) and (B, τ) are nonamenable II₁ factors with their trace, then $(M, \varphi) * (A, \tau)$ is isomorphic with $(M, \varphi) * (B, \tau)$ if and only if there exists t > 0 such that $A \cong B^t$.

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving isomorphism.

Further applications: many free products of amenable von Neumann algebras are **not** isomorphic to free Araki-Woods factors.

Free Araki-Woods factors really are "type III free group factors".

Free group factors $M = L(\mathbb{F}_n)$

- Free group factors $M = L(\mathbb{F}_n)$
 - ▶ (Voiculescu, 1995) have no Cartan subalgebra,

- Free group factors $M = L(\mathbb{F}_n)$
 - ▶ (Voiculescu, 1995) have no Cartan subalgebra,
 - (Ozawa, 2003) are solid: $A' \cap M$ is amenable whenever $A \subset M$ diffuse,

- Free group factors $M = L(\mathbb{F}_n)$
 - ▶ (Voiculescu, 1995) have no Cartan subalgebra,
 - ▶ (Ozawa, 2003) are solid: $A' \cap M$ is amenable whenever $A \subset M$ diffuse,
 - (Ozawa–Popa, 2007) are strongly solid: N_M(A)" is amenable whenever A ⊂ M is diffuse and amenable.

Free Araki-Woods factors really are "type III free group factors".

- Free group factors $M = L(\mathbb{F}_n)$
 - (Voiculescu, 1995) have no Cartan subalgebra,
 - (Ozawa, 2003) are solid: $A' \cap M$ is amenable whenever $A \subset M$ diffuse,
 - (Ozawa–Popa, 2007) are strongly solid: N_M(A)" is amenable whenever A ⊂ M is diffuse and amenable.

Free Araki-Woods factors $M = \Gamma(\mu, m)''$

Free Araki-Woods factors really are "type III free group factors".

- Free group factors $M = L(\mathbb{F}_n)$
 - (Voiculescu, 1995) have no Cartan subalgebra,
 - (Ozawa, 2003) are solid: $A' \cap M$ is amenable whenever $A \subset M$ diffuse,
 - (Ozawa–Popa, 2007) are strongly solid: N_M(A)" is amenable whenever A ⊂ M is diffuse and amenable.

Free Araki-Woods factors $M = \Gamma(\mu, m)''$

(Shlyakhtenko, 2003) are solid,

Free Araki-Woods factors really are "type III free group factors".

- Free group factors $M = L(\mathbb{F}_n)$
 - (Voiculescu, 1995) have no Cartan subalgebra,
 - (Ozawa, 2003) are solid: $A' \cap M$ is amenable whenever $A \subset M$ diffuse,
 - (Ozawa–Popa, 2007) are strongly solid: N_M(A)" is amenable whenever A ⊂ M is diffuse and amenable.

Free Araki-Woods factors $M = \Gamma(\mu, m)''$

- (Shlyakhtenko, 2003) are solid,
- ▶ (Houdayer–Ricard, 2010) have no Cartan subalgebra.

Free Araki-Woods factors really are "type III free group factors".

Free group factors $M = L(\mathbb{F}_n)$

- (Voiculescu, 1995) have no Cartan subalgebra,
- (Ozawa, 2003) are solid: $A' \cap M$ is amenable whenever $A \subset M$ diffuse,
- (Ozawa–Popa, 2007) are strongly solid: N_M(A)" is amenable whenever A ⊂ M is diffuse and amenable.

Free Araki-Woods factors $M = \Gamma(\mu, m)''$

- (Shlyakhtenko, 2003) are solid,
- ▶ (Houdayer–Ricard, 2010) have no Cartan subalgebra.

Note: only consider subalgebras that are the range of a faithful normal conditional expectation.

Theorem (Boutonnet–Houdayer–V, 2015)

Theorem (Boutonnet–Houdayer–V, 2015)

All free Araki-Woods factors are strongly solid.

Let M = Γ(μ, m)" be a free Araki-Woods factor with its free quasi-free state φ.

Theorem (Boutonnet–Houdayer–V, 2015)

- Let M = Γ(μ, m)" be a free Araki-Woods factor with its free quasi-free state φ.
- Finite corners p core(M) p of the continuous core fall under the Ozawa-Popa theorem: tracial von Neumann algebras with CMAP and good deformation properties.

Theorem (Boutonnet–Houdayer–V, 2015)

- Let M = Γ(μ, m)" be a free Araki-Woods factor with its free quasi-free state φ.
- Finite corners p core(M) p of the continuous core fall under the Ozawa-Popa theorem: tracial von Neumann algebras with CMAP and good deformation properties.
- But: the normalizer of A ⊂ M induces a generalized (groupoid/pseudogroup type) normalizer of core(A) inside core(M).

Theorem (Boutonnet–Houdayer–V, 2015)

- Let M = Γ(μ, m)" be a free Araki-Woods factor with its free quasi-free state φ.
- Finite corners p core(M) p of the continuous core fall under the Ozawa-Popa theorem: tracial von Neumann algebras with CMAP and good deformation properties.
- But: the normalizer of A ⊂ M induces a generalized (groupoid/pseudogroup type) normalizer of core(A) inside core(M).
- Extend the Ozawa-Popa theorem to cover as well these generalized normalizers:

Theorem (Boutonnet–Houdayer–V, 2015)

All free Araki-Woods factors are strongly solid.

- Let M = Γ(μ, m)" be a free Araki-Woods factor with its free quasi-free state φ.
- Finite corners p core(M) p of the continuous core fall under the Ozawa-Popa theorem: tracial von Neumann algebras with CMAP and good deformation properties.
- But: the normalizer of A ⊂ M induces a generalized (groupoid/pseudogroup type) normalizer of core(A) inside core(M).
- Extend the Ozawa-Popa theorem to cover as well these generalized normalizers:

we prove that tracial von Neumann algebras with CMAP and a malleable deformation in the sense of Popa are **stably strongly solid**.