KMS states with respect to conformal Hamiltonian

Yoh Tanimoto

(joint with Roberto Longo) University of Rome "Tor Vergata", JSPS fellow for research abroad

August 4th 2016, MSJ-SI, Sendai

Introduction

2d CFT

- Important observables decompose into chiral components: $\phi(x, t) = \phi_+(x + t) + \phi_-(x - t).$
- ϕ_{\pm} are first defined on \mathbb{R} , and by conformal invariance of the vacuum, extend to S^1 .
- Their algebras are very restricted: stress-energy tensor (Virasoro algebra), currents (Heisenberg algebra, Kac-Moody algebras).

Thermal states. Which Hamiltonian?

- Time translations: the natural Hamiltonian as 1 + 1-dim QFT (c.f. Camassa-Longo-T.-Weiner '12,'13): uniqueness of KMS states on completely rational CFTs, classification for Virasoro algebra with c = 1 and the U(1)-current, different states on other examples.
- Conformal Hamiltonian *L*₀: the generator of rotations. They are in many cases Gibbs states. Motivations from 3d quantum gravity.

\mathbb{R} and S^1 pictures

Connected by the Cayley transform $t = i\frac{1+z}{1-z}$.

Image: A matrix

Thermal states

Gibbs states on a finite system

- $M_n(\mathbb{C})$: $(n \times n)$ -matrix algebra, H: self-adjoint, $\sigma_t = \operatorname{Ad} e^{itH}$.
- A state (positive normalized linear functional) on $M_n(\mathbb{C})$ given by

$$\varphi(x) = rac{\operatorname{Tr}(e^{-eta H}x)}{\operatorname{Tr}(e^{-eta H})}$$

has the **KMS condition**: $f(t) = \varphi(\sigma_t(x)y), f(t + i\beta) = \varphi(y\sigma_t(x)).$

KMS states on a C^* -dynamical system

- For a CFT A, there is the universal C^* -algebra $C^*(A)$.
- Main result: KMS states on $C^*(\mathcal{A})$ with respect to rotations are the convex combination of Gibbs states for important conformal nets \mathcal{A} .

Conformal field theory in d = 2 Minkowski space is covariant with respect to the group $PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$. Important observables live on the lightrays:

- The stress-energy tensor $T^{00} + T^{01} = 2T_{-}(t - x), \quad T^{00} - T^{01} = 2T_{-}(t + x),$
- Conserved current $\partial_{\mu}j^{\mu} = 0$, $j^0 - j^1 = 2j_+(t+x)$, $j^0 + j^1 = 2j_-(t-x)$,

and mutually commute: $[X_+, Y_-] = 0$.

One can consider a QFT on a lightray $X(x_+)$, $x_+ := x + t$ and its local algebras $\mathcal{A}(I) = \{e^{iX_+(f)} : \operatorname{supp} f \subset I\}''$, $I \subset S^1$. The collection of local algebras $\{\mathcal{A}(I)\}$ is called a **conformal net**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chiral conformal net

Definition

A **conformal net** on S^1 is $(\mathcal{A}, \mathcal{U}, \Omega)$, where \mathcal{A} is a map from the set of intervals in S^1 into the set of von Neumann algebras on \mathcal{H} which satisfies

- Isotony: $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$.
- Locality: $I \cap J \Rightarrow [\mathcal{A}(I), \mathcal{A}(J)] = \{0\}.$
- Diffeomorphism covariance: U is a projective unitary representation of $\operatorname{Diff}(S^1)$ such that $\operatorname{Ad} U(g)(\mathcal{A}(I)) = \mathcal{A}(gI)$ and if $\operatorname{supp} g \cap I = \emptyset$, then $\operatorname{Ad} U(g)$ acts trivially on $\mathcal{A}(I)$.
- Positive energy: the restriction of *U* to rotations has the positive generator *L*₀.
- Vacuum: there is a unique (up to a scalar) unit vector Ω such that $U(g)\Omega = \Omega$ for $g \in PSL(2, \mathbb{R})$ and cyclic for $\mathcal{A}(I)$.

Many examples: U(1)-current (free massless boson), Free massless fermion, Virasoro nets (stress energy tensor), Loop group nets.

Y. Tanimoto (Tor Vergata University)

KMS states on chiral CFT

The universal C*-algebra

 \mathcal{A} : a conformal net on S^1 . A **representation** of the net \mathcal{A} is a family $\{\rho_I\}$ of representations of the algebras $\{\mathcal{A}(I)\}$ such that $\rho_{I_2}|_{\mathcal{A}(I_1)} = \rho_{I_1}$ for $I_1 \subset I_2$. The equivalence classes of representations of \mathcal{A} are called **sectors**.

 $\bigvee_{I \subset S^1} \mathcal{A}(I) = \mathcal{B}(\mathcal{H})$ is not interesting, and contains only the information on the vacuum sector.

One can consider an abstract C^* -algebra which contains the information of all charged sectors: for $x \in A(I)$, $\rho_{univ}(x) := \bigoplus_{\mu} \rho_{\mu}(x)$, where the direct sum runs all cyclic (locally normal) representations generated by the GNS representations on the free *-algebra generated by $\mathcal{A}(I)$'s. We define the **universal** C^* -algebra of \mathcal{A} (Fredenhagen, Guido-Longo) by

$$\mathcal{C}^*(\mathcal{A}) := \overline{\{
ho_{ ext{univ}}(x) : x \in \mathcal{A}(I) ext{ for some } I \subset S^1\}}^{\|\cdot\|}$$

There is a natural action of rotations σ_t .

Any representation of the net A lifts to $C^*(A)$. We study **locally normal** states and representations.

KMS states on chiral CFT

Example: the Virasoro algebra

The stress-energy tensor satisfies the commutation relations in terms of the Fourier components $-2\pi T(z) = \sum L_n z^{-n-2}$ (in the S^1 -picture), $[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}m(m^2 - 1)\delta_{m+n,0}.$

- A unitary irreducible representation is charaterizedd by c and h, where $L_0\Omega = h\Omega$, $L_n\Omega = 0$ for $n \ge 1$. Integrates to $\text{Diff}(S^1)$ (Goodman-Wallach).
- Possible values are $c = 1 \frac{6}{m(m+1)}$, $m = 2, 3, \dots, h = \frac{((m+1)r-ms)^2-1}{4m(m+1)}$, $r = 1, \dots, m-1$, $s = 1, \dots, r$ and $c \ge 1$, $h \ge 0$ (Friedan-Qiu-Shenker, Goddard-Kent-Olive).
- For a fixed c, h = 0, $\operatorname{Vir}_{c}(I) = \overline{\{e^{iT_{c,0}(f)} : \operatorname{supp} f \subset I\}}^{\operatorname{vN}}$ is a conformal net. Any net includes Vir_{c} for some c > 0.
- For a fixed c, any value h corresponds to a sector of Vir_c (Buchholz & Schulz-Mirbach, Carpi, Weiner).
- We need to study **non-irreducible representations** of $C^*(Vir_c)$.

GNS representation and the extremal decomposition

- For a state φ on a C*-algebra C*(A), it is natural to consider the GNS representation ρ_φ of C*(A).
- In the GNS representation, it is natural to consider the weak closure $\rho_{\varphi}(C^*(\mathcal{A}))''$.
- If φ is a KMS state, then it extends to a KMS state on $\rho_{\varphi}(C^*(\mathcal{A}))''$

For a conformal net \mathcal{A} , the **split property** is automatic (Morinelli-T.-Weiner '16): for each $\overline{l_1} \subset l_2$, there is an intermediate type I factor $\mathcal{A}(l_1) \subset \mathcal{N}(l_1, l_2) \subset \mathcal{A}(l_2)$.

Split property \implies GNS representation of a locally normal KMS state φ is defined on a separable Hilbert space.

 $\implies \rho_{\varphi}(\mathcal{C}^*(\mathcal{A}))''$ is disintegrated into factors.

A general von Neumann algebra \mathcal{M} (a weak-operator-topology-closed *-subalgebra of $\mathcal{B}(\mathcal{H})$) on a separable Hilbert space is a direct integral of **factors** (von Neumann algebras with trivial center, or "simple" algebras). Factors can be classified into

- Type I: isomorphic to $\mathcal{B}(\mathcal{H})$.
- Type II: admits a tracial state/weight.
- Type III: all projections are equivalent, typical for **local** algebras in QFT.

Correspondingly, one can decompose the state φ . The case where $\rho_{\varphi}(\mathfrak{A})$ is type I is tractable.

Examples: take Virasoro net Vir_{c} , a representation $\pi_{c,h}$ with h > 0. $e^{-\beta L_0^h}$ is trace class \implies one can define the Gibbs state

$$\varphi_{h,\beta}(x) = \frac{\operatorname{Tr}(\pi_{c,h}(x)e^{-\beta L_0^h})}{\operatorname{Tr}(e^{-\beta L_0^h})}, \ x \in C^*(\operatorname{Vir}_c).$$

The GNS representation with respect to $\varphi_{h,\beta}$ is an infinite direct sum of $\pi_{c,h}$ (the multiplicity corresponds to the eigenvectors of L_0^h). Especially, it is of type I.

In general, for a conformal net A and a KMS state φ , if the GNS representation is factorial of type I, then it is given as a Gibbs state in an irreducible representation.

Classification of KMS states: no type III representations

Let φ be a locally normal KMS state on $C^*(\mathcal{A})$.

- Rotations can be implemented by elements in C*(A) (D'Antoni-Fredenhagen-Köster).
- Rotations = the modular group is inner \implies no type III component in $\rho_{\varphi}(C^*(\mathcal{A}))''$.
- Using the tracial weight τ and the Radon-Nikodym derivative, the KMS state φ can be written as

$$arphi(x) = rac{ au(e^{-eta L_0^{
ho arphi}}
ho_arphi(x))}{ au(e^{-eta L_0^{
ho arphi}})},$$

where $L_0^{\rho_{\varphi}}$ is the generator of rotations affliated to $\rho_{\varphi}(C^*(\mathcal{A}))''$, different from the standard GNS implementation.

Question: type II component possible?

Classification of KMS states: nets with only type I representations

We will see later that, if there are only countably many **irreducible** sectors of \mathcal{A} for a given value l_0 of the lowest eigenvalue of L_0^{ρ} , then \mathcal{A} admits only type I representations.

Theorem

Any rotation β -KMS state on a conformal net A which admits only type I representations can be written as $\int \varphi_{\lambda} d\lambda$, where

$$arphi_{\lambda}(x) = rac{\operatorname{Tr}(
ho_{\lambda}(x)e^{-eta L_{0}^{
ho_{\lambda}}})}{\operatorname{Tr}(e^{-eta L_{0}^{
ho_{\lambda}}})},$$

and ρ_{λ} is an irreducible representation of \mathcal{A} .

Examples:

- the U(1)-current net, the Virasoro nets Vir_c by the above criterion.
- finite tensor products by a general argument.

Y. Tanimoto (Tor Vergata University)

KMS states on chiral CFT

Let \mathcal{A} be a **completely rational** net (there are finitely many irreducible sectors and the conjugate sector exists, Kawahigashi-Longo-Müger, Longo-Xu).

Then any representation of $C^*(A)$ is a **direct sum** (not a direct integral) of irreducible representations and (Carpi-Conti-Hillier-Weiner)

$$\mathcal{C}^*(\mathcal{A}) = igoplus_{\mu=1}^n \mathcal{B}(\mathcal{H}_\mu).$$

Any locally normal representation is the direct sum of irreducible representations (Kawahigashi-Longo-Müger).

There are important non-rational nets.

- The Virasoro nets with $c \ge 1$.
- The U(1)-current (the Heisenberg algebra): $[J_m, J_n] = n\delta_{m+n,0}$.
- Finite tensor products of them.

Their irreducible representations have been classified.

- The Virasoro nets with c: lowest weight representations with $h \ge 0$.
- The U(1)-current: lowest weight representations $q \in \mathbb{R}$.
- Finite tensor products of them.

And there are corresponding Gibbs states.

Problem: Are there non-type I representations for these nets?

Answer: No.

Some nets with only type I sectors

Let \mathcal{A} be a conformal net with **split property** and assume that **for each** $l_0 \geq 0$, there are only countably many irreducible sectors where the lowest eigenvalue of L_0^{μ} is l_0 .

Let ρ any factorial representation of \mathcal{A} . $e^{itL_0^{\rho}}$ is contained in $\rho(C^*(\mathcal{A}))$ (D'Antoni-Fredenhagen-Köster), hence $e^{i2\rho L_0^{\rho}}$ is a scalar, hence the spectrum of L_0 is $l_0 + \mathbb{N}$.

 ρ can be further disintegrated into irreducible representations (in general this is not unique) and each of the component has the lowest eigenvalue $l_0 + n$, hence **countably many** irreducible representations.

On the other hand, if ρ were non-type I, there must appear uncountably many irreducible representations

(Kawahigashi-Longo-Müger), which contradicts the above countability.

Examples:

- h for the Virasoro nets with $c \ge 1$.
- $\frac{q^2}{2}$ for the U(1)-current.

Consider the classical black hole solutions of the Einstein equation which are asymptotically AdS_3 (the BTZ black holes). These solutions can be parametrized by $\operatorname{Diff}(S^1)/S^1 \times \operatorname{Diff}(S^1)/S^1$.

In the (hypothetical) quantum theory, an asymptotically AdS_3 black hole should be in a thermal state with the Bekenstein-Hawking temperature. The Virasoro algebra, the Lie algebra of $Diff(S^1)$, should acts on the physical Hilbert space as the symmetry of the system.

Hence, the Virasoro algebra should be in a thermal state. The time-translations correspond to the action of S^1 . Hence we need to study thermal states on the Virasoro algebra with respect to S^1 .

17 / 18

- $\bullet\,$ Is there any conformal net with type II_∞ or III representations?
 - cyclic orbifold: (A ⊗ · · · ⊗ A)^{Z_n}, a classification of sectors not available in general (if A is not rational).
 - infinite tensor product $\mathcal{A}\otimes \mathcal{A}\cdots$, not conformal, $e^{-eta L_0}$ not trace class...
- Should the trace class property of $e^{-\beta L_0^{\rho}}$ follow for a factorial representation ρ from any general assumption on the vacuum representation?

 $\implies \rho$ is type I.

- Which KMS states and which additional observables should appear in the BTZ black hole?
- Can we make sense of Black hole entropy?