A new look at C*-simplicity and the unique trace property (based on work by Uffe Haagerup)

Mikael Rørdam rordam@math.ku.dk

Department of Mathematics University of Copenhagen

Operator Algebras and Mathematical Physics Sendai, August 11, 2016. • G = (countable) discrete group; X = compact Hausdorff space.

Definition (Furstenberg, 1963)

A compact G-space X is strongly proximal if

$$\forall \mu \in \operatorname{Prob}(X) : \overline{G.\mu} \cap \{\delta_x : x \in X\} \neq \emptyset.$$

 $G \cap X$ is a boundary action if it is strongly proximal and minimal.

Siven $G \curvearrowright X$. TFAE:

(a)
$$G \curvearrowright X$$
 is a boundary action,

(b)
$$\forall \mu \in \operatorname{Prob}(X) : \{\delta_x : x \in X\} \subseteq \overline{G.\mu}$$
,

(c) $\forall x \in X \exists (g_i) \subseteq G \forall \mu \in \operatorname{Prob}(X) : g_i.\mu \to \delta_x.$

▶ If a bdry action $G \curvearrowright X$ admits an invariant prob. measure μ , then $X = \{\text{pt}\}$. In particular, the only bdry action $G \curvearrowright X$ of an amenable group G is the trivial one: $X = \{\text{pt}\}$.

Furstenberg made the following further observations:

▶ If $G \curvearrowright Y$ is a quotient of boundary action $G \curvearrowright X$, i.e., Y = q(X) for some cts *G*-map *q*, then $G \curvearrowright Y$ is a boundary action.

▶ If (X_i) are strongly proximal *G*-spaces, then so is $\prod_i X_i$ (wrt the diagonal action).

▶ There is a universal boundary action $G \curvearrowright \partial_F G$, i.e., every other boundary action is a quotient of $G \curvearrowright \partial_F G$ (now called the Furstenberg boundary).

▶
$$\partial_F G \neq \{ pt \}$$
 iff *G* is non-amenable.

Proposition (Furman, 2003). $g \in G$ acts non-trivially on $\partial_F G \iff g \notin \operatorname{Rad}(G)$.

 $\operatorname{Rad}(G)$ = the largest normal amenable subgroup of G = the amenable radical of G

Definition (Laca–Spielberg, Glasner). An action $G \curvearrowright X$ is a strong boundary action if for every open set $\emptyset \neq U \subseteq X$ and compact set $K \subset X$ there exists $g \in G$ st $g.K \subseteq U$.

Strong boundary \Rightarrow boundary. (\Leftarrow does not hold.)

Example: The action of a non-elementary word hyperbolic group G on its Gromov boundary ∂G is a strong boundary action (and hence a boundary action).

Theorem (Laca–Spielberg): If $G \cap X$ is a strong boundary action, then $C(X) \rtimes_{\text{red}} G$ is simple and purely infinite. If, furthermore, the action is amenable, G is countable and X is metrizable, then $C(X) \rtimes_{\text{red}} G$ is a Kirchberg algebra.

▶ In the theorem above, one can relax "strong boundary action" to the statement that each clopen set is *G*-paradoxical relatively to the clopen subsets of *X*, provided that *X* is totally disconnected.

• τ_0 = the canonical (faithful) tracial state on $C^*_{\lambda}(G)$.

Theorem (Powers, 1975): $C_{\lambda}^{*}(\mathbb{F}_{2})$ is simple (and has a unique tracial state). Moreover, $\forall a \in C_{\lambda}^{*}(\mathbb{F}_{2}) \ \forall \varepsilon > 0 \ \exists g_{1}, \dots, g_{n} \in \mathbb{F}_{2}$: $\left\| \tau_{0}(a)\mathbf{1} - \frac{1}{n} \sum_{j=1}^{n} \lambda(g_{j}) a \lambda(g_{j})^{*} \right\| < \varepsilon.$

Question: For which groups G is $C^*_{\lambda}(G)$ simple? has unique tracial state? Partial answer (de la Harpe):

 $\mathcal{C}^*_{\lambda}(\mathcal{G}) \text{ simple} \Rightarrow \operatorname{Rad}(\mathcal{G}) = \{e\} \Leftarrow \mathcal{C}^*_{\lambda}(\mathcal{G}) \text{ unique trace.}$

Theorem (Kalantar–Kennedy, 2014). $C^*_{\lambda}(G)$ simple $\iff G \curvearrowright \partial_F G$ is (topologically) free.

▶ Breuillard–Kalantar–Kennedy–Ozawa (BKKO): "topological freeness" \implies "freeness" for actions $G \curvearrowright \partial_F G$.

Theorem (Furman, 2003). $\operatorname{Rad}(G) = \{e\} \iff G \curvearrowright \partial_F G \text{ is faithful.}$ **Theorem (Breuillard–Kalantar–Kennedy–Ozawa, 2014).** $C^*_{\lambda}(G)$ has unique trace $\iff \operatorname{Rad}(G) = \{e\}.$

► As a consequence, BKKO can conclude: BKKO + Le Boudec can conclude:

 $C^*_{\lambda}(G) \text{ simple } \Rightarrow \stackrel{\notin}{\Rightarrow} \operatorname{Rad}(G) = \{e\} \Leftrightarrow C^*_{\lambda}(G) \text{ unique trace.}$

▶ Using the Kalantar–Kennedy theorem, BKKO established *C**-simplicity for large classes of groups (with simpler proofs, when already known).

Theorem (Le Boudec, 2015). There exists a class of groups G st $\operatorname{Rad}(G) = \{e\}$, while $C^*_{\lambda}(G)$ is non-simple.

► Ivanov and Omland produced in 2016 new examples of non-*C**-simple groups with trivial amenable radical arising as amalgamated free products.

• Given $G \curvearrowright X$, we have

$$C^*_{\lambda}(G) \subseteq C(X) \rtimes_r G, \qquad C(X) \subseteq C(X) \rtimes_r G,$$

satisfying: $\lambda(g)f = \alpha_g(f)\lambda(g)$, where $\alpha_g(f)(x) = f(g^{-1}.x)$, $f \in C(X)$, $g \in G$, $x \in X$.

Lemma. If φ is a state on $C(X) \rtimes_r G$ and $x \in X$ st $\varphi|_{C(X)} = \delta_x$, then $\varphi(\lambda(g)) = 0$, for all $g \in G$ st $g.x \neq x$. In particular, if $G_x = \{e\}$, then $\varphi|_{C_{\lambda}^*(G)} = \tau_0$.

Proof: φ is multiplicative on C(X).

Lemma. Let $G \curvearrowright X$ be a bdry action, let τ be a tracial state on $C^*_{\lambda}(G)$, and let $x \in X$. Then τ extends to a state φ on $C(X) \rtimes_r G$ st $\varphi|_{C(X)} = \delta_x$.

Theorem (BKKO). If $g \notin \operatorname{Rad}(G)$, then $\tau(\lambda(g)) = 0$, for all tracial states τ on $C_{\lambda}^{*}(G)$. In particular, $\operatorname{Rad}(G) = \{e\} \iff C_{\lambda}^{*}(G)$ has unique tracial state. **Theorem (BKKO).** If $g \notin \operatorname{Rad}(G)$, then $\tau(\lambda(g)) = 0$, for all tracial states τ on $C_{\lambda}^{*}(G)$. In particular, $\operatorname{Rad}(G) = \{e\} \iff C_{\lambda}^{*}(G)$ has unique tracial state.

Theorem (Haagerup). Let $g \in G$: $g \notin \operatorname{Rad}(G) \iff 0 \in \overline{\operatorname{conv}} \{\lambda(hgh^{-1}) : h \in G\}.$

▶ The proof uses Hahn–Banach and Furman's characterization of Rad(G) in terms of boundary actions.

Corollary (Haagerup). $C_{\lambda}^{*}(G)$ has unique tracial state iff $\forall g \in G \setminus \{e\} \ \forall \varepsilon > 0 \ \exists h_1, \ldots, h_m \in G \ st$

$$\left\|\frac{1}{m}\sum_{j=1}^m\lambda(h_jgh_j^{-1})\right\|<\varepsilon.$$

Theorem (Furman, Haagerup, BKKO)

- Let G be a group. TFAE:
 - $C^*_{\lambda}(G)$ has unique tracial state,
 - **2** G admits a faithful boundary action,
 - 3 $\operatorname{Rad}(G) = \{e\},\$

$$\left\|\frac{1}{m}\sum_{j=1}^m\lambda(h_jgh_j^{-1})\right\|<\varepsilon.$$

Lemma (from before). If φ is a state on $C(X) \rtimes_r G$ and $x \in X$ st $\varphi|_{C(X)} = \delta_x$ and $G_x = \{e\}$, then $\varphi|_{C^*_\lambda(G)} = \tau_0$.

Lemma. Let G be a C^{*}-simple group and let φ be a state on $C^*_{\lambda}(G)$. Then $\exists (g_i) \subseteq G$ st $g_i \cdot \varphi \to \tau_0$.

Proposition. Let G be a C*-simple group. Then $\exists (g_i) \subseteq G$ st $g_i \cdot \varphi \to \tau_0$, for all states φ on $C^*_{\lambda}(G)$. Moreover, $g_i \cdot \omega \to \omega(\mathbf{1})\tau_0$ for all $\omega \in C^*_{\lambda}(G)^*$.

Theorem (Haagerup, Kennedy). $C_{\lambda}^{*}(G)$ is simple iff $\forall g_{1}, \dots, g_{n} \in G \setminus \{e\} \ \forall \varepsilon > 0 \ \exists h_{1}, \dots, h_{m} \in G \text{ st}$ $\left\|\frac{1}{m} \sum_{j=1}^{m} \lambda(h_{j}g_{i}h_{j}^{-1})\right\| < \varepsilon, \qquad i = 1, \dots, n.$

Theorem (Kennedy-Kalantar, Haagerup, BKKO)

Let G be a group. TFAE:

•
$$C^*_{\lambda}(G)$$
 is simple,

@ *G* admits a (topologically) free boundary action,

 $\ \, { \ \, { 0 \ } } \ \, \tau_0 \in \overline{\{g.\varphi:g\in G\}}, \ \, { for \ \, all \ \, states \ \, \varphi \ \, on \ \, C^*_\lambda(G), }$

 $\ \, { \ \, { 3 } \ \, } \exists (g_i) \subseteq G \ \, { st } \ \, { g_i . \varphi \to \tau_0 }, \ \, { for \ \, all \ \, states } \varphi \ \, on \ \, C^*_\lambda (G),$

$$\left\|\frac{1}{m}\sum_{j=1}^m\lambda(h_jg_ih_j^{-1})\right\|<\varepsilon, \qquad i=1,\ldots,n,$$

• $C_{\lambda}^{*}(G)$ has the Dixmier property:

 $\overline{\operatorname{conv}}\{uxu^*: u \text{ unitary in } C^*_{\lambda}(G)\} \cap \mathbb{C} \cdot \mathbf{1} \neq \emptyset,$ for all $x \in C^*_{\lambda}(G)$.