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Boundary actions

» G = (countable) discrete group; X = compact Hausdorff space.

Definition (Furstenberg, 1963)
A compact G-space X is strongly proximal if

Vi € Prob(X) : G.uN{dx: x € X} # 0.

G ~ X is a boundary action if it is strongly proximal and minimal.

» Given G ~ X. TFAE:

(a) G ~ X is a boundary action,

(b) Vi € Prob(X) : {6x: x € X} C G.u,

(c) ¥x € X 3(gi) € G Vu € Prob(X) : gj.u — 0x.

» If a bdry action G ~ X admits an invariant prob. measure p,
then X = {pt}. In particular, the only bdry action G ~ X of an
amenable group G is the trivial one: X = {pt}.



Boundary actions

Furstenberg made the following further observations:

» If G ~ Y is a quotient of boundary action G ~ X, i.e.,
Y = q(X) for some cts G-map g, then G ~ Y is a boundary
action.

» If (X;) are strongly proximal G-spaces, then so is [[; Xi (wrt the
diagonal action).

» There is a universal boundary action G ~ 9 G, i.e., every other
boundary action is a quotient of G ~ G (now called the
Furstenberg boundary).

» OrG # {pt} iff G is non-amenable.

Proposition (Furman, 2003).
g € G acts non-trivially on 0rG <= g ¢ Rad(G).

Rad(G) = the largest normal amenable subgroup of G
= the amenable radical of G



Boundary actions

Definition (Laca—Spielberg, Glasner). An action G ~ X is a
strong boundary action if for every open set ) # U C X and
compact set K C X there exists g € G st g.K C U.

» Strong boundary = boundary. (< does not hold.)

Example: The action of a non-elementary word hyperbolic group
G on its Gromov boundary JG is a strong boundary action (and
hence a boundary action).

Theorem (Laca—Spielberg): If G ~ X is a strong boundary
action, then C(X) Xyeq G is simple and purely infinite. If,
furthermore, the action is amenable, G is countable and X is
metrizable, then C(X) Xeq G is a Kirchberg algebra.

» In the theorem above, one can relax “strong boundary action”
to the statement that each clopen set is G-paradoxical relatively to
the clopen subsets of X, provided that X is totally disconnected.



C*-simplicity and the unique trace property

» 7o = the canonical (faithful) tracial state on C;(G).

Theorem (Powers, 1975): C;(IF) is simple (and has a unique
tracial state). Moreover, Va € C;(F2) Ve > 0 3gy,..., 8, € Fa:

o)1~ 2> Mganen)| < =
j=1

Question: For which groups G is C;(G) simple? has unique
tracial state? Partial answer (de la Harpe):

C(G) simple = Rad(G) = {e} < C(G) unique trace.
Theorem (Kalantar—-Kennedy, 2014).
C(G) simple <= G ~ OfG is (topologically) free.

» Breuillard-Kalantar-Kennedy-Ozawa (BKKO):
“topological freeness” = “freeness’ for actions G ~ JrG.

Theorem (Furman, 2003).
Rad(G) = {e} < G ~ 0pG is faithful.



C*-simplicity and the unique trace property

Theorem (Breuillard—Kalantar—-Kennedy—Ozawa, 2014).
C3(G) has unique trace <= Rad(G) = {e}.

» As a consequence, BKKO can conclude: BKKO + Le Boudec
can conclude:

Ci(G) simple = = Rad(G) = {e} < C;(G) unique trace.

» Using the Kalantar-Kennedy theorem, BKKO established
C*-simplicity for large classes of groups (with simpler proofs, when
already known).

Theorem (Le Boudec, 2015). There exists a class of groups G
st Rad(G) = {e}, while C{(G) is non-simple.

» Ivanov and Omland produced in 2016 new examples of
non-C*-simple groups with trivial amenable radical arising as
amalgamated free products.



The unique trace property

» Given G ~ X, we have

Cy(G) C C(X) %, G, C(X) C C(X) x, G,
satisfying: A(g)f = ag(f)A(g), where ag(f)(x) = f(g~1.x),
feC(X)geG xeX.

Lemma. If ¢ is a state on C(X) 3, G and x € X st |c(x) = Ox,
then p(A(g)) =0, for all g € G st g.x # x.
In particular, if Gx = {e}, then ¢[c;(c) = 7o.

Proof: ¢ is multiplicative on C(X).

Lemma. Let G ~ X be a bdry action, let 7 be a tracial state on
CX(G), and let x € X.
Then 7 extends to a state ¢ on C(X) x, G st ¢[c(x) = Ox-

Theorem (BKKO). If g ¢ Rad(G), then 7(A\(g)) = 0, for all
tracial states 7 on C;(G). In particular,

Rad(G) = {e} <= C;(G) has unique tracial state.



The unique trace property

Theorem (BKKO). If g ¢ Rad(G), then 7(A(g)) = 0, for all
tracial states 7 on C;(G). In particular,
Rad(G) = {e} <= C;(G) has unique tracial state.

Theorem (Haagerup). Let g € G:
g ¢ Rad(G) <= 0 c conv{\(hgh ') : he G}.

» The proof uses Hahn—Banach and Furman's characterization of
Rad(G) in terms of boundary actions.

Corollary (Haagerup). C;(G) has unique tracial state iff
Vg€ G\ {e} Ve >0 3hy,...,hy € G st

1 m
H; S )\(hjghj_l)H <e.
=i



The unique trace property

Theorem (Furman, Haagerup, BKKO)

Let G be a group. TFAE:
@ C3(G) has unique tracial state,
@ G admits a faithful boundary action,
@ Rad(G) = {e},
Q VgeG\{e} Ye>0 3hy,...,hp € G st

H;Jﬁ;)\(hjghjl)” <e.
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Lemma (from before). If ¢ is a state on C(X) x, G and x € X
st plc(x) = 0x and Gx = {e}, then ¢|c;(6) = To.

Lemma. Let G be a C*-simple group and let ¢ be a state on
C;(G) Then H(g,') C G st &gi-p — T0.

Proposition. Let G be a C*-simple group. Then J(g;) C G st
gi.¢ — 7o, for all states ¢ on C{(G).

Moreover, gj.w — w(1)7g for all w € C5(G)*.

Theorem (Haagerup, Kennedy). C;(G) is simple iff
Vgi,...,8n € G\ {e} Ve >0 3Fhy,...,hy € G st

H—ZA Jg, H i=1,...,n.



C*-simplicity

Theorem (Kennedy-Kalantar, Haagerup, BKKO)

Let G be a group. TFAE:
Q@ C3(G) is simple,
@ G admits a (topologically) free boundary action,
@ 70 € {g.¢: g€ G}, for all states ¢ on C;(G),
Q J(gi) C G st gj.p — 7o, for all states ¢ on C;(G),
Q@ Vgi,....,gn € G\{e} Ve >0 3hy,...,hy, € G st

HfZA higih; H i=1,....n,

@ C;(G) has the Dixmier property:

conv{uxu® : u unitary in Cy(G)} NC -1 # 0,
for all x € C{(G).
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