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Abstract

Hypergroups (acting by completely positive maps) are generalized
symmetries of quantum field theory in 1 and 2 dimensions. We show
that boundary conditions between a pair of QFTs (with common
stress-energy tensor) can be viewed as the morphisms of a
hypergroupoid. Their completely positive action is linear on the
charged generators, and naturally generalizes gauge transformations.

Joint project with Marcel Bischoff (Vanderbilt)
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SUBFACTORS and HYPERGROUPS
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Let N ⊂ M be a subfactor (finite index, type III), ι : N → M the
embedding homomorphism, ι : M → N a conjugate homomorphism.

γ = ιι ∈ End0(M) is called the canonical endomorphism (with
range inside N), θ = ιι ∈ End0(N) the dual canonical
endomorphism.

(Type II: θ corresponds to NMN , γ to MM1M where N ⊂ M ⊂ M1 is
the Jones basic construction.

We fix intertwiners w ∈ Hom(idN , θ) and v ∈ Hom(idM , γ) satisfying
the conjugacy (“zig-zag”) relations

v∗ι(w) = 1M = = ι(v∗)w = 1N

normalized by w∗w = d · 1N , v∗v = d · 1M , where d = [M : N]1/2 is
called the dimension (of ι).
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Frobenius duality (“Fourier transform”) Hom(θ, θ)↔ Hom(γ, γ):

ι ι

ι ι
χ7→

ιι

ιι

turns the concatenation product ◦ into the convolution product
∗:

γ

γ

γ

1

2
=

θ
θ

θ

θ
θ

θ
1 2 i.e., χ(x1) ◦ χ(x2) = χ(x1 ∗ x2).

This was exploited earlier (KHR 1997, cf. also Böhm-Szlachanyi
1995) in order to view N ⊂ M as fixed points w.r.t. a “Weak C*
Hopf symmetry” of M, which suffered from a “depth 2 obstruction”
for the coproduct (namely α ≺ γ2 6⇒ α ≺ γ entailing ∆(1) 6= 1⊗ 1).
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Lemma:

If θ is an object in a braided subcategory of End0(N), and the
Frobenius algebra [θ,w , x = ι(v)] is commutative, then
[Hom(θ, θ), ∗] is commutative ⇔ [Hom(γ, γ), ◦] is commutative ⇔
γ is multiplicity-free:

γ '
⊕

a
αa

(αa ∈ End0(M) irreducible, pairwise inequivalent).

Proof of the first statement: 1 2

θ

= 1 2 = 2 1 .

We shall now assume that γ is multiplicity-free (for the reason
given in the Lemma, or for some other reason).

For subfactor theory, this condition may seem artificial.

But for certain subfactors in Quantum Field Theory, it is a
consequence of Locality (see below).
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We want to turn this feature into a hypergroup action on M, such
that N ⊂ M are the fixed points w.r.t. this action.

The hypergroup (cf. below for the definition) will be given by the
minimal projections of Hom(γ, γ), equipped with the ∗-product.

We know that for an irreducible subfactor there is a unique
conditional expectation µ : M → N with fixed points N.
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The unique conditional expectation µ : M → N can be written as

µ(m) = d−1 · w∗ι(m)w .

Assume that γ is multiplicity-free, and decompose γ =
∑

a taαa(·)t∗a
with the help of isometries ta ∈ Hom(αa, γ).

Then the map ι ◦ µ : M → M can be decomposed as

ι ◦ µ = d−1
∑

a
ι(w∗)taαa(·)t∗a ι(w),

where t∗a ι(w) ∈ Hom(ι, αaι) are multiples of isometries.
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Because ι(w∗)tat
∗
a ι(w) =

da
d · 1M , the completely positive maps

φa(·) =
d
da
· ι(w∗)taαa(·)t∗a ι(w) m

ta

t∗a w

w∗

are normalized. Moreover, φa are N-N-bimodule maps, and
µ ◦ φa = µ, hence φa preserve every µ-invariant state.

Therefore

ι ◦ µ =
1

[M : N]

∑
a
da · φa

splits the conditional expectation µ : M → N into a convex sum of
N-linear stochastic maps φa : M → M.

φ0 corresponding to α0 = idM ≺ γ is the identity map.
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Definition. (see V.S. Sunder and N.J. Wildberger, 2003)

(i) A (finite-dimensional) hypergroup K is a unital associative
algebra with a basis ka (a = 0, ·|K | − 1) such that k0 = 1, a product
that is a convex sum:

kakb =
∑

c
C c
ab kc with C c

ab ≥ 0,
∑

c
C c
ab = 1,

and a conjugation ka → ka such that

C 0
ab > 0 ⇔ b = a.

(ii) wa = 1/C 0
aa is called the weight of ka. The Haar measure of the

hypergroup is the element (
∑

a wa)−1
∑

a wa · ka.

Well-known examples:
The cosets of a group w.r.t. a normal subgroup
The double cosets of a group w.r.t. a subgroup
The conjugacy classes of a group
Fusion algebras
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Proposition. (Bischoff 2016)

(i) The normalized minimal projections ka = d
da
· tat∗a ∈ Hom(γ, γ),

equipped with the ∗-product, form a finite hypergroup K , where the
conjugation is induced by the sector conjugation αa ≺ γ ⇒ αa ≺ γ.
The weights are given by the dimensions wa = da.

(ii) φa define a *-action of K on M.

(iii) The action of the Haar measure of the hypergroup coincides
with ι ◦ µ, and N = MK .

Example: If N = MG under the action of a finite group G , then
γ =

⊕
g∈G αg , K = G , and µ is the group average. In this case, αg

are actually automorphisms, and φg = αg .

In general, φa are not even homomorphisms.
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For the proof, one first notices that ka ∗ kb is a linear combination of
kc , because these span Hom(γ, γ), and the coefficients are
non-negative numbers, because the ∗-product of two projections is a
positive operator.

Second, the composition φa ◦ φb of stochastic maps coincides with
the ∗-product of ka:

mka kb

w

w∗

w

w∗

= mka ∗ kb
w

w∗

It only remains to check the proper normalization.
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By this result, every finite-index subfactor N ⊂ M with
multiplicity-free canonical endomorphism γ ∈ End(M) defines a
hypergroup K and an action on M, such that N ⊂ M is the fixed
point subfactor N = MK ⊂ M.

Proposition. (Bischoff, KHR 2016)

The maps φa preserve the subspaces of isometries
Hρ = Hom(ι, ιρ) ⊂ M (ρ ≺ θ). Their linear actions on Hρ are the
matrix representations of the hypergroup K .
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QUANTUM FIELD THEORY
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A quantum field theory is a collection (= net) of von Neumann
algebras (type III factors) A(O) assigned to spacetime regions O,
subject to Haag-Kastler axioms. In physics language: A(O) are the
observables accessible by experiments inside O.

Locality = Einstein causality: observables at spacelike separation
commute.

Superselection sectors are (a class of) Hilbert space representations
of the net A, that can be described by DHR endomorphisms of
A(O). The distinguished vacuum representation has the trivial DHR
endomorphism idA.

DHR endomorphisms (localized in O) are the objects of a unitary
braided tensor category in End0(A(O)).
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One QFT A is an (irreducible) subtheory of another QFT B if

A(O) ⊂ B(O)

is an (irreducible) subfactor for all O. The index of the subfactor
does not depend on O. With some regularity assumption on A, finite
index [B(O) : A(O)] is automatic.

Proposition: (Longo, KHR 1995)

The dual canonical endomorphism θO ∈ End(A(O)) is a DHR
endomorphism of A, restricted to A(O).

The subsectors of θ are regarded as “generalized charges” carried by
isometric charged fields Ψρ ∈ Hρ = Hom(ι, ιρ) in B, one for every
subsector ρ ≺ θ (with multiplicities), while fields in A are “neutral”.
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In the case of finite index, the net B can be recovered from the net
A and a single subfactor A(O0) ⊂ B(O0), more precisely by its
Frobenius algebra (Q-system) [θO ,wO , xO = ιO(vO)].

An extension B(O) ⊃ A(O) of a local QFT is local iff the Frobenius
algebra [θ,w , x ] is commutative:

εθ,θ x = x .

Hence the previous subfactor results apply: the canonical
endomorphisms γO (associated with the subfactors A(O) ⊂ B(O))
are multiplicity-free, and A(O) = B(O)K are the fixed points of the
compatible actions of a finite hypergroup K .

K acts linearly on the charged fields.

(The compatibility of the hypergroup actions for different regions O
is a nontrivial issue, that requires some work.)
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The fixed-point property A(O) = B(O)H means that hypergroups
naturally arise as generalized symmetries.

In 4D (three dimensions of space plus time), where the braiding is
always a permutation symmetry for geometric reasons, it follows
from the work of Doplicher, Haag and Roberts (“DHR theory”),
that the hypergroup is a double quotient K = H\G/H of the gobal
gauge group G of the subtheory A by some subgroup H:

A = FG ⊂ B = FH ⊂ F ⇒ A = BH\G/H .

In contrast, low-D quantum field theories with proper braidings
admit more general hypergroups.



KHRehren OpAlg & MathPhys MSJ-SI Sendai 2016 Hypergroupoid of boundary conditions 20 / 37

BOUNDARY CONDITIONS
between TWO QFTs
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Consider two local extensions BL ⊃ A and BR ⊃ A of a QFT A in
two spacetime dimensions.

Proposition. (Bischoff-Kawahigashi-Longo-KHR 2015)

There is a “universal construction” = a nonlocal extension C ⊃ A
(along with a vacuum representation) such that

BL

↪→ ↪→
A C↪→ ↪→BR

,

and the embedded BL is left-local w.r.t. the embedded BR , and
both generate C .

Left-local means that BL(O1) commutes with BR(O2) whenever O1

is spacelike-left of O2.
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Left-locality ensures that the following prescription (“boundary”) is
physically meaningful: Choose a timelike boundary, e.g., the time
axis x = 0 in the two-dimensional spacetime. For regions O left of
the boundary (x < 0) assign the local observables BL, and for
regions right of the boundary assign BR(O). Namely, Einstein
causality holds also “across the boundary”.

BR(O2)
BL(O1)

x = 0

The above scenario is also necessary if the QFTs on both sides of
the boundary share the same stress-energy tensor, e.g., because
energy and momentum are conserved at the boundary.
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BL

↪→ ↪→
A C↪→ ↪→BR

,

We denote the embeddings as

ιX : A ↪→ BX , X : BX ↪→ C (X = L,R)

such that
R ◦ ιR = L ◦ ιL.

Even if BL = BR(=: B), there are two copies of B in C , embedded
as L(B) 6= R(B), but only one copy of A.
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The universal construction is neither irreducible nor factorial. We
have proven (exploiting that BL, BR are local):

Proposition. (BKLR 2015)

A′ ∩ C = C ′ ∩ C , hence the central decomposition of C equals the
decomposition into irreducible extensions.

Every irreducible summand of the universal construction is a
boundary condition between BL and BR , and every boundary
condition arises in this way.

The boundary conditions can be characterized in terms of relations
between charged fields, as follows:
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A ⊂ B is generated by A and a finite number of charged fields
Ψρ ∈ Hρ. Thus, C is generated by A and L(HL

ρ ) and R(HR
ρ ).

The center of C is spanned by the “neutral” products ΨL∗
ρ,jΨ

R
ρ,i .

Hence these are linear combinations of the minimal central
projections of C :

ΨL∗
ρ,jΨ

R
ρ,i =

∑
a
Sρ,ji ;a · Ea.

The boundary condition specified by the range of Ea is therefore
characterized by the sesquilinear relations among the charged fields

πa(ΨL∗
ρ,jΨ

R
ρ,i ) = Sρ,ji ;a · 1.
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The practical problem is to compute the coefficients Sρ,ji ;a from the
given pair of Frobenius algebras, e.g., by computing Ea as linear
combinations of ΨL∗

ρ,jΨ
R
ρ,i and solving for the latter.

Proposition. (BKLR 2015)

The minimal central projections Ea (hence the irreducible boundary
conditions) are in 1:1 correspondence with the irreducible
subsectors αa ≺ ιLιR : BR → BL.
Locality of BL, BR ensures that ιLιR is multiplicity-free.

We have given a formula for Ea in terms of intertwiners
Ia ∈ Hom(θR , θL), that “diagonalize the ∗-product”. Because the
projections tat

∗
a ∈ Hom(ιLιR , ιLιR) (where ta ∈ Hom(αLR

a , ιLιR))
diagonalize the ◦-product, Ia are their Frobenius-Fourier
transforms.

Ia =
ta

t∗a
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In particular: In the case BL = BR =: B, the boundary conditions
are in 1:1 correspondence with the elements of the hypergroup K
such that A = BK .

Proposition. (KHR 2016)

If BL = BR = B, then one has

Ea =
∑

ρ

dadρ
dθ

∑
i
L ◦ φa

(
Ψ∗ρ,i

)
R
(
Ψρ,i

)
where the sum over i runs over any orthonormal basis of Hρ.

Since φa acts on Hρ as a matrix representation of K , the coefficients
Sρ,ji ;a are determined by the representation theory of K , by
solving this equation for ΨL∗

ρ,jΨ
R
ρ,i .
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Special case: BL = BR = B and A = BG the fixed points under the
action of a finite group G , i.e., K = G .

In this case, αa ≺ ιι =
⊕

g αg are the gauge automorphisms, and

φg = αg . Thus, we have Eg =
∑

ρ
dρ
|G |
∑

ji u
ρ(g)ji ·ΨL∗

ρ,jΨ
R
ρ,i . By

Peter-Weyl, one can solve:

ΨL∗
ρ,jΨ

R
ρ,i =

∑
g
uρ(g)ji · Eg ,

and because Ψρ,i are isometries and uρ unitary matrices, the
Cauchy-Schwarz inequality implies the linear relations

πg
(
ΨR
ρ,i

)
=
∑

j
πg
(
ΨL
ρ,j

)
uρ(g)ji .

Thus, HL
ρ = HR

ρ coincide as spaces in each irreducible representation
πg of the universal construction C , but the identification of the
charged fields depends on g , acting by the gauge transformation αg .

In the case of hypergroups, the sesquilinear relations in general do
not imply linear relations, hence in general HL

ρ 6= HR
ρ .
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An interesting picture emerges in the case BL =BR =B and A = BG :

The local algebras BL(O) and BR(O) coincide for every region, but
their generators on the left and on the right of the boundary differ
by a gauge transformation. The embeddings into C are related by

R =
∑

g∈G
Eg · L ◦ αg .

Thus, boundary conditions are “local gauge transformations” with
only two values.

By subdividing spacetime into (infinitely) many cells with many
boundaries = edges of the dual graph, and a boundary condition =
gauge transformation attached to each edge, one obtains the local
lattice gauge group!

What is the analogue of the composition of boundary conditions
upon juxtaposition of two boundaries in the general (low-D) case?
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THE HYPERGROUPOID of BOUNDARY
CONDITIONS
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Back to the general case: fix a local QFT A and two local
extensions, and consider

BL

↪→ ↪→
A C↪→ ↪→BR

,

where C is the “universal construction”.

Notice that a completely rational QFT A admits only finitely many
inequivalent irreducible local extensions.

We want to make more precise the statement

“The subsectors αLR
a of ιLιR : BR → BL

classify the boundary conditions.”
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Exactly as the subsectors of γ = ιι decompose ι ◦ µ into stochastic
maps (see above), the sector decomposition of ιLιR gives rise to the
convex decomposition

ιL ◦ µR(·) =
1

dR
ιL(wR∗ιR(·)wR) =

1

dLdR

∑
a
da · φLRa (·)

where φLRa (·) = dL

da
· ιL(wR∗)ta α

LR
a (·) t∗a ιL(wR).

Notice that now αLR
a are homomorphisms and φLRa are stochastic

maps : BR → BL between different algebras.
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Consider now the juxtaposition of two boundaries, say between BX

and BY , and between BY and BZ .

Their boundary conditions provide us with stochastic maps
φXYa : BY → BX and φYZb : BZ → BY .

Proposition. (KHR 2016)

(i) The boundary conditions among local nets B i ⊃ A define a
hypergroupoid by the ◦-product of Ia ∈ Hom(θY , θX ), or
equivalently by the ∗-product of tat

∗
a ∈ Hom(ιX ιY , ιX ιY ).

(ii) The stochastic maps φXYa : BY → BX provide an action of the
hypergroupoid by homomorphisms among the algebras B i .

The sources and ranges of the hypergroupoid correspond to the
irreducible local extensions B i ⊃ A of the given local QFT A.
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Proposition. (KHR 2016)

Again, φLRa map charged fields ΨR
ρ ∈ HR

ρ linearly to HL
ρ (giving a

matrix representation of the hypergoupoid), and one has

Ea =
∑

ρ

dadρ
dLdR ·

∑
i
LφLRa

(
ΨR∗
ρ,i

)
R
(
ΨR
ρ,i

)
,

which can be solved for the numerical values of L(ΨL∗
ρ,j)

R(ΨR
ρ,i ) in

the range of the projections Ea.

Again, these sesquilinear relations in general do not imply linear
relations among the charged fields. The subspaces HL

ρ and HR
ρ may

have different dimensions, and stand “in skew angles” within C .
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The hypergroupoid fusion by concatenation of intertwiners
Ia ∈ Hom(θY , θX ) was presented in [KHR, ICMP 2015] (without
recognizing the hypergroupoid structure, nor knowing the stochastic
maps).

Bartels-Douglas-Henriques (2013) consider a different
composition of boundary conditions, by composing the
homomorphisms αXY

a ◦ αYZ
b . The result is a subsector of ιX θY ιZ but

in general not of ιX ιZ .

Hence the BDH fusion does not close among the boundary
conditions but among a larger set of defects (they violate the
condition that C is generated by BL and BR). BDH fusion is a
tensor two-category.
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“Morally”, the BDH fusion differs from the hypergroup fusion as
follows: The former retains the intermediate charged fields ΨY as
additional degrees of freedom, in general not contained in BX ∨ BZ ;
whereas the latter classifies the inequivalent ways to “eliminate” ΨY

from the specified numerical values of ΨX∗ΨY and of ΨY ∗ΨZ .

There are cases (apart from the group case), especially when
modular invariance is available, where the two different fusions
become the same, i.e., the hypergroupoid is the fusion algebra of a
tensor two-category. Other cases are very distinct.

I want to suggest that the hypergroupoid fusion of boundary
conditions is the closest analogue of “local gauge transformations”,
that one may hope to get in low-D QFT.


