Approximating freeness under constraints
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General theme of lectures

Given a ll; factor M, a subalgebra B C M, a finite set of “special”
elements F C M, construct elements u € U(B) that are “as independent
as possible” with respect to F, i.e., words with alternating letters in
{u¥| k € Z,k # 0} and in F, should have moments close to zero,
T(xoufixquk...) =~ 0, x; € F, kj #0.
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But the fact that x; are “constraint” to be in F and u in B may force that
only part of this is possible, resulting in a set R of “achievable goals”
(e.g., “all k; must be positive”, or “length of words must be < 6", or “all
letters x; from F within a given word must be distinct”)
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elements F C M, construct elements u € U(B) that are “as independent
as possible” with respect to F, i.e., words with alternating letters in
{u¥| k € Z,k # 0} and in F, should have moments close to zero,
T(xoufixquk...) =~ 0, x; € F, kj #0.

But the fact that x; are “constraint” to be in F and u in B may force that
only part of this is possible, resulting in a set R of “achievable goals”
(e.g., “all k; must be positive”, or “length of words must be < 6", or “all
letters x; from F within a given word must be distinct”)

This can often be viewed as an “approximate embedding” (“simulation™)
of an algebra @, known by generators and relations, into B C M.

As it turns out, the solution to some special cases of this problem has
important applications to various areas of von Neumann algebras, such as
cohomology theory, subfactor theory, orbit equivalence, or paving problems.
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In each one of the cases when we can solve this problem, the element
u € U(B) is constructed via incremental patching, a technique that’s
emblematic of “ll; factor analysis”.

Plan of lectures

S.

e G B WY =

The case B diffuse abelian: 1-independence and semigroup freeness
The case B an arbitrary MASA: 3-independence

The case B a singular MASA: complete freeness

The case B Cartan and F C N(B): Bernoulli-freeness

The case B a ll; factor: freeness relative to B’ N M

Applications

Popa: A ll; factor approach to the Kadison-Singer problem, Comm.

Math. Physics. 332 (2014), 379-414 (math.OA/1303.1424).

S.

Popa: Independence properties in subalgebras of ultraproduct |14

factors, JFA 266 (2014), 5818-5846 (math.OA/1308.3982)
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1. Semigroup freeness when B is abelian diffuse

Lemma (local quantization)

Let M Il; factor and B C M a von Neumann subalgebra. For any finite F
in unit ball of M© BV (B'N M), Yo C B and any ¢ > 0, 3g € P(B) such
that [|gxql|1 < e7(q), [7(qy) — T(q)7(y)| <e7(q). Vx € F, y € Yo. Ifin
addition B is type Il;, then same holds true VF € M & (B’ N M), and q
can be taken to have scalar central trace in B.
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in unit ball of M© BV (B'N M), Yo C B and any ¢ > 0, 3g € P(B) such
that [|gxql|1 < e7(q), [7(qy) — T(q)7(y)| <e7(q). Vx € F, y € Yo. Ifin
addition B is type Il;, then same holds true VF € M & (B’ N M), and q
can be taken to have scalar central trace in B.

Proof. We'll only prove the first part. Sufficient to show the following

Fact. For any y € M © (B V B’ N M) there exists a finite partition with
projections qi, ..., qm € B such that | Z;qiyqil|3 < 3/4|y|/3.

Indeed, because y 1. BV (B'N M) and g; € B implies

Yiqiyq; L BV (B'N M) so we get the conclusion by applying the Fact
recursively n|F| times, to the elements y € F and to X;q;Bg; in lieu of B,
with n taken so that (3/4)" < ¢/|F|. Thus, in the end we get a partition
pi € P(B) such that ¥, cr||Z;pixpi||3 < €2 = £2||Z;pi||3. By Pythagora,
for “most of the i" we get ||pixpil|3. < €|lpil|3, Vx € F, implying

llpixpills < eT(pi), Vx € F, as well. ”



To prove the Fact, assume on the contrary that for any finite partition of 1
with projections q; € B we have || Z;qiyqil|3 > 3/4|y|l3. Thus, if \; € C
satisfy |\;| = 1, then the unitary u = ¥;\;q; € B satisfies

Juyu* — y|13 = |Zigi (NN — 1)aiva;l|3

— 12 2 2
= YiziINiNi — U laivajlls < 4%izillaiva;lls
= 4| qivq;ll3 = 4lly — Ziqivaill3 = 4lly|5 — 4l Ziqivaill3 < |lyl3-

Since unitaries with finite spectrum are norm dense in U(B), from first and
last term we get |luyu* — y|[3 < [ly[3, Yu € U(B). Thus

2ly13 — 2Rr(uyu’y") < lyl13, implying that 2R (uyu’y*) > [IvI3,

Vu € U(B). By taking convex combinations of the elements of the form
uyu* over u € U(B) and then taking into account that 0 belongs to the
weak closure of such elements (because L2(M & (B Vv B’ N M)) contains
no non-zero points fixed by Adi/(B)), it follows that 0 > ||y||3, a
contradiction.
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Theorem 1

Let M be a ll; factor and A C M abelian diffuse. Given any F C M finite,
any € > 0 and n > 1, there exists a Haar unitary u € U(A) such that
IT(xM*_, (Wix))| <e, Vx € F,0<ji<n 1<k<n
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Theorem 1
Let M be a ll; factor and A C M abelian diffuse. Given any F C M finite,
any € > 0 and n > 1, there exists a Haar unitary u € U(A) such that
]T(xol'lf‘zl(uj"x,-))\ <egVx;eF,0<ji<n1<k<n

Proof. Let W denote the set of partial isometries v € A satisfying

T(vk) =0, Yk # 0, and |7(xoN%_;(Vix;))| < er(v*v), ¥V x; € F,

0 <ji < n, 0k < n. We endow W with the order vi < vo if vi = viv{wvo.
(W, <) is clearly inductively ordered. Let v € WW be a maximal element.
Assume v*v # 1 and let p=1— v*v € A. If w is a partial isometry in Ap
and we denote u = v + w, then /i = v/ + wd and we have

1T (oM (i x)| < |7(xME; (VX)) + Z|7 (.. xi_1wlix;....)]
where the sum is taken over all terms that have at least one occurrence of
wii. Since v € W, we have |7(xoM%_;v/ix;)| < er(w*). We will prove that
we can choose w # 0 so that the summation on the right hand side is
majorized by e7(ww™*), giving

|T(xol'lf-<:1(uj"x,-))\ <er(w*) +er(ww*) = er(uu®)
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This will contradict the maximality of v, thus showing that w* =1, i.e v
is a Haar unitary in A. We construct w by first making a choice for its
support projection g = ww*, then choosing w as an appropriate Haar
unitary in Aq. By applying the first part the Lemma to a sufficiently small
6 > 0 and the finite set X of all elements of the form

pzp — Eqanmyp(pzp) € p(M S A" M)p, where z = xoM(vix;) with x;,

Ji > 0 as before, it follows that

Y|r(..xiiwdixi..)| < 0KT(q) + X/|r(w™Z2))

for some z/ € A'N M in a finite set (depending on F and n), some K > 0
and m; = £!_,j;, with / the number (> 1) of occurrences of w. We take 4
sufficiently small, so that K < £/2. Finally, since Ag contains Haar
unitaries w converging weakly to 0, we can make

Yr(w™z")| < (¢/2)7(q) as well.
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2. Approximate 3-independence in arbitrary MASAs

Two sets V, W C M & C are n-independent if any alternating word
XiYi....XkYk, With k < nand x; € VU{1l}, x2, .., xk € V, y1, ..., yk—1 € W,
yk € WU {1}, has trace 0 (unless k =1 and x; = y; = 1). An algebra

Bo € M is n-independent to V if V and By © C are n-independent.

Note that 1-independence amounts to what one usually calls
T-independence.

More generally, if P C M is a von Neumann subalgebra, then two sets
VcMoeP, WC Mo P are n-independent relative to P if
Ep(l_lf‘zlx,-y,-) =0, forall1< k <n,all x; € VU{1l}, x; € V,

yk € WU{1l}, yi e W.
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Theorem 2

Let M be a finite von Neumann algebra and A C M a MASA. Given any
finite sets F C MO A, Yo C A\ C1, any n> 1 and € > 0, there exists a
Haar unitary u € A such that |7(t0yg)| < e, \T(I'Ij-‘zluj"x,-)\ <g,

YO< |jil <n1<k<3 x€F, veEYo
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Haar unitary u € A such that |7(t0yg)| < e, \T(I'Ij-‘zluj’x,-)\ <g,

YO< |jil <n1<k<3 x€F, veEYo

Equivalently: given any || ||2>-separable subsets X C M“ \ A¥,
Y C A¥ © (1, there exists a separable diffuse von Neumann subalgebra
Ao C AY such that Ap is 3-independent to X and 7-independent to Y.

Proof. Denote W = {v € A | w* € P(A), (N, vix;)| < r(v*v),V1 <
k <3,]jil <3,7(v™) =0,Ym # 0}. Endow W with the order < in which
wi < wo iff wi = wowfwy. (W, <) is then clearly inductively ordered. Let
v be a maximal element in WW. Assume 7(v*v) < 1 and denote
p=1—v*v. If wis a partial isometry in Ap and u = v + w, then by
using that v/ = v/i + w/i and expanding x = v x;2x0... 00k xy, k = 1,2, 3,
as a binomial product, we get

[T < (M Vi) + S r(oximawdixg..),
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Note that for each summand for which we have 2 or 3 appearances of
non-zero powers of w in the above sums (one term for k = 2 and four
terms for k = 3), such appearances can be brought to be consecutive, i.e.
they will be of the form |7(....w'yw/...)|, for some i, j # 0,y € F C MG A.
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If g = ww?, then for each one of these terms we have

|7(...w'ywd...)| < |lgyqg|l1. By Lemma, one can choose g € Ap such that
llayqlls < 273¢7(q), Vy € pFp. It thus follows that the sum of terms
having two or more appearances of powers of w are majorized by 2~ 1e7(q).
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j #0, i.e are of the form |7(y1w/y)| = |7(W/Ea(qy2y19))|, for some
yi,y2 € M, 1 <|j| < n. There are k many such terms for each k = 1,2, 3.
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Note that for each summand for which we have 2 or 3 appearances of
non-zero powers of w in the above sums (one term for k = 2 and four
terms for k = 3), such appearances can be brought to be consecutive, i.e.
they will be of the form |7(....w'yw/...)|, for some i, j # 0,y € F C MG A.

If g = ww?, then for each one of these terms we have

|7(...w'ywd...)| < |lgyqg|l1. By Lemma, one can choose g € Ap such that
llayqlls < 273¢7(q), Vy € pFp. It thus follows that the sum of terms
having two or more appearances of powers of w are majorized by 2~ 1e7(q).

All remaining terms and the case k = 1 have just one occurrence of w/,
J # 0, i.e are of the form |T(y1w/y»)| = |T(W/ Ea(qy2y1q))|, for some
yi,y2 € M, 1 <|j| < n. There are k many such terms for each k = 1,2, 3.

Since {w{"} m tends to 0 in the weak operator topology and Y C A'is a
finite set, there exists np > n such that |7(w{y)| < 27457(q), for all

y € Y and [m| > ng. But then w = wg° is still a Haar unitary and it
satisfies all the required conditions.
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3. Approximate freeness in singular MASAs

Theorem 3

Let M be a ll; factor and B = A C M a singular MASA. Given any
FCM&eA Yo C ASCIL finite, any € > 0, n > 1, there exists a Haar
unitary u € A s.t. ||EA(on'IJ’f:1uf"x,-)||1 <&, |7(you)| <&, for any
ISkSH,XOEFU{].},X,'EF,O<U,"Sn,yoeYo.
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3. Approximate freeness in singular MASAs

Let M be a ll; factor and B = A C M a singular MASA. Given any
FCM&eA Yo C ASCIL finite, any € > 0, n > 1, there exists a Haar
unitary u € As.t. ||EA(XOI'IJ’-‘:1uf"X,-)||1 <e, |T(you)| < &, for any
lfkgn,XOEFU{l},X,'EF,O<U,"Sn,yoeYo.

Equivalently: given any || ||2-separable subsets X € M“ \ A“ and
Y C AY © C1, there exists a separable diffuse von Neumann subalgebra
Ap C A¥ such that Ag is free-independent to X and 7-independent to Y.

Consequently: Given any P C M“ separable vN subalgebra making a
commuting square with A“ and any Ay C A% separable, there exists a
diffuse vN subalgebra A; C A% such that if we denote by A; = PN A“,
then A; and Ap are in tensor product and PV A; = P x4, (A1 ® Ao).
In particular, if P L. AY then PV A1 = P x A;.
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Proof. Let § = 2-("+1)’c. Denote g0 =20, ex =2Xe4_1,k=1,2,....n. Let
W={veA|lw"eP(A),|Ea(xoNvix)|1 < exr(v¥v),

|T(yvj°)] <er(w*),V1< k<nO0<|ji|<nyeY}

Endow W with the order < in which wy < wy iff w; = wowjwy. (W, <) is
then clearly inductively ordered. Let v be a maximal element in W.
Assume 7(v*v) < 1 and denote p =1 — v*v.
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W={veA|lw"eP(A),|Ea(xoNvix)|1 < exr(v¥v),

|T(yvj°)] <er(w*),V1< k<nO0<|ji|<nyeY}

Endow W with the order < in which wy < wy iff w; = wowjwy. (W, <) is
then clearly inductively ordered. Let v be a maximal element in W.
Assume 7(v*v) < 1 and denote p =1 — v*v.

If wis a partial isometry in Ap and u = v + w, then

K K ¢
xoMMj—qusxs = xoMMi=1 vsxs + L4220, W;; Zj i,

where the second sum is taken over all £ =1,2,...,k and all

i=(i,...,0), with1<ip <---<ip <k, and where wj = w! whenever
ot _ _

Vii= V", 20,j = XoV1X1 " Xjy—1Ps Zj,i = PXj;Vij+1 " Vi 1 Xii 1 Ps for

1<j<¥ and Zp i = PXj,Vip+1 *** ViXk-
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Thus we get

IEa(xoMCq usxs |1 < [|Ea(xoMey vaxsll1 + ZeZizl| Eao,iMz wiyz; i1,
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Thus we get

IEa(xoMizy tsxs||1 < || Ea(xoMi_; vsxsll1 + ZeXizl|Eao,i My wi zj.il

1,

By applying Lemma (or even better Thm. 2) to the finite set X of all
elements of the form pzp — Eap(pzp) € pMp © Ap, where z is of the form
zj i, for some i = (i1,...,i), 1 <j<€—1,£2>2, as well as to the set Y
of elements |Eap(pzp)| for such z, it follows that Vo > 0, 3q € P(Ap)
such that

lazg — Eap(pzp)all, i, < @Tpmp(Qq)

with g “almost” 7-independent to the elements Exp(pzp).
Arguing like in the proofs of Thm 1 and 2, this is used to take care of
terms in the sum with / > 2 appearances of w.
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Let us now estimate the terms with £ =1, i.e., of the form z = z ;w;z ;,
where | = 1,2, ceey k, 20,j = XoV1X1...Vi—1Xj—1P, Z1,i = PXjVi41..-VkXk and
w; = wt if v = vt
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Let us now estimate the terms with £ =1, i.e., of the form z = z ;w;z ;,
where | = 1,2, ceey k, 20,j = XoV1X1...Vi—1Xj—1P, Z1,i = PXjVi41..-VkXk and
w; = wt if v = vt

Note that in the above estimates we only used the fact that

w*w = ww* = g and that A is a MASA, not the actual form of w, nor
the fact that A is singular. It is due to the singularity of A that we can
choose w € U(Aq) so that, at the same time, we have

|Ea(((xovix1 ... vj—1xj—1 — Ea(xovixi ... Vji—1Xj—1P)WjXjVjq1 - .. viexi) ||,

S EkflT(q)/2k7
|Ea(xovixi ... vi—1Xi—1wj(XjVjt1 - - - Viexk — Ea(pxjvia - viexk))) |l
< EkflT(q)/Qk.

as well as w; (almost) 7-independent to a finite set.
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Indeed, this amounts to to choosing w so that ||[Ea(ziw®z)||1 can be
made arbitrarily small relative to size 7(q), for all y1, y» in a finite set L A
and all 0 < |s| < n. But this is indeed possible because A singular means
it has no “self-intertwiners” that are orthogonal to A.
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Indeed, this amounts to to choosing w so that ||[Ea(ziw®z)||1 can be
made arbitrarily small relative to size 7(q), for all y1, y» in a finite set L A
and all 0 < |s| < n. But this is indeed possible because A singular means
it has no “self-intertwiners” that are orthogonal to A.

Combined with the inequalties corresponding to ¢ > 2, this shows that
| Ea(xoM%_;uixi)|l1 < exr(uu*), 1 < k < n, contradicting the maximality
of v, thus showing that v is a unitary.
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4. The case F C N(B): Bernoulli-freeness

Theorem 4
Given any free pmp action ' ~ X, one can “simulate” the Bernoulli
M-action I ~ T" inside it. More precisely:

If B = L>(X), then for any separable [-invariant A; C B“, there exists
Ao C B* separable diffuse such that A1, {g(Ao)}ger, are multi
7-independent. Thus, if we denote A = A; V Vgerg(Ag) C BY, then
A~ A ® A® is I-invariant and its action on it is same as the product
action I ~ A1 ® AST.
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4. The case F C N(B): Bernoulli-freeness

Theorem 4

Given any free pmp action ' ~ X, one can “simulate” the Bernoulli
M-action I ~ T" inside it. More precisely:

If B = L>(X), then for any separable [-invariant A; C B“, there exists
Ao C B* separable diffuse such that A1, {g(Ao)}ger, are multi
7-independent. Thus, if we denote A = A; V Vgerg(Ag) C BY, then
A~ A ® A® is I-invariant and its action on it is same as the product
action I ~ A1 ® AST.

Proof. We assume for simplicity that H = 1. We need to prove that given
any n > 1, any finite F C G, Yo € A and any ¢ > 0, there exists a Haar
unitary v € A such that |7(yoM%_,gi(v))| <6, Vyo € Yo, L < k < n,

1 < |jil < n and any distinct elements gi, ..., gx € F.
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To prove this, let W :={v € A | |7(yoM*_; (V)| < d7(v*v), 0 €
Yo, g € Fdistinct, 1 < [ji| < n,7(v™) =0,Ym # 0}, endowed with the
order < in which wy < ws iff wi = wowjwy. (W, <) is then clearly
inductively ordered. Let v be a maximal element in W.
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To prove this, let W :={v € A | |7(yoM*_; (V)| < d7(v*v), 0 €
Yo, g € Fdistinct, 1 < [ji| < n,7(v™) =0,Ym # 0}, endowed with the
order < in which wy < ws iff wi = wowjwy. (W, <) is then clearly
inductively ordered. Let v be a maximal element in W.

Assume 7(v*v) < 1 and denote p=1— v*v. If w € Ap is a partial
isometry satisfying ww* = w*w, 7(w™) =0, Vm # 0, and we denote
u = v+ w, then by noticing that (v + W)J' = vJi + wdi, we obtain:

k ',' * k ',' * k ',' *
yOni:l ug,.u’ Ug, = yOni:lugi v/ Ug, + zyorlf:].ugizl! Ug;s

where z; € {v, w} and the sum is taken over all possible choices for z; = v
or zi = w, with at least one occurrence of z; = w (thus, there are
2k+1 _ 1 many terms in the summation).
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We thus get the estimate
T (voMCyug ' u,)|
< \T(yo”f-‘zlug,-vj"u;)\ + T (vl ug 2! uy,)|

< 67(w*) + T r(yoMiey ug 2l ug,)| + 27| (vo M g 2] u ug,)|

where the summation ¥’ contains the terms with just one occurrence of
zj = w and X" is the summation of the terms that have at least 2
occurrences of z; = w. Since A is abelian, the terms ugiz{’ué’ii in a product
can be permuted arbitrarily. Thus, in each summand of " we can bring
two of the occurrences of w so that to be adjacent, i.e., of the form

Ji r* J* ith /
Y1Ug Wi ug ugw!ug yo with i # [.
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Since g; # g for all i £ |, by applying the Lemma to Q@ = Ap and the
finite set F = {puz ugp | i #j} L A= A"N M, it follows that for any
a > 0, there exists a non-zero g € P(Ap) such that

lqug, ugqlli < at(q),Vei # & € F.

Since there are 21 — (k + 1) — 1 terms in the summation ¥”, this shows
that ¥ < (2k*1 — (k + 1) — 1)ar(q), for any choice of w that has
support g satisfying above condition. Thus, if we choose o < 277726,
then we get ¥ < §7(q)/2.
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Since g; # g for all i £ |, by applying the Lemma to Q@ = Ap and the
finite set F = {puz ugp | i #j} L A= A"N M, it follows that for any
a > 0, there exists a non-zero g € P(Ap) such that

lqug, ugqlli < at(q),Vei # & € F.

Since there are 21 — (k + 1) — 1 terms in the summation ¥”, this shows
that ¥ < (2k*1 — (k + 1) — 1)ar(q), for any choice of w that has
support g satisfying above condition. Thus, if we choose o < 277726,
then we get ¥ < §7(q)/2.

Then we estimate ¥’ (one occurence of w) by taking Haar unitaries w in
Agq that tend weekly to 0, as in the proof of Th 1, Th 2, to get that

¥/ < 07(q)/2 as well. Alltogether this gives |7(yol%_,gi(t/))| < 67(u*u),
contradicting the maximality of v, thus showing that v must be a unitary.
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5. B a ll; factor: freeness relative to BN M

Theorem 5

Let M be a ll; factor and B = N C M a subfactor with NN M = C.
Given any F C M & C finite, n > 1, € > 0, there exists u € N Haar unitary
such that |7(xM_, tix;)| < e, forany 1 < k < n, xo € FU{1}, x; € F,
0<lji] <n 1<i<k
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F Cc M& (N N M) finite, any € > 0, n > 1, there exists a Haar unitary
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5. B a ll; factor: freeness relative to BN M

Let M be a ll; factor and B = N C M a subfactor with NN M = C.
Given any F C M & C finite, n > 1, € > 0, there exists u € N Haar unitary
such that |7(xM_, tix;)| < e, forany 1 < k < n, xo € FU{1}, x; € F,
0<lji|<n 1<i<k

More generally, let N C M be a subfactor with N Ay N’ N M. For any

F c M (N N M) finite, any € > 0, n > 1, there exists a Haar unitary
ue N s.t. “EN’QM(XOI_If(:]_UjiXi)”Q <eg Vi<k<n xg€FU {1}, x; € F,
O<lji|<n 1<i<k

In particular: if P C M“ is a separable von Neumann subalgebra making a
commuting square with N“’ N M“ and one denotes B; = P N (N*“' N M%),
then there exists an abelian diffuse von Neumann subalgebra By € N
such that PV By ~ P *B, (BlgBo).
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Proof. One formally proceeds exactly as in the proof of Thm 3 (when

B = A singular MASA). Thus, we let § = 2~ (""1)°z and denote

g0 =0,ex =2k e 1,k > 1. Denote W = {v € N | w* = v*v € P(N),
| Enrem (oME_ ixi) ||, < exr(v*v), V1 < k < n, xo,xk € FU{1},
X1,..,Xk—1 € F,0 < |j,‘ < n}.

Endow W with the order < in which wy < wy iff wg = wowjwy. (W, <) is
then clearly inductively ordered. Let v be a maximal element in W.
Assume 7(v*v) < 1 and denote p =1 — v*v.

21/1



Proof. One formally proceeds exactly as in the proof of Thm 3 (when

B = A singular MASA). Thus, we let § = 2~ (""1)°z and denote

g0 =0,ex =2k e 1,k > 1. Denote W = {v € N | w* = v*v € P(N),
| Enrem (oME_ ixi) ||, < exr(v*v), V1 < k < n, xo,xk € FU{1},
X1,..,Xk—1 € F,0 < |j,‘ < n}.

Endow W with the order < in which wy < wy iff wg = wowjwy. (W, <) is
then clearly inductively ordered. Let v be a maximal element in W.
Assume 7(v*v) < 1 and denote p =1 — v*v.

If w is a partial isometry in pNp with ¢ = ww* = w*w and we let
u=v—+ w, then

k j k 2 V4
Xorls:]_UJSXs = Xons:]_ VJSXS + Z@Z,‘ZOJHJ-:]_W,'J.ZL,'

where the sum is taken over all £ =1,2,... k and all i = (i1,..., i), with
1< <--<ip <k, and where w; = wt whenever v, = vt,
20, = XQVIX1 "+ Xi—1Ps Zj,i = PXi Vi1 Vi —1Xi,,—1p, for 1 <j <L,

and z;; = pX;j, Vi, 41" VkXk -
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Then the terms with ¢ > 2 occurrences of w are dealt with exactly as in

the proof of Thm 3, but using the last part of the LQ Lemma instead of
its first part (i.e., 3g € P(N) s.t. ||gzg — Envnm(2)q|l1 < e7(q), for all z
in a prescribed finite subset of M). Like in all proofs, this part only uses

the choice of support g = ww™* of the partial isometry.
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Then the terms with ¢ > 2 occurrences of w are dealt with exactly as in
the proof of Thm 3, but using the last part of the LQ Lemma instead of
its first part (i.e., 3g € P(N) s.t. ||gzg — Envnm(2)q|l1 < e7(q), for all z
in a prescribed finite subset of M). Like in all proofs, this part only uses
the choice of support g = ww™* of the partial isometry.

Dealing with the terms having ¢ = 1 occurrences of w means choosing the
“phase” w € U(gNgq) such that ||Enram(yiw®y2)||1 is small relative to the
size of g, for y; in a prescribed finite set of M © N’ N M. But this is
exactly the condition that N £ NN M.
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6.1. Applications to vanishing cohomology results

(a) Vanishing of smooth, operatorial cohomology

e Popa 1984: If M is a Ily factor (any von Neumann algebra for that
matter) normally represented on H, then any derivation 6 : M — KC(H) is
implemented by a compact operator.
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implemented by a compact operator.

e Galatan-Popa: More generally, let M be a vN algebra acting normally on
H and X a norm closed M-submodule of

sy (B(H)) :=={T € B(H) | (M)1 — xT, Tx are || |2 — || || continuous}
(the space of operators that are “smooth relative to M"). Then any
derivation § : M — X is inner.
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6.1. Applications to vanishing cohomology results

(a) Vanishing of smooth, operatorial cohomology

e Popa 1984: If M is a Ily factor (any von Neumann algebra for that
matter) normally represented on #, then any derivation 6 : M — K(H) is
implemented by a compact operator.

e Galatan-Popa: More generally, let M be a vN algebra acting normally on
H and X a norm closed M-submodule of

sy (B(H)) :=={T € B(H) | (M)1 — xT, Tx are || |2 — || || continuous}
(the space of operators that are “smooth relative to M"). Then any
derivation § : M — X is inner.

e Galatan-P 2014, answering a question of Pisier: Let My be a C*-algebra
with a faithful trace 7 and My C B(H) a faithful representation of Mp.
Let § : My — B(?) be a derivation. Assume ¢ is continuous from the unit
ball of My with the topology given by the Hilbert norm ||x|2 = 7(x*x)/2,
x € My, to B(#) with the operator norm topology. Then there exists

T € B(H) such that 6 = adT and || T < ||d]].
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(b) P-Vaes: Vanishing of Connes-Shlyakhtenko-Thom 1st

L?-cohomology

Let M be a finite vN algebra and § : M — £ = Aff(M&MP®P) a derivation,
where £ is given the bimodule structure x - -y = (x ® y°P)¢. If 0 is
continuous from M with its norm topology to £ with the measure
topology, then ¢ is inner.
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(b) P-Vaes: Vanishing of Connes-Shlyakhtenko-Thom 1st

L?-cohomology

Let M be a finite vN algebra and 6 : M — & = Aff(M&M°®P) a derivation,
where £ is given the bimodule structure x - -y = (x ® y°P)¢. If 0 is
continuous from M with its norm topology to £ with the measure
topology, then ¢ is inner.

Proof of (a) uses Theorem 1. Let us only prove that any derivation

§: M — K(L2M) is inner. Then § is automatically || ||2-|| || continuous on
(M)1 (Popa 1983). Assume first that M = L(IF2). Denote u,v € M the
canonical generators and let A= {u}"’. By (Johnson-Parrott 1974),

3K € K(L?M) such that 6(a) = Ka — aK, Ya € A. We'll show that this
implies § = adK on all M?
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If not, then may assume &(u) = 0, (5(v)(1), O> . Denote
Am = {u™}" and let 8 : Am — K(L2(Am)), b

5m(X) = pL2Am6(X)\L2Am’X € Am.

By spatiality, d,,, can all be viewed as &, : L(Z) — K((?Z), which are

uniformaly || ||2-|| || continuous on (L(Z))1. Let A(x) := Limmdm(x).
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By spatiality, d,,, can all be viewed as &, : L(Z) — K((?Z), which are
uniformaly || ||2-|| || continuous on (L(Z))1. Let A(x) := Limmdm(x).

Then A is a derivation and it is easy to see that A(x) = adpypy, (x) for
x € X(Z). In particular, A(CZ) C K so by continuity A(L(Z)) C K and
also A = adpyyz, . A contradiction.
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If not, then may assume &(u) = 0, (5(v)(1), O> . Denote
Am = {u™}" and let 8 : Am — K(L2(Am)), b

6m(X) = pL2Am6(X)\L2Am’X € Am.

By spatiality, d,,, can all be viewed as &, : L(Z) — K((?Z), which are
uniformaly || ||2-|| || continuous on (L(Z))1. Let A(x) := Limmdm(x).
Then A is a derivation and it is easy to see that A(x) = adpypy, (x) for

x € X(Z). In particular, A(CZ) C K so by continuity A(L(Z)) C K and
also A = adpyyz, . A contradiction.

All we used is that 6(A) = 0, (§(v)1,?) =1 and that U, € As.t. Upv
Haar unitary with lim,,(Unv)* = 0 in wo, Yk # 0. But this can be done in

any M, with respect to any diffuse abelian A by Thm 1 (“approximate
semigroup freeness”).
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For the proof of Part (b) (vanishing of the CST L2-cohomology), we use
Thm 5. To see this, let § : M — Aff(M®&M®°P) be a continuous
derivation. Let us first prove that if {u,},U{v} C M are free independent
and 0(up) =0, Vn, then 6(v) = 0. Indeed, if w, = uyvupv...u,v, then

d(wp) = (Zf_qu1v...uk—1vug @ Ugg1V....upv)o(v)
with the n elements in the sum X being free independent. So §(n~*w,)

= (n"Y/4X)8(v) with lim, |n=*w,|| = 0 while n=Y/4X = n¥/*(X/\/n) is
“large” on a projection close to 1, forcing 6(v) = 0 by continuity of 4.
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For the proof of Part (b) (vanishing of the CST L2-cohomology), we use
Thm 5. To see this, let § : M — Aff(M®&M®°P) be a continuous
derivation. Let us first prove that if {u,},U{v} C M are free independent
and 0(up) =0, Vn, then 6(v) = 0. Indeed, if w, = uyvupv...u,v, then

d(wp) = (Zf_qu1v...uk—1vug @ Ugg1V....upv)o(v)

with the n elements in the sum X being free independent. So §(n~*w,)
= (n"Y/4X)8(v) with lim, |n=*w,|| = 0 while n=Y/4X = n¥/*(X/\/n) is
“large” on a projection close to 1, forcing 6(v) = 0 by continuity of 4.

In general: take R C M hyperfinite with R N1 M = C (Popa 81). May
assume § = 0 on R (trivial). If v.€ U(M), then Vn, Jun, ..., un € U(R) s.t.
Ui, ..., up, v "simulate” L(F,11) (by Thm 5). By the previous argument,
d(v)=0.
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6.2. Applications to paving results

(a) P 2013: Optimal L°-paving over arbitrary MASAs

If M is a ll; factor and A C M is a MASA, then for any separable

X C M & Aand any n > 1, there exists py, ..., pn € P(A%) partition of 1
with 7(p;) = 1/n, such that ||Z;pixpi|l2 = ||x|l2/+/n, Vx € X.

This is immediate by Thm 2 (3-independence in arbitrary MASAs):
if Ag C A% is merely 2-independent to X V X* then

Ipixpill5 = T(pixpix*)

= 7(pi)T(pixx™) + 7(pix(pi — 7(pi)1)x")
— T(p,-)T(p,‘XX*) +0= T(P,’)2||X”%
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(b) Popa 2013, P-Vaes 2015: Norm paving over singular MASAs

If M is a ll; factor and A C M is a singular MASA, then for any separable
X C M & Aand any n > 1, there exists py, ..., pn € P(A%) partition of 1
with 7(p;) = 1/n, such that [|X;pixpi|| < (2v/n— 1/n)||x||, Vx € X.

This follows from Thm 3 (free independence in singular MASAs) and
Kesten's 1959 theorem stating that if vy, ...., u, are free independent Haar
unitaries in a ll; factor then |ju; + .... + up|| = 2v/n — 1.
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(b) Popa 2013, P-Vaes 2015: Norm paving over singular MASAs

If M is a ll; factor and A C M is a singular MASA, then for any separable
X C M & Aand any n > 1, there exists py, ..., pn € P(A%) partition of 1
with 7(p;i) = 1/n, such that ||X;pixpi|| < (2v/n —1/n)||x||, Vx € X.

This follows from Thm 3 (free independence in singular MASAs) and
Kesten's 1959 theorem stating that if vy, ...., u, are free independent Haar
unitaries in a ll; factor then |ju; + .... + up|| = 2v/n — 1.

To see this, assume for simplicity that X = X* is a set of unitaries. By
Thm 3 there exists a diffuse Ay C A“ free independent to X. Let
P1,-.-, Pn € Ao be a partition of 1 with projections of trace 1/n. Let

A =e?™/"and u=¥]_ A\"1p,. If v € X, then any word with
alternating letters in {v, v*} and respectively {v* | 1 < k < n— 1} has
trace 0. It is immediate to check that this implies the unitaries
{v*ukvu=" | 1 < k < n—1} generate F,_1. Thus, by Kesten, we have
|Z0_ uk—tvu= Y| = |1 4+ £ Sviuktv k| = 2¢/n — 1. But a
trivial calculation shows that ||Z7_; u* tvu=k*L|| = ||Z2_, prvpx]|-
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(c) A general paving conjecture inspired by (b) (P-Vaes 2014)
Given any sequence of finite factors with MASAs A, C M,, s.t.
dimM,, — oo, the MASA T A, = A C M =Tl,M,, has the norm-paving
property with paving size n(¢) ~ 72, i.e., there is some universal constant
C > 0 such that Yx e M© A, Ve > 0, 3p, ..., pn € P(A), with X;p; =1,
n < Ce=? and | X;pixpi|| < ¢l|x||. Moreover C = 4, i.e. n(c) < 4e~2.

29/1



6.3. P 1989-1994: Subfactor and embedding

problems

e Let M be a ll; factor, N1, N> separable finite vN algebras with a
common amenable subalgebra Q C N;. If Ny, Nb — M%), then

Ju e U(M®) s.t. NiV uNyu* ~ Ny xg Np. Thus, if Ny, N, are R¥
embeddable then Np xg Ny is R¥ embeddable.
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elet NC MC My C ... /My be a subfactor of finite index with its
Jones tower. Given any Q C M separable diffuse vN subalgebra, there
exists u € U(M) such that:

Moo == uQu*V N' N My ~ (Q @ M N My) *mam., (NN My) Also,
My := M N M, forms a Jones tower with same higher relative
commutants asthe NC M C M....
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problems

e Let M be a ll; factor, N1, N> separable finite vN algebras with a
common amenable subalgebra Q C N;. If Ny, Nb — M%), then

Ju e U(M®) s.t. NiV uNyu* ~ Ny xg Np. Thus, if Ny, N, are R¥
embeddable then Np xg Ny is R¥ embeddable.

elet NC MC My C ... /My be a subfactor of finite index with its
Jones tower. Given any Q C M separable diffuse vN subalgebra, there
exists u € U(M) such that:

Moo == uQu*V N' N My ~ (Q @ M N My) *mam., (NN My) Also,
My := M N M, forms a Jones tower with same higher relative
commutants asthe NC M C M....

e This immediately suggests a reconstruction method for subfactors

N, C M, with As-graph (so TLJ standard invariant) and index

a € [4,00). More generally, it offers you “on a plate” the appropriate
necessary and sufficient conditions (axiomatization) for a lattice of
saliciane of finite dimencional aloehrac A o he hre A. — AL A AP/



