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General theme of lectures

Given a II1 factor M, a subalgebra B ⊂ M, a finite set of “special”
elements F ⊂ M, construct elements u ∈ U(B) that are “as independent
as possible” with respect to F , i.e., words with alternating letters in
{uk | k ∈ Z, k 6= 0} and in F , should have moments close to zero,
τ(x0uk1x1uk2 ...) ≈ 0, xi ∈ F , ki 6= 0.

But the fact that xi are “constraint” to be in F and u in B may force that
only part of this is possible, resulting in a set R of “achievable goals”
(e.g., “all ki must be positive”, or “length of words must be ≤ 6”, or “all
letters xi from F within a given word must be distinct”)

This can often be viewed as an “approximate embedding” (“simulation”)
of an algebra Q, known by generators and relations, into B ⊂ M.

As it turns out, the solution to some special cases of this problem has
important applications to various areas of von Neumann algebras, such as
cohomology theory, subfactor theory, orbit equivalence, or paving problems.
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In each one of the cases when we can solve this problem, the element
u ∈ U(B) is constructed via incremental patching, a technique that’s
emblematic of “II1 factor analysis”.

Plan of lectures

1. The case B diffuse abelian: 1-independence and semigroup freeness

2. The case B an arbitrary MASA: 3-independence

3. The case B a singular MASA: complete freeness

4. The case B Cartan and F ⊂ N (B): Bernoulli-freeness

5. The case B a II1 factor: freeness relative to B ′ ∩M

6. Applications

S. Popa: A II1 factor approach to the Kadison-Singer problem, Comm.
Math. Physics. 332 (2014), 379-414 (math.OA/1303.1424).

S. Popa: Independence properties in subalgebras of ultraproduct II1
factors, JFA 266 (2014), 5818-5846 (math.OA/1308.3982)

3/1



1. Semigroup freeness when B is abelian diffuse

Lemma (local quantization)

Let M II1 factor and B ⊂ M a von Neumann subalgebra. For any finite F
in unit ball of M 	 B ∨ (B ′ ∩M), Y0 ⊂ B and any ε > 0, ∃q ∈ P(B) such
that ‖qxq‖1 < ετ(q), |τ(qy)− τ(q)τ(y)| < ετ(q), ∀x ∈ F , y ∈ Y0. If in
addition B is type II1, then same holds true ∀F ⊂ M 	 (B ′ ∩M), and q
can be taken to have scalar central trace in B.

Proof. We’ll only prove the first part. Sufficient to show the following

Fact. For any y ∈ M 	 (B ∨ B ′ ∩M) there exists a finite partition with
projections q1, ..., qm ∈ B such that ‖Σiqiyqi‖2

2 ≤ 3/4‖y‖2
2.

Indeed, because y ⊥ B ∨ (B ′ ∩M) and qi ∈ B implies
Σiqiyqi ⊥ B ∨ (B ′ ∩M) so we get the conclusion by applying the Fact
recursively n|F | times, to the elements y ∈ F and to ΣiqiBqi in lieu of B,
with n taken so that (3/4)n ≤ ε/|F |. Thus, in the end we get a partition
pi ∈ P(B) such that Σx∈F‖Σipixpi‖2

2 ≤ ε2 = ε2‖Σipi‖2
2. By Pythagora,

for “most of the i” we get ‖pixpi‖2
2. ≤ ε‖pi‖2

2, ∀x ∈ F , implying
‖pixpi‖1 ≤ ετ(pi ), ∀x ∈ F , as well.
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To prove the Fact, assume on the contrary that for any finite partition of 1
with projections qi ∈ B we have ‖Σiqiyqi‖2

2 > 3/4‖y‖2
2. Thus, if λi ∈ C

satisfy |λi | = 1, then the unitary u = Σiλiqi ∈ B satisfies

‖uyu∗ − y‖2
2 = ‖Σi 6=j(λiλj − 1)qiyqj‖2

2

= Σi 6=j |λiλj − 1|2‖qiyqj‖2
2 ≤ 4Σi 6=j‖qiyqj‖2

2

= 4‖Σi 6=jqiyqj‖2
2 = 4‖y − Σiqiyqi‖2

2 = 4‖y‖2
2 − 4‖Σiqiyqi‖2

2 < ‖y‖2
2.

Since unitaries with finite spectrum are norm dense in U(B), from first and
last term we get ‖uyu∗ − y‖2

2 ≤ ‖y‖2
2, ∀u ∈ U(B). Thus

2‖y‖2
2 − 2<τ(uyu∗y∗) ≤ ‖y‖2

2, implying that 2<τ(uyu∗y∗) ≥ ‖y‖2
2,

∀u ∈ U(B). By taking convex combinations of the elements of the form
uyu∗ over u ∈ U(B) and then taking into account that 0 belongs to the
weak closure of such elements (because L2(M 	 (B ∨ B ′ ∩M)) contains
no non-zero points fixed by AdU(B)), it follows that 0 ≥ ‖y‖2

2, a
contradiction.
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Theorem 1

Let M be a II1 factor and A ⊂ M abelian diffuse. Given any F ⊂ M finite,
any ε > 0 and n ≥ 1, there exists a Haar unitary u ∈ U(A) such that
|τ(x0Πk

i=1(uji xi ))| ≤ ε, ∀ xi ∈ F , 0 < ji ≤ n, 1 ≤ k ≤ n.

Proof. Let W denote the set of partial isometries v ∈ A satisfying
τ(vk) = 0, ∀k 6= 0, and |τ(x0Πk

i=1(v ji xi ))| ≤ ετ(v∗v), ∀ xi ∈ F ,
0 < ji ≤ n, 0k ≤ n. We endow W with the order v1 ≤ v2 if v1 = v1v∗1 v2.
(W,≤) is clearly inductively ordered. Let v ∈ W be a maximal element.
Assume v∗v 6= 1 and let p = 1− v∗v ∈ A. If w is a partial isometry in Ap
and we denote u = v + w , then uji = v ji + w ji and we have

|τ(x0Πk
i=1(uji xi ))| ≤ |τ(x0Πk

i=1(v ji xi ))|+ Σ|τ(...xi−1w ji xi ....)|

where the sum is taken over all terms that have at least one occurrence of
w ji . Since v ∈ W, we have |τ(x0Πk

i=1v ji xi )| ≤ ετ(vv∗). We will prove that
we can choose w 6= 0 so that the summation on the right hand side is
majorized by ετ(ww∗), giving

|τ(x0Πk
i=1(uji xi ))| ≤ ετ(vv∗) + ετ(ww∗) = ετ(uu∗)
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This will contradict the maximality of v , thus showing that vv∗ = 1, i.e v
is a Haar unitary in A. We construct w by first making a choice for its
support projection q = ww∗, then choosing w as an appropriate Haar
unitary in Aq. By applying the first part the Lemma to a sufficiently small
δ > 0 and the finite set X of all elements of the form
pzp − E(A′∩M)p(pzp) ∈ p(M 	 A′ ∩M)p, where z = x0Π(v ji xi ) with xi ,
ji > 0 as before, it follows that

Σ|τ(...xi−1w ji xi ....)| ≤ δKτ(q) + Σl |τ(wml z ′)|

for some z ′ ∈ A′ ∩M in a finite set (depending on F and n), some K > 0
and ml = Σl

i=1ji , with l the number (≥ 1) of occurrences of w . We take δ
sufficiently small, so that δK ≤ ε/2. Finally, since Aq contains Haar
unitaries w converging weakly to 0, we can make
Σl |τ(wml z ′)| ≤ (ε/2)τ(q) as well.
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2. Approximate 3-independence in arbitrary MASAs

Terminology

Two sets V ,W ⊂ M 	 C are n-independent if any alternating word
x1y1....xkyk , with k ≤ n and x1 ∈ V ∪ {1}, x2, .., xk ∈ V , y1, ..., yk−1 ∈W ,
yk ∈W ∪ {1}, has trace 0 (unless k = 1 and x1 = y1 = 1). An algebra
B0 ⊂ M is n-independent to V if V and B0 	 C are n-independent.

Note that 1-independence amounts to what one usually calls
τ -independence.

More generally, if P ⊂ M is a von Neumann subalgebra, then two sets
V ⊂ M 	 P, W ⊂ M 	 P are n-independent relative to P if
EP(Πk

i=1xiyi ) = 0, for all 1 ≤ k ≤ n, all x1 ∈ V ∪ {1}, xi ∈ V ,
yk ∈W ∪ {1}, yi ∈W .
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Theorem 2

Let M be a finite von Neumann algebra and A ⊂ M a MASA. Given any
finite sets F ⊂ M 	 A, Y0 ⊂ A \ C1, any n ≥ 1 and ε > 0, there exists a
Haar unitary u ∈ A such that |τ(uj0y0)| ≤ ε, |τ(Πk

j=1uji xi )| ≤ ε,
∀0 < |ji | ≤ n, 1 ≤ k ≤ 3, xi ∈ F , y0 ∈ Y0.

Equivalently: given any ‖ ‖2-separable subsets X ⊂ Mω \ Aω,
Y ⊂ Aω 	 C1, there exists a separable diffuse von Neumann subalgebra
A0 ⊂ Aω such that A0 is 3-independent to X and τ -independent to Y .

Proof. Denote W = {v ∈ A | vv∗ ∈ P(A), |τ(Πk
i=1v ji xi )| ≤ δτ(v∗v),∀1 ≤

k ≤ 3, |ji | ≤ 3, τ(vm) = 0,∀m 6= 0}. Endow W with the order ≤ in which
w1 ≤ w2 iff w1 = w2w∗1 w1. (W,≤) is then clearly inductively ordered. Let
v be a maximal element in W. Assume τ(v∗v) < 1 and denote
p = 1− v∗v . If w is a partial isometry in Ap and u = v + w , then by
using that uji = v ji + w ji and expanding x = uj1x1uj2x2...u

jk xk , k = 1, 2, 3,
as a binomial product, we get

|τ(x)| ≤ |τ(Πk
j=1v ji xj)|+ Σ|τ(...xi−1w ji xi ....)|,
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Note that for each summand for which we have 2 or 3 appearances of
non-zero powers of w in the above sums (one term for k = 2 and four
terms for k = 3), such appearances can be brought to be consecutive, i.e.
they will be of the form |τ(....w iyw j ...)|, for some i , j 6= 0, y ∈ F ⊂ M	A.

If q = ww∗, then for each one of these terms we have
|τ(....w iyw j ...)| ≤ ‖qyq‖1. By Lemma, one can choose q ∈ Ap such that
‖qyq‖1 ≤ 2−3ετ(q), ∀y ∈ pFp. It thus follows that the sum of terms
having two or more appearances of powers of w are majorized by 2−1ετ(q).

All remaining terms and the case k = 1 have just one occurrence of w j ,
j 6= 0, i.e are of the form |τ(y1w jy2)| = |τ(w jEA(qy2y1q))|, for some
y1, y2 ∈ M, 1 ≤ |j | ≤ n. There are k many such terms for each k = 1, 2, 3.

Since {wm
0 }m tends to 0 in the weak operator topology and Y ⊂ A is a

finite set, there exists n0 ≥ n such that |τ(wm
0 y)| ≤ 2−4δτ(q), for all

y ∈ Y and |m| ≥ n0. But then w = wn0
0 is still a Haar unitary and it

satisfies all the required conditions.
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3. Approximate freeness in singular MASAs

Theorem 3

Let M be a II1 factor and B = A ⊂ M a singular MASA. Given any
F ⊂ M 	 A, Y0 ⊂ A	 C1 finite, any ε > 0, n ≥ 1, there exists a Haar
unitary u ∈ A s.t. ‖EA(x0Πk

j=1uji xi )‖1 ≤ ε, |τ(y0uj0)| ≤ ε, for any
1 ≤ k ≤ n, x0 ∈ F ∪ {1}, xi ∈ F , 0 < |ji | ≤ n, y0 ∈ Y0.

Equivalently: given any ‖ ‖2-separable subsets X ⊂ Mω \ Aω and
Y ⊂ Aω 	 C1, there exists a separable diffuse von Neumann subalgebra
A0 ⊂ Aω such that A0 is free-independent to X and τ -independent to Y .

Consequently: Given any P ⊂ Mω separable vN subalgebra making a
commuting square with Aω and any A0 ⊂ Aω separable, there exists a
diffuse vN subalgebra A1 ⊂ Aω such that if we denote by A1 = P ∩ Aω,
then A1 and A0 are in tensor product and P ∨ A1 = P ∗A0 (A1 ⊗ A0).
In particular, if P ⊥ Aω then P ∨ A1 = P ∗ A1.
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Proof. Let δ = 2−(n+1)2
ε. Denote ε0 = δ, εk = 2kεk−1, k = 1, 2, ..., n. Let

W = {v ∈ A | vv∗ ∈ P(A), ‖EA(x0Πk
i=1v ji xi )‖1 ≤ εkτ(v∗v),

|τ(yv j0)| ≤ ετ(vv∗), ∀1 ≤ k ≤ n, 0 < |ji | ≤ n, y ∈ Y }.

Endow W with the order ≤ in which w1 ≤ w2 iff w1 = w2w∗1 w1. (W,≤) is
then clearly inductively ordered. Let v be a maximal element in W.
Assume τ(v∗v) < 1 and denote p = 1− v∗v .

If w is a partial isometry in Ap and u = v + w , then

x0Πk
i=1usxs = x0Πk

i=1vsxs + Σ`Σiz0,iΠ
`
j=1wij zj ,i ,

where the second sum is taken over all ` = 1, 2, . . . , k and all
i = (i1, . . . , i`), with 1 ≤ i1 < · · · < i` ≤ k , and where wij = w t whenever
vij = v t , z0,i = x0v1x1 · · · xi1−1p, zj ,i = pxij vij+1 · · · vij+1

xij+1
p, for

1 ≤ j < `, and z`,i = pxi`vi`+1 · · · vkxk .
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Thus we get

‖EA(x0Πk
i=1usxs‖1 ≤ ‖EA(x0Πk

s=1vsxs‖1 + Σ`Σiz‖EA(0,iΠ
`
j=1wij zj ,i‖1,

By applying Lemma (or even better Thm. 2) to the finite set X of all
elements of the form pzp − EAp(pzp) ∈ pMp 	 Ap, where z is of the form
zj ,i , for some i = (i1, . . . , i`), 1 ≤ j ≤ `− 1, ` ≥ 2, as well as to the set Y
of elements |EAp(pzp)| for such z , it follows that ∀α > 0, ∃q ∈ P(Ap)
such that

‖qzq − EAp(pzp)q‖
1,pMp

< ατpMp(q)

with q “almost” τ -independent to the elements EAp(pzp).
Arguing like in the proofs of Thm 1 and 2, this is used to take care of
terms in the sum with l ≥ 2 appearances of w .
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Let us now estimate the terms with ` = 1, i.e., of the form z = z0,iwiz1,i ,
where i = 1, 2, ..., k, z0,i = x0v1x1...vi−1xi−1p, z1,i = pxivi+1...vkxk and
wi = w t if vi = v t .

Note that in the above estimates we only used the fact that
w∗w = ww∗ = q and that A is a MASA, not the actual form of w , nor
the fact that A is singular. It is due to the singularity of A that we can
choose w ∈ U(Aq) so that, at the same time, we have

‖EA(((x0v1x1 . . . vj−1xj−1 − EA(x0v1x1 . . . vj−1xj−1p)wjxjvj+1 . . . vkxk)‖1

≤ εk−1τ(q)/2k ,

‖EA(x0v1x1 . . . vj−1xj−1wj(xjvj+1 . . . vkxk − EA(pxjvj+1 . . . vkxk)))‖1

≤ εk−1τ(q)/2k.

as well as wj (almost) τ -independent to a finite set.
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Indeed, this amounts to to choosing w so that ‖EA(z1w sz2)‖1 can be
made arbitrarily small relative to size τ(q), for all y1, y2 in a finite set ⊥ A
and all 0 < |s| ≤ n. But this is indeed possible because A singular means
it has no “self-intertwiners” that are orthogonal to A.

Combined with the inequalties corresponding to ` ≥ 2, this shows that
‖EA(x0Πk

i=1uixi )‖1 ≤ εkτ(uu∗), 1 ≤ k ≤ n, contradicting the maximality
of v , thus showing that v is a unitary.
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4. The case F ⊂ N (B): Bernoulli-freeness

Theorem 4

Given any free pmp action Γ y X , one can “simulate” the Bernoulli
Γ-action Γ y TΓ inside it. More precisely:

If B = L∞(X ), then for any separable Γ-invariant A1 ⊂ Bω, there exists
A0 ⊂ Bω separable diffuse such that A1, {g(A0)}g∈Γ, are multi
τ -independent. Thus, if we denote Ã = A1 ∨ ∨g∈Γg(A0) ⊂ Bω, then
Ã ' A1 ⊗ A⊗Γ

0 is Γ-invariant and its action on it is same as the product
action Γ y A1 ⊗ A⊗Γ

0 .

Proof. We assume for simplicity that H = 1. We need to prove that given
any n ≥ 1, any finite F ⊂ G , Y0 ∈ A and any δ > 0, there exists a Haar
unitary v ∈ A such that |τ(y0Πk

i=1gi (v ji ))| ≤ δ, ∀y0 ∈ Y0, 1 ≤ k ≤ n,
1 ≤ |ji | ≤ n and any distinct elements g1, ..., gk ∈ F .
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To prove this, let W := {v ∈ A | |τ(y0Πk
i=1gi (v ji ))| ≤ δτ(v∗v), y0 ∈

Y0, gi ∈ Fdistinct, 1 ≤ |ji | ≤ n, τ(vm) = 0,∀m 6= 0}, endowed with the
order ≤ in which w1 ≤ w2 iff w1 = w2w∗1 w1. (W,≤) is then clearly
inductively ordered. Let v be a maximal element in W.

Assume τ(v∗v) < 1 and denote p = 1− v∗v . If w ∈ Ap is a partial
isometry satisfying ww∗ = w∗w , τ(wm) = 0, ∀m 6= 0, and we denote
u = v + w , then by noticing that (v + w)ji = v ji + w ji , we obtain:

y0Πk
i=1ugi u

ji u∗gi = y0Πk
i=1ugi v

ji u∗gi + Σy0Πk
i=1ugi z

ji
i u∗gi ,

where zi ∈ {v ,w} and the sum is taken over all possible choices for zi = v
or zi = w , with at least one occurrence of zi = w (thus, there are
2k+1 − 1 many terms in the summation).
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We thus get the estimate

|τ(y0Πk
i=1ugi u

ji u∗gi )|

≤ |τ(y0Πk
i=1ugi v

ji u∗gi )|+ Σ|τ(y0Πk
i=1ugi z

ji
i u∗gi )|

≤ δτ(vv∗) + Σ′|τ(y0Πk
i=1ugi z

ji
i u∗gi )|+ Σ′′|τ(y0Πk

i=1ugi z
ji
i u∗gi )|

where the summation Σ′ contains the terms with just one occurrence of
zj = w and Σ′′ is the summation of the terms that have at least 2

occurrences of zj = w . Since A is abelian, the terms ugi z
ji
i u∗gi in a product

can be permuted arbitrarily. Thus, in each summand of Σ′′ we can bring
two of the occurrences of w so that to be adjacent, i.e., of the form
y1ugi w

ji u∗gi ugl w
jl u∗gl y2 with i 6= l .
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Since gi 6= gl for all i 6= l , by applying the Lemma to Q = Ap and the
finite set F = {pu∗gi ugl p | i 6= j} ⊥ A = A′ ∩M, it follows that for any
α > 0, there exists a non-zero q ∈ P(Ap) such that

‖qu∗gi ugl q‖1 < ατ(q),∀gi 6= gl ∈ F .

Since there are 2k+1 − (k + 1)− 1 terms in the summation Σ′′, this shows
that Σ′′ < (2k+1 − (k + 1)− 1)ατ(q), for any choice of w that has
support q satisfying above condition. Thus, if we choose α ≤ 2−n−2δ,
then we get Σ′′ ≤ δτ(q)/2.

Then we estimate Σ′ (one occurence of w) by taking Haar unitaries w in
Aq that tend weekly to 0, as in the proof of Th 1, Th 2, to get that
Σ′ ≤ δτ(q)/2 as well. Alltogether this gives |τ(y0Πk

i=1gi (uji ))| ≤ δτ(u∗u),
contradicting the maximality of v , thus showing that v must be a unitary.

19/1



Since gi 6= gl for all i 6= l , by applying the Lemma to Q = Ap and the
finite set F = {pu∗gi ugl p | i 6= j} ⊥ A = A′ ∩M, it follows that for any
α > 0, there exists a non-zero q ∈ P(Ap) such that

‖qu∗gi ugl q‖1 < ατ(q),∀gi 6= gl ∈ F .

Since there are 2k+1 − (k + 1)− 1 terms in the summation Σ′′, this shows
that Σ′′ < (2k+1 − (k + 1)− 1)ατ(q), for any choice of w that has
support q satisfying above condition. Thus, if we choose α ≤ 2−n−2δ,
then we get Σ′′ ≤ δτ(q)/2.

Then we estimate Σ′ (one occurence of w) by taking Haar unitaries w in
Aq that tend weekly to 0, as in the proof of Th 1, Th 2, to get that
Σ′ ≤ δτ(q)/2 as well. Alltogether this gives |τ(y0Πk

i=1gi (uji ))| ≤ δτ(u∗u),
contradicting the maximality of v , thus showing that v must be a unitary.

19/1



5. B a II1 factor: freeness relative to B ′ ∩M

Theorem 5

Let M be a II1 factor and B = N ⊂ M a subfactor with N ′ ∩M = C.
Given any F ⊂ M 	C finite, n ≥ 1, ε > 0, there exists u ∈ N Haar unitary
such that |τ(x0Πk

i=1uji xi )| ≤ ε, for any 1 ≤ k ≤ n, x0 ∈ F ∪ {1}, xi ∈ F ,
0 < |ji | ≤ n, 1 ≤ i ≤ k .

More generally, let N ⊂ M be a subfactor with N 6≺M N ′ ∩M. For any
F ⊂ M 	 (N ′ ∩M) finite, any ε > 0, n ≥ 1, there exists a Haar unitary
u ∈ N s.t. ‖EN′∩M(x0Πk

i=1uji xi )‖2 ≤ ε, ∀1 ≤ k ≤ n, x0 ∈ F ∪ {1}, xi ∈ F ,
0 < |ji | ≤ n, 1 ≤ i ≤ k .

In particular: if P ⊂ Mω is a separable von Neumann subalgebra making a
commuting square with Nω ′ ∩Mω and one denotes B1 = P ∩ (Nω ′ ∩Mω),
then there exists an abelian diffuse von Neumann subalgebra B0 ⊂ Nω

such that P ∨ B0 ' P ∗B1 (B1⊗B0).

20/1



5. B a II1 factor: freeness relative to B ′ ∩M

Theorem 5

Let M be a II1 factor and B = N ⊂ M a subfactor with N ′ ∩M = C.
Given any F ⊂ M 	C finite, n ≥ 1, ε > 0, there exists u ∈ N Haar unitary
such that |τ(x0Πk

i=1uji xi )| ≤ ε, for any 1 ≤ k ≤ n, x0 ∈ F ∪ {1}, xi ∈ F ,
0 < |ji | ≤ n, 1 ≤ i ≤ k .

More generally, let N ⊂ M be a subfactor with N 6≺M N ′ ∩M. For any
F ⊂ M 	 (N ′ ∩M) finite, any ε > 0, n ≥ 1, there exists a Haar unitary
u ∈ N s.t. ‖EN′∩M(x0Πk

i=1uji xi )‖2 ≤ ε, ∀1 ≤ k ≤ n, x0 ∈ F ∪ {1}, xi ∈ F ,
0 < |ji | ≤ n, 1 ≤ i ≤ k .

In particular: if P ⊂ Mω is a separable von Neumann subalgebra making a
commuting square with Nω ′ ∩Mω and one denotes B1 = P ∩ (Nω ′ ∩Mω),
then there exists an abelian diffuse von Neumann subalgebra B0 ⊂ Nω

such that P ∨ B0 ' P ∗B1 (B1⊗B0).

20/1



5. B a II1 factor: freeness relative to B ′ ∩M

Theorem 5

Let M be a II1 factor and B = N ⊂ M a subfactor with N ′ ∩M = C.
Given any F ⊂ M 	C finite, n ≥ 1, ε > 0, there exists u ∈ N Haar unitary
such that |τ(x0Πk

i=1uji xi )| ≤ ε, for any 1 ≤ k ≤ n, x0 ∈ F ∪ {1}, xi ∈ F ,
0 < |ji | ≤ n, 1 ≤ i ≤ k .

More generally, let N ⊂ M be a subfactor with N 6≺M N ′ ∩M. For any
F ⊂ M 	 (N ′ ∩M) finite, any ε > 0, n ≥ 1, there exists a Haar unitary
u ∈ N s.t. ‖EN′∩M(x0Πk

i=1uji xi )‖2 ≤ ε, ∀1 ≤ k ≤ n, x0 ∈ F ∪ {1}, xi ∈ F ,
0 < |ji | ≤ n, 1 ≤ i ≤ k .

In particular: if P ⊂ Mω is a separable von Neumann subalgebra making a
commuting square with Nω ′ ∩Mω and one denotes B1 = P ∩ (Nω ′ ∩Mω),
then there exists an abelian diffuse von Neumann subalgebra B0 ⊂ Nω

such that P ∨ B0 ' P ∗B1 (B1⊗B0).

20/1



Proof. One formally proceeds exactly as in the proof of Thm 3 (when
B = A singular MASA). Thus, we let δ = 2−(n+1)2

ε and denote
ε0 = δ, εk = 2k+1εk−1, k ≥ 1. Denote W = {v ∈ N | vv∗ = v∗v ∈ P(N),
‖EN′∩M(x0Πk

i=1uji xi )‖1 ≤ εkτ(v∗v), ∀1 ≤ k ≤ n, x0, xk ∈ F ∪ {1},
x1, ..., xk−1 ∈ F , 0 < |ji | ≤ n}.
Endow W with the order ≤ in which w1 ≤ w2 iff w1 = w2w∗1 w1. (W,≤) is
then clearly inductively ordered. Let v be a maximal element in W.
Assume τ(v∗v) < 1 and denote p = 1− v∗v .

If w is a partial isometry in pNp with q = ww∗ = w∗w and we let
u = v + w , then

x0Πk
s=1ujs xs = x0Πk

s=1v js xs + Σ`Σiz0,iΠ
`
j=1wij zj ,i

where the sum is taken over all ` = 1, 2, . . . , k and all i = (i1, . . . , i`), with
1 ≤ i1 < · · · < i` ≤ k , and where wij = w t whenever vij = v t ,
z0,i = x0v1x1 · · · xi1−1p, zj ,i = pxij vij+1 · · · vij+1−1xij+1−1p, for 1 ≤ j < `,
and z`,i = pxi`vi`+1 · · · vkxk .
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Then the terms with ` ≥ 2 occurrences of w are dealt with exactly as in
the proof of Thm 3, but using the last part of the LQ Lemma instead of
its first part (i.e., ∃q ∈ P(N) s.t. ‖qzq − EN′∩M(z)q‖1 ≤ ετ(q), for all z
in a prescribed finite subset of M). Like in all proofs, this part only uses
the choice of support q = ww∗ of the partial isometry.

Dealing with the terms having ` = 1 occurrences of w means choosing the
“phase” w ∈ U(qNq) such that ‖EN′∩M(y1w sy2)‖1 is small relative to the
size of q, for yi in a prescribed finite set of M 	 N ′ ∩M. But this is
exactly the condition that N 6≺ N ′ ∩M.
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6.1. Applications to vanishing cohomology results

(a) Vanishing of smooth, operatorial cohomology

• Popa 1984: If M is a II1 factor (any von Neumann algebra for that
matter) normally represented on H, then any derivation δ : M → K(H) is
implemented by a compact operator.

• Galatan-Popa: More generally, let M be a vN algebra acting normally on
H and X a norm closed M-submodule of
s∗M(B(H)) := {T ∈ B(H) | (M)1 7→ xT ,Tx are ‖ ‖2 − ‖ ‖ continuous}
(the space of operators that are “smooth relative to M”). Then any
derivation δ : M → X is inner.

• Galatan-P 2014, answering a question of Pisier: Let M0 be a C ∗-algebra
with a faithful trace τ and M0 ⊂ B(H) a faithful representation of M0.
Let δ : M0 → B(H) be a derivation. Assume δ is continuous from the unit
ball of M0 with the topology given by the Hilbert norm ‖x‖2 = τ(x∗x)1/2,
x ∈ M0, to B(H) with the operator norm topology. Then there exists
T ∈ B(H) such that δ = adT and ‖T‖ ≤ ‖δ‖.
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(b) P-Vaes: Vanishing of Connes-Shlyakhtenko-Thom 1st
L2-cohomology

Let M be a finite vN algebra and δ : M → E = Aff (M⊗Mop) a derivation,
where E is given the bimodule structure x · ξ · y = (x ⊗ yop)ξ. If δ is
continuous from M with its norm topology to E with the measure
topology, then δ is inner.

Proof of (a) uses Theorem 1. Let us only prove that any derivation
δ : M → K(L2M) is inner. Then δ is automatically ‖ ‖2-‖ ‖ continuous on
(M)1 (Popa 1983). Assume first that M = L(F2). Denote u, v ∈ M the
canonical generators and let A = {u}′′. By (Johnson-Parrott 1974),
∃K ∈ K(L2M) such that δ(a) = Ka− aK , ∀a ∈ A. We’ll show that this
implies δ = adK on all M?
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If not, then may assume δ(u) = 0, 〈δ(v)(1̂), v̂〉 = 1. Denote
Am := {umv}′′ and let δm : Am → K(L2(Am)), by

δm(x) = pL2Am
δ(x)|L2Am

, x ∈ Am.

By spatiality, δm can all be viewed as δm : L(Z)→ K(`2Z), which are
uniformaly ‖ ‖2-‖ ‖ continuous on (L(Z))1. Let ∆(x) := Limmδm(x).

Then ∆ is a derivation and it is easy to see that ∆(x) = adp`2Z+
(x) for

x ∈ λ(Z). In particular, ∆(CZ) ⊂ K so by continuity ∆(L(Z)) ⊂ K and
also ∆ = adp`2Z+

. A contradiction.

All we used is that δ(A) = 0, 〈δ(v)1̂, v̂〉 = 1 and that ∃Um ∈ A s.t. Umv
Haar unitary with limm(Umv)k = 0 in wo, ∀k 6= 0. But this can be done in
any M, with respect to any diffuse abelian A by Thm 1 (“approximate
semigroup freeness”).
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For the proof of Part (b) (vanishing of the CST L2-cohomology), we use
Thm 5. To see this, let δ : M → Aff (M⊗Mop) be a continuous
derivation. Let us first prove that if {un}n ∪ {v} ⊂ M are free independent
and δ(un) = 0, ∀n, then δ(v) = 0. Indeed, if wn = u1vu2v ...unv , then

δ(wn) = (Σn
k=1u1v ...uk−1vuk ⊗ uk+1v ....unv)δ(v)

with the n elements in the sum Σ being free independent. So δ(n−1/4wn)
= (n−1/4Σ)δ(v) with limn ‖n−1/4wn‖ = 0 while n−1/4Σ = n1/4(Σ/

√
n) is

“large” on a projection close to 1, forcing δ(v) = 0 by continuity of δ.

In general: take R ⊂ M hyperfinite with R ′ ∩M = C (Popa 81). May
assume δ = 0 on R (trivial). If v ∈ U(M), then ∀n, ∃u1, ..., un ∈ U(R) s.t.
u1, ..., un, v “simulate” L(Fn+1) (by Thm 5). By the previous argument,
δ(v) = 0.
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6.2. Applications to paving results

(a) P 2013: Optimal L2-paving over arbitrary MASAs

If M is a II1 factor and A ⊂ M is a MASA, then for any separable
X ⊂ M 	 A and any n ≥ 1, there exists p1, ..., pn ∈ P(Aω) partition of 1
with τ(pi ) = 1/n, such that ‖Σipixpi‖2 = ‖x‖2/

√
n, ∀x ∈ X .

This is immediate by Thm 2 (3-independence in arbitrary MASAs):
if A0 ⊂ Aω is merely 2-independent to X ∨ X ∗ then

‖pixpi‖2
2 = τ(pixpix

∗)

= τ(pi )τ(pixx∗) + τ(pix(pi − τ(pi )1)x∗)

= τ(pi )τ(pixx∗) + 0 = τ(pi )
2‖x‖2

2.
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(b) Popa 2013, P-Vaes 2015: Norm paving over singular MASAs

If M is a II1 factor and A ⊂ M is a singular MASA, then for any separable
X ⊂ M 	 A and any n ≥ 1, there exists p1, ..., pn ∈ P(Aω) partition of 1
with τ(pi ) = 1/n, such that ‖Σipixpi‖ ≤ (2

√
n − 1/n)‖x‖, ∀x ∈ X .

This follows from Thm 3 (free independence in singular MASAs) and
Kesten’s 1959 theorem stating that if u1, ...., un are free independent Haar
unitaries in a II1 factor then ‖u1 + ....+ un‖ = 2

√
n − 1.

To see this, assume for simplicity that X = X ∗ is a set of unitaries. By
Thm 3 there exists a diffuse A0 ⊂ Aω free independent to X . Let
p1, ..., pn ∈ A0 be a partition of 1 with projections of trace 1/n. Let
λ = e2πi/n and u = Σn

k=1λ
k−1pk . If v ∈ X , then any word with

alternating letters in {v , v∗} and respectively {uk | 1 ≤ k ≤ n − 1} has
trace 0. It is immediate to check that this implies the unitaries
{v∗ukvu−k | 1 ≤ k ≤ n − 1} generate Fn−1. Thus, by Kesten, we have
‖Σn

k=1uk−1vu−k+1‖ = ‖1 + Σn−1
k=2v∗uk−1vu−k+1‖ = 2

√
n − 1. But a

trivial calculation shows that ‖Σn
k=1uk−1vu−k+1‖ = ‖Σn

k=1pkvpk‖.
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(c) A general paving conjecture inspired by (b) (P-Vaes 2014)

Given any sequence of finite factors with MASAs Am ⊂ Mm, s.t.
dimMm →∞, the MASA ΠωAm = A ⊂ M = ΠωMm has the norm-paving
property with paving size n(ε) ∼ ε−2, i.e., there is some universal constant
C > 0 such that ∀x ∈ M 	 A, ∀ε > 0, ∃p1, ..., pn ∈ P(A), with Σipi = 1,
n ≤ Cε−2 and ‖Σipixpi‖ ≤ ε‖x‖. Moreover C = 4, i.e. n(ε) ≤ 4ε−2.
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6.3. P 1989-1994: Subfactor and embedding
problems

• Let M be a II1 factor, N1,N2 separable finite vN algebras with a
common amenable subalgebra Q ⊂ Ni . If N1,N2 ↪→ Mω, then
∃u ∈ U(Mω) s.t. N1 ∨ uN2u∗ ' N1 ∗Q N2. Thus, if N1,N2 are Rω

embeddable then N1 ∗Q N2 is Rω embeddable.

• Let N ⊂ M ⊂ M1 ⊂ ...↗ M∞ be a subfactor of finite index with its
Jones tower. Given any Q ⊂ Mω separable diffuse vN subalgebra, there
exists u ∈ U(Mω) such that:

M∞ := uQu∗ ∨ N ′ ∩M∞ ' (Q ⊗M ′ ∩M∞) ∗M′∩M∞ (N ′ ∩M∞) Also,
Mk := Mω

k ∩M∞ forms a Jones tower with same higher relative
commutants as the N ⊂ M ⊂ M1....

• This immediately suggests a reconstruction method for subfactors
Nα ⊂ Mα with A∞-graph (so TLJ standard invariant) and index
α ∈ [4,∞). More generally, it offers you “on a plate” the appropriate
necessary and sufficient conditions (axiomatization) for a lattice of
inclusions of finite dimensional algebras Ajk to be h.r.c. Ajk =M′j ∩Mk

of a Jones tower N ⊂M ⊂M1.....
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