Character rigidity for lattices in higher-rank groups

Jesse Peterson

MSJ-SI Operator Algebras and Mathematical Physics www.math.vanderbilt.edu/~peters10/ViennaLecture.pdf

8 August 2016

Characters

Definition

Let Γ be a discrete group.

A character on Γ is a function $\tau : \Gamma \to \mathbb{C}$ such that

•
$$\tau(e) = 1$$

•
$$\tau(ghg^{-1}) = \tau(h).$$

• $[\tau(g_i^{-1}g_i)]$ is non-negative definite for $g_1, \ldots, g_n \in \Gamma$.

au is extremal if it is an extreme point in the convex space of characters.

Examples

- $\pi: \Gamma \to U(n)$ irreducible, then $\tau(g) = \frac{1}{n} \operatorname{Tr}(\pi(g))$ is an extremal character. (These are almost periodic, i.e., $\{L_g(\tau) \mid g \in G\}$ is uniformly pre-compact in $\ell^{\infty}\Gamma$).
- Γ virtually abelian iff every extremal character is almost periodic. (Thoma '64).
- $\pi: \Gamma \to \mathcal{U}(M)$, *M* finite factor, $\pi(\Gamma)'' = M$, $g \mapsto \tau(\pi(g))$ is extremal.

Classification of characters

• Segal-von Neumann '50:	s.s. \mathbb{R} -Lie groups w/o compact factors.
 Kadison-Singer '52: 	connected groups.
• Thoma '64-'67:	$S_{\infty}.$
 Kirillov '65: 	GL_n , $n \ge 2$, SL_n , $n \ge 3$.
 Ovcinikov '71: 	Chevalley groups excluding SL_2 and Sp_4 .
 Skudlarek '76: 	$\mathit{GL}_\infty(\mathbb{F}).$
 Voiculescu '76: 	$U(\infty).$
• Dudko-Nessonov '05-'08:	Wreath products.
 Bekka '07: 	$SL_3(\mathbb{Z})$
• Dudko '11:	Full groups.
Dudko-Medynets '12:	Thompson's groups.
Enomoto-Izumi '13:	Unitary groups.
• P-Thom '13:	$SL_2(\mathbb{Z}[\sqrt{2}])$
• Creutz-P '13.	

Theorem (P; Conjectured by Connes, early 1980's)

Suppose G is a higher-rank simple Lie group with trivial center, and $\Gamma < G$ is a lattice, then $\Gamma < U(L\Gamma)$ is Operator Algebraic Superrigid:

• If M is a finite factor;

• $\pi: \Gamma \to \mathcal{U}(M)$ a homomorphism such that $\pi(\Gamma)'' = M$,

then either

- $\overline{\pi(\Gamma)}$ is compact (and hence M is finite dimensional);
- or π extends to an isomorphism $\tilde{\pi} : L\Gamma \to M$.

Theorem (Equivalent formulation)

G a higher-rank simple Lie group with trivial center, and $\Gamma < G$ is a lattice, then every extremal character is either almost periodic or else equals δ_e .

Theorem (Margulis '77)

Suppose G is a higher-rank simple Lie group with trivial center, and $\Gamma < G$ is a lattice, then $\Gamma < G$ is superrigid:

- If H is a simple Lie group;
- $\pi: \Gamma \to H$ is a homomorphism such that $\pi(\Gamma)$ is Zariski dense,

then either

- $\overline{\pi(\Gamma)} = H$ is compact;
- or π extends to a homomorphism $\tilde{\pi} : G \to H$.

Just infinite groups

Proof.

• If
$$\Sigma \lhd \Gamma$$
, consider $\tau(g) = 1_{\Sigma}(g) = \begin{cases} 1 & \text{if } g \in \Sigma; \\ 0 & \text{otherwise.} \end{cases}$
• Or consider $\lambda_{\Sigma} : \Gamma \to \mathcal{U}(\mathcal{L}(\Gamma/\Sigma)).$

Theorem (Margulis normal subgroup theorem '79, '80; Kazhdan '67) Irreducible lattices in higher rank groups are just infinite.

Theorem (Bader-Shalom '06, Shalom '00)

Most irreducible lattices in products of simple groups are just infinite.

Proof.

- Suppose $\Gamma \curvearrowright (X, \mu)$ ergodic p.m.p.
- Stab: $X \to \operatorname{Sub}(\Gamma)$, $\nu = \operatorname{Stab}_* \mu$ gives an invariant random subgroup.
- Consider $\tau(g) = \mathbb{P}(g \in \nu) = \int 1_{\Sigma}(g) \, \mathrm{d}\nu(\Sigma)$. (Vershik character)
- Or consider $\Gamma \to [\mathcal{R}_{\Gamma \cap X}] \subset \mathcal{U}(L(\mathcal{R}_{\Gamma \cap X})).$

Theorem (Stuck-Zimmer '94, Creutz-P '12)

For irreducible lattices in G where every factor of G is higher-rank, then every ergodic p.m.p. action on a diffuse space is free.

Kazhdan's property (T)

Definition

• Γ has property (T) if almost invariant vectors \implies invariant vectors.

- If $\pi : \Gamma \to \mathcal{U}(\mathcal{H})$, and $\xi_n \in \mathcal{H}$, $\|\xi_n\| = 1$, $\|\pi(g)\xi_n \xi_n\| \to 0$, for $g \in G$.
- Then there exists $\eta \in \mathcal{H}$, $\eta \neq 0$, such that $\pi(g)\eta = \eta$ for $g \in \Gamma$.

Kazhdan '67

- Lattices in higher-rank simple groups have property (T).
- Property (T) passes to quotients.

Amenability (Von Neumann '29)

Definition

- Γ is amenable if there is an invariant state on $\ell^{\infty}\Gamma$.
- Equivalently (Følner '55) there exists $F_n \subset \Gamma$ finite such that $\frac{|F_n \Delta gF_n|}{|F_n|} \to 0$ for all $g \in \Gamma$.

Note

• Γ is finite iff Γ is both amenable and has property (T).

- Amenable implies $\ell^2\Gamma$ has almost invariant vectors.
- Property (T) then implies $\ell^2\Gamma$ has a non-zero invariant vector.

Margulis' strategy

Theorem (Margulis normal subgroup theorem '79; Kazhdan '67)

Lattices in higher rank simple groups with trivial center are just infinite.

Outline.

- Suppose $\Sigma \lhd \Gamma$, is a non-trivial normal subgroup.
- Γ/Σ has property (T). (Kazhdan '67)
- Take *P* the minimal parabolic subgroup. Then *P* is amenable and so $\Gamma \curvearrowright G/P$ is amenable. (Zimmer '77)
 - I.e., there exists an invariant conditional expectation

 $E: L^{\infty}((G/P) \times (\Gamma/\Sigma)) \rightarrow L^{\infty}(G/P).$

• Σ acts trivially on the range $E(\ell^{\infty}(\Gamma/\Sigma))$. But $\Sigma \curvearrowright G/P$ is ergodic (Margulis factor theorem), hence $E_{|\ell^{\infty}(\Gamma/\Sigma)|}$ is an invariant mean, and so Γ/Σ is amenable.

Amenable von Neumann algebras

Definition

A von Neumann algebra $B \subset \mathcal{B}(\mathcal{H})$ is amenable (or injective) if there exists a conditional expectation $E : \mathcal{B}(\mathcal{H}) \to B$.

Theorem (Schwartz '63)

If H is an amenable group and $\sigma : H \to Aut(B)$ with B amenable, then $B^H := \{x \in B \mid \sigma_h(x) = x, h \in H\}$ is amenable.

Corollary (Zimmer '77)

If P < G is an amenable subgroup, $\Gamma < G$ a lattice, and $\pi : \Gamma \rightarrow U(\mathcal{H})$, then $\mathcal{B} = L^{\infty}(G/P; \mathcal{B}(\mathcal{H}))^{\Gamma}$ is amenable. ($\Gamma \curvearrowright \mathcal{B}(\mathcal{H})$ by conjugation).

Proof.

 $\mathcal{B} \cong L^{\infty}(G/\Gamma; \mathcal{B}(\mathcal{H}))^{P}$ for an induced action of P.

Definition

A finite factor M has property (T) if every Hilbert bimodule having almost central vectors has a non-zero central vector.

Theorem (Connes-Jones '85)

If Γ has property (T), M is a finite factor and $\pi : \Gamma \to U(M)$ such that $\pi(\Gamma)'' = M$, then M has property (T).

(If π is the left-regular representation then also the converse holds.)

Note

• A finite factor *M* is finite dimensional iff *M* is both amenable and has property (T).

Theorem

Lattices in higer rank simple groups with trivial center are OA superrigid.

Outline.

- Suppose π : Γ → U(M) is a finite factor representation which does not extend to LΓ.
- *M* has property (T). (Kazhdan '67, Connes-Jones '85)
- Take *P* the minimal parabolic subgroup. Then $\mathcal{B} = L^{\infty}(G/P; \mathcal{B}(L^2M))^{\Gamma}$ is amenable, where $\Gamma \curvearrowright \mathcal{B}(L^2M)$ as conjugation by $J\pi(\gamma)J$.
- (If π were the left-regular representation then $\mathcal{B} \cong L^{\infty}(G/P) \rtimes \Gamma$.)
- We show that $M = \mathcal{B}$ (Ergodicity type result), and so M is amenable.

Lattices in products

Theorem (P)

- G_1, G_2 compactly generated with trivial amenable radical, $G = G_1 \times G_2$,
- Γ < G a lattice,
- If $H \triangleleft G$ is any proper normal subgroup then $H \cap \Gamma = \{e\}$.

Then for any finite factor representation $\pi: \Gamma \to \mathcal{U}(M)$, $\pi(\Gamma)'' = M$,

• either M is amenable, or π extends to an isomorphism $\tilde{\pi} : L\Gamma \to M$.

- Fix Poisson boundaries $G_i \curvearrowright (B_i, \eta_i)$.
- Use $\Gamma \curvearrowright (B_1, \eta_1) \times (B_2, \eta_2)$ as a replacement for $\Gamma \curvearrowright G/P$.
- Show that if π does not extend to an isomorphism $\tilde{\pi} : L\Gamma \to M$, then $\mathcal{B} := L^{\infty}(B_1 \times B_2; \mathcal{B}(L^2M))^{\Gamma} = M$.

Lattices in products

Theorem (P)

- G_1, G_2 non-compact, $G = G_1 \times G_2$,
- $\Gamma < G$ a lattice,
- Whenever $G \curvearrowright (N, \tau)$ is ergodic, then $\Gamma \curvearrowright (N, \tau)$ is properly outer.

Then for any finite factor representation $\pi: \Gamma \to \mathcal{U}(M)$, $\pi(\Gamma)'' = M$,

• either M is amenable, or π extends to an isomorphism $\tilde{\pi} : L\Gamma \to M$.

- Fix Poisson boundaries $G_i \curvearrowright (B_i, \eta_i)$.
- Use $\Gamma \curvearrowright (B_1, \eta_1) \times (B_2, \eta_2)$ as a replacement for $\Gamma \curvearrowright G/P$.
- Show that if π does not extend to an isomorphism $\tilde{\pi} : L\Gamma \to M$, then $\mathcal{B} := L^{\infty}(B_1 \times B_2; \mathcal{B}(L^2M))^{\Gamma} = M$.

Lemma (Lebesgue density type property)

- $G = G_1 \times G_2$,
- $\Gamma < G$ an irreducible $(\overline{p_i(\Gamma)} = G_i, p_i \text{ the projection to } G_i)$ lattice,
- $G_1 \curvearrowright (B_1, \eta_1)$ the Poisson boundary action.

Then for all $E \subset B_1$, $\eta_1(E) > 0$, there exist $\gamma_n \in \Gamma$ so that $\eta_1(p_1(\gamma_n)E) \rightarrow 1$, and $p_2(\gamma_n) \rightarrow e$ in G_2 .

Proof when $G_2 = \{e\}$, and G/Γ is compact.

- There exist $g_n \in G_1$ so that $\eta_1(g_n E) \to 1$. (This is easy when considering the identification $L^{\infty}(B_1, \eta_1) = \mathrm{H}^{\infty}(G, \mu_0)$.)
- We may assume $g_n = k_n \gamma_n$ where $k_n \rightarrow k$.
- $\eta_1(\gamma_n E) \to 1.$

For general lattices use Kakutani's random ergodic theorem.

Lebesgue density/contractive automorphisms

Lemma

• $\Gamma < G_1 \times G_2$ an irreducible lattice.

- $G_i \curvearrowright (B_i, \eta_i)$ Poisson boundary.
- $\mathcal{B} = L^{\infty}(B_1 \times B_2; \mathcal{B}(L^2M))^{\Gamma}$.

If $f \in \mathcal{B} = L^{\infty}(B_1; L^{\infty}(B_2; \mathcal{B}(L^2M)))^{\Gamma}$, and f_0 is in the (SOT)-essential range of f, then there exists $\tilde{f} \in L^{\infty}(B_2; \mathcal{B}(L^2M))^{\Gamma}$, such that

$$P_{\hat{1}}f_0P_{\hat{1}}=P_{\hat{1}}\tilde{f}P_{\hat{1}}.$$

- Let $E_n \subset B_1$ be positive measure such that $f_{|E_n} \sim f_0$.
- Take $\gamma_n \in \Gamma$ so that $\eta_1(\gamma_n E_n) \to 1$ and $p_2(\gamma_n) \to e$.
- Take \tilde{f} to be any wot-cluster point of $\{\pi(\gamma_n)f\pi(\gamma_n^{-1})\}$.
- Using that $\pi(\gamma_n)P_{\hat{1}} = J\pi(\gamma_n^{-1})JP_{\hat{1}}$ check that \tilde{f} works.

Theorem (P)

- G_1, G_2 non-compact, $G = G_1 \times G_2$,
- $\Gamma < G$ a lattice,

• Whenever $G \curvearrowright (N, \tau)$ is ergodic, then $\Gamma \curvearrowright (N, \tau)$ is properly outer.

Then for any finite factor representation $\pi : \Gamma \to \mathcal{U}(M), \pi(\Gamma)'' = M$,

• either M is amenable, or π extends to an isomorphism $\tilde{\pi} : L\Gamma \to M$.

We've now reduced this theorem to showing:

Theorem (Ergodicity type result, Creutz-P '13)

 $\Gamma < G$ as above, $G_2 \curvearrowright (B_2, \eta_2)$ Poisson boundary. Then for any finite factor representation $\pi : \Gamma \to \mathcal{U}(M)$, $\pi(\Gamma)'' = M$, either π is the left regular representation or $L^{\infty}(B_2; \mathcal{B}(L^2M))^{\Gamma} = M$.

Ergodicity type results

Proof sketch.

- Suppose $\gamma_0 \in \Gamma \setminus \{e\}$, such that $\tau(\pi(\gamma_0)) \neq 0$. We need to show $\mathcal{B}_2 := L^{\infty}(\mathcal{B}_2; \mathcal{B}(L^2M))^{\Gamma} = M$.
- For each open set $O \subset G_1$ set $\mathcal{K}_O = \overline{\operatorname{co}} \{ \pi(\lambda \gamma_0 \lambda^{-1}) \mid \lambda \in p_1(\Gamma) \cap O \}$. Set $\mathcal{K} = \cap_{\{O \text{ nbhd of } e\}} \mathcal{K}_O$.
- Then α = τ(π(γ₀)) is the unique element of minimal || · ||₂ in K.
 (Convexity argument à la Popa's intertwining, etc.). This is where we use the properly outer assumption.
- For $\sigma_{\gamma_0}^0 \in \mathcal{U}(L^2(B_2))$ (the Koopman representation) we have

$$\sigma_{\gamma_0}^0\otimeslpha\sim\sum\sigma_{\gamma_0}^0\otimeslpha_i J\pi(\lambda_i\gamma_0\lambda_i^{-1})J\ \sim\sumlpha_i\sigma_{\lambda_i\gamma_0\lambda_i^{-1}}^0\otimes J\pi(\lambda_i\gamma_0\lambda_i^{-1})J\in(\mathcal{B}_2)'.$$

- Hence, for any g in the closure of the normal subgroup of Γ generated by γ_0 , we have $\sigma_g^0 \otimes 1 \in \mathcal{B}'_2$. (By hypothesis this is all of \mathcal{G}_2).
- By ergodicity of $G_2 \frown B_2$ we conclude that $\mathcal{B}_2 = M$.