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Characters

Definition

Let Γ be a discrete group.
A character on Γ is a function τ : Γ→ C such that

τ(e) = 1.

τ(ghg−1) = τ(h).

[τ(g−1
j gi )] is non-negative definite for g1, . . . , gn ∈ Γ.

τ is extremal if it is an extreme point in the convex space of characters.

Examples

π : Γ→ U(n) irreducible, then τ(g) = 1
nTr(π(g)) is an extremal char-

acter. (These are almost periodic, i.e., {Lg (τ) | g ∈ G} is uniformly
pre-compact in `∞Γ).

Γ virtually abelian iff every extremal character is almost periodic.
(Thoma ’64).

π : Γ→ U(M), M finite factor, π(Γ)′′ = M, g 7→ τ(π(g)) is extremal.
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Classification of characters

Segal-von Neumann ’50: s.s. R-Lie groups w/o compact factors.

Kadison-Singer ’52: connected groups.

Thoma ’64-’67: S∞.

Kirillov ’65: GLn, n ≥ 2, SLn, n ≥ 3.

Ovcinikov ’71: Chevalley groups excluding SL2 and Sp4.

Skudlarek ’76: GL∞(F).

Voiculescu ’76: U(∞).

Dudko-Nessonov ’05-’08: Wreath products.

Bekka ’07: SL3(Z)

Dudko ’11: Full groups.

Dudko-Medynets ’12: Thompson’s groups.

Enomoto-Izumi ’13: Unitary groups.

P-Thom ’13: SL2(Z[
√

2])

Creutz-P ’13.
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Operator Algebraic superrigidity

Theorem (P; Conjectured by Connes, early 1980’s)

Suppose G is a higher-rank simple Lie group with trivial center, and Γ < G
is a lattice, then Γ < U(LΓ) is Operator Algebraic Superrigid:

If M is a finite factor;

π : Γ→ U(M) a homomorphism such that π(Γ)′′ = M,

then either

π(Γ) is compact (and hence M is finite dimensional);

or π extends to an isomorphism π̃ : LΓ→ M.

Theorem (Equivalent formulation)

G a higher-rank simple Lie group with trivial center, and Γ < G is a lattice,
then every extremal character is either almost periodic or else equals δe .
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Margulis Superrigidity

Theorem (Margulis ’77)

Suppose G is a higher-rank simple Lie group with trivial center, and Γ < G
is a lattice, then Γ < G is superrigid:

If H is a simple Lie group;

π : Γ→ H is a homomorphism such that π(Γ) is Zariski dense,

then either

π(Γ) = H is compact;

or π extends to a homomorphism π̃ : G → H.
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Just infinite groups

OA-superrigidity
⇓

just infinite (non-trivial normal subgroups are finite index).

Proof.

If Σ C Γ, consider τ(g) = 1Σ(g) =

{
1 if g ∈ Σ;
0 otherwise.

Or consider λΣ : Γ→ U(L(Γ/Σ)).

Theorem (Margulis normal subgroup theorem ’79, ’80; Kazhdan ’67)

Irreducible lattices in higher rank groups are just infinite.

Theorem (Bader-Shalom ’06, Shalom ’00)

Most irreducible lattices in products of simple groups are just infinite.
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Free actions

OA-superrigidity
⇓

Every ergodic p.m.p. action on a diffuse space is free.

Proof.

Suppose Γ y (X , µ) ergodic p.m.p.

Stab: X → Sub(Γ), ν = Stab∗µ gives an invariant random subgroup.

Consider τ(g) = P(g ∈ ν) =
∫

1Σ(g)dν(Σ). (Vershik character)

Or consider Γ→ [RΓyX ] ⊂ U(L(RΓyX )).

Theorem (Stuck-Zimmer ’94, Creutz-P ’12)

For irreducible lattices in G where every factor of G is higher-rank, then
every ergodic p.m.p. action on a diffuse space is free.
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Kazhdan’s property (T)

Definition

Γ has property (T) if almost invariant vectors =⇒ invariant vectors.

If π : Γ → U(H), and ξn ∈ H, ‖ξn‖ = 1, ‖π(g)ξn − ξn‖ → 0, for
g ∈ G .

Then there exists η ∈ H, η 6= 0, such that π(g)η = η for g ∈ Γ.

Kazhdan ’67

Lattices in higher-rank simple groups have property (T).

Property (T) passes to quotients.
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Amenability (Von Neumann ’29)

Definition

Γ is amenable if there is an invariant state on `∞Γ.

Equivalently (Følner ’55) there exists Fn ⊂ Γ finite such that
|Fn∆gFn|
|Fn| → 0 for all g ∈ Γ.

Note

Γ is finite iff Γ is both amenable and has property (T).

Proof.

Amenable implies `2Γ has almost invariant vectors.

Property (T) then implies `2Γ has a non-zero invariant vector.
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Margulis’ strategy

Theorem (Margulis normal subgroup theorem ’79; Kazhdan ’67)

Lattices in higher rank simple groups with trivial center are just infinite.

Outline.

Suppose Σ C Γ, is a non-trivial normal subgroup.

Γ/Σ has property (T). (Kazhdan ’67)

Take P the minimal parabolic subgroup. Then P is amenable and so
Γ y G/P is amenable. (Zimmer ’77)

I.e., there exists an invariant conditional expectation

E : L∞((G/P)× (Γ/Σ))→ L∞(G/P).

Σ acts trivially on the range E (`∞(Γ/Σ)).
But Σ y G/P is ergodic (Margulis factor theorem), hence E|`∞(Γ/Σ)

is an invariant mean, and so Γ/Σ is amenable.
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Amenable von Neumann algebras

Definition

A von Neumann algebra B ⊂ B(H) is amenable (or injective) if there exists
a conditional expectation E : B(H)→ B.

Theorem (Schwartz ’63)

If H is an amenable group and σ : H → Aut(B) with B amenable, then
BH := {x ∈ B | σh(x) = x , h ∈ H} is amenable.

Corollary (Zimmer ’77)

If P < G is an amenable subgroup, Γ < G a lattice, and π : Γ → U(H),
then B = L∞(G/P;B(H))Γ is amenable. (Γ y B(H) by conjugation).

Proof.

B ∼= L∞(G/Γ;B(H))P for an induced action of P.
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Von Neumann algebras with property (T)

Definition

A finite factor M has property (T) if every Hilbert bimodule having almost
central vectors has a non-zero central vector.

Theorem (Connes-Jones ’85)

If Γ has property (T), M is a finite factor and π : Γ → U(M) such that
π(Γ)′′ = M, then M has property (T).

(If π is the left-regular representation then also the converse holds.)

Note

A finite factor M is finite dimensional iff M is both amenable and has
property (T).
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Character rigidity strategy

Theorem

Lattices in higer rank simple groups with trivial center are OA superrigid.

Outline.

Suppose π : Γ→ U(M) is a finite factor representation which does not
extend to LΓ.

M has property (T). (Kazhdan ’67, Connes-Jones ’85)

Take P the minimal parabolic subgroup. Then B =
L∞(G/P;B(L2M))Γ is amenable, where Γ y B(L2M) as conju-
gation by Jπ(γ)J.

(If π were the left-regular representation then B ∼= L∞(G/P) o Γ.)

We show that M = B (Ergodicity type result), and so M is amenable.
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Lattices in products

Theorem (P)

G1,G2 compactly generated with trivial amenable radical, G = G1×G2,

Γ < G a lattice,

If H C G is any proper normal subgroup then H ∩ Γ = {e}.

Then for any finite factor representation π : Γ→ U(M), π(Γ)′′ = M,

either M is amenable, or π extends to an isomorphism π̃ : LΓ→ M.

Proof.

Fix Poisson boundaries Gi y (Bi , ηi ).

Use Γ y (B1, η1)× (B2, η2) as a replacement for Γ y G/P.

Show that if π does not extend to an isomorphism π̃ : LΓ → M, then
B := L∞(B1 × B2;B(L2M))Γ = M.
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Lattices in products

Theorem (P)

G1,G2 non-compact, G = G1 × G2,

Γ < G a lattice,

Whenever G y (N, τ) is ergodic, then Γ y (N, τ) is properly outer.

Then for any finite factor representation π : Γ→ U(M), π(Γ)′′ = M,

either M is amenable, or π extends to an isomorphism π̃ : LΓ→ M.

Proof.

Fix Poisson boundaries Gi y (Bi , ηi ).

Use Γ y (B1, η1)× (B2, η2) as a replacement for Γ y G/P.

Show that if π does not extend to an isomorphism π̃ : LΓ → M, then
B := L∞(B1 × B2;B(L2M))Γ = M.
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Lemma (Lebesgue density type property)

G = G1 × G2,

Γ < G an irreducible (pi (Γ) = Gi , pi the projection to Gi ) lattice,

G1 y (B1, η1) the Poisson boundary action.

Then for all E ⊂ B1, η1(E ) > 0, there exist γn ∈ Γ so that η1(p1(γn)E )→
1, and p2(γn)→ e in G2.

Proof when G2 = {e}, and G/Γ is compact.

There exist gn ∈ G1 so that η1(gnE )→ 1. (This is easy when consid-
ering the identification L∞(B1, η1) = H∞(G , µ0).)

We may assume gn = knγn where kn → k .

η1(γnE )→ 1.

For general lattices use Kakutani’s random ergodic theorem.
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Lebesgue density/contractive automorphisms

Lemma

Γ < G1 × G2 an irreducible lattice.

Gi y (Bi , ηi ) Poisson boundary.

B = L∞(B1 × B2;B(L2M))Γ.

If f ∈ B = L∞(B1; L∞(B2;B(L2M)))Γ, and f0 is in the (SOT)-essential
range of f , then there exists f̃ ∈ L∞(B2;B(L2M))Γ, such that

P1̂f0P1̂ = P1̂f̃ P1̂.

Proof.

Let En ⊂ B1 be positive measure such that f|En
∼ f0.

Take γn ∈ Γ so that η1(γnEn)→ 1 and p2(γn)→ e.

Take f̃ to be any wot-cluster point of {π(γn)f π(γ−1
n )}.

Using that π(γn)P1̂ = Jπ(γ−1
n )JP1̂ check that f̃ works.
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Theorem (P)

G1,G2 non-compact, G = G1 × G2,

Γ < G a lattice,

Whenever G y (N, τ) is ergodic, then Γ y (N, τ) is properly outer.

Then for any finite factor representation π : Γ→ U(M), π(Γ)′′ = M,

either M is amenable, or π extends to an isomorphism π̃ : LΓ→ M.

We’ve now reduced this theorem to showing:

Theorem (Ergodicity type result, Creutz-P ’13)

Γ < G as above, G2 y (B2, η2) Poisson boundary. Then for any finite
factor representation π : Γ→ U(M), π(Γ)′′ = M, either π is the left regular
representation or L∞(B2;B(L2M))Γ = M.
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Ergodicity type results

Proof sketch.

Suppose γ0 ∈ Γ \ {e}, such that τ(π(γ0)) 6= 0. We need to show
B2 := L∞(B2;B(L2M))Γ = M.

For each open set O ⊂ G1 set KO = co{π(λγ0λ
−1) | λ ∈ p1(Γ) ∩ O}.

Set K = ∩{O nbhd of e}KO .

Then α = τ(π(γ0)) is the unique element of minimal ‖ · ‖2 in K.
(Convexity argument à la Popa’s intertwining, etc.). This is where we
use the properly outer assumption.

For σ0
γ0
∈ U(L2(B2)) (the Koopman representation) we have

σ0
γ0
⊗ α ∼

∑
σ0
γ0
⊗ αiJπ(λiγ0λ

−1
i )J

∼
∑

αiσ
0
λiγ0λ

−1
i
⊗ Jπ(λiγ0λ

−1
i )J ∈ (B2)′.

Hence, for any g in the closure of the normal subgroup of Γ generated
by γ0, we have σ0

g ⊗ 1 ∈ B′2. (By hypothesis this is all of G2).

By ergodicity of G2 y B2 we conclude that B2 = M.
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