Quantum groups with projections and braided quantum groups

R. Meyer¹ S. Roy^2 St.L. Woronowicz³

¹Mathematisches Institut Universität Göttingen

²School of Mathematics and Statistics Carleton University, Ottawa

> ³Wydział Fizyki Uniwersytet Warszawski

MSJ-SI "Operator Algebras and Mathematical Physics" 2016

R. Meyer, S. Roy, St.L. Woronowicz Projections and braided quantum groups

Outline

Introduction

- Quantum E(2) groups
- 2 Twisted tensor products and semidirect products
 - Twisted tensor products
 - Semidirect products
- 3 Quantum groups with projection
 - Rough ideas
 - Quantum groups and homomorphisms
 - Analysis and synthesis: multiplicative unitaries

Quantum E(2) groups

Motivation

• Semidirect products build groups out of simpler pieces.

Example

Real and complex ax + b groups $\mathbb{R} \rtimes \mathbb{R}_{>0}$, $\mathbb{C} \rtimes \mathbb{C}^{\times}$ Isometries of the plane $E(2) = \mathbb{R}^2 \times \mathbb{T}$ Poincaré group $\mathbb{R}^4 \rtimes SO(3, 1)$

Goal

- Semidirect product construction for quantum groups
- 2 Analysis which quantum groups are semidirect products
 - This should simplify the construction of quantum group deformations of semidirect product groups.

Introduction

Twisted tensor products and semidirect products Quantum groups with projection Quantum E(2) groups

Semidirect product data

- G a group
- H a group
- $\beta \text{ an action} \\ \beta \colon G \times H \to H$
 - multiplication $H \times H \rightarrow H$ is *G*-equivariant

- (A, Δ_A) a quantum group: C*-algebra A with comultiplication $\Delta_A : A \to A \otimes A$ (B, Δ_B) a quantum group Δ_{BA} a coaction $\Delta_{BA} : B \to B \otimes A$
 - Δ_B is (A, Δ_A) -equivariant

Question

Why is this wrong nonsense?

Algebras in braided tensor categories

• Quantum group representations form a monoidal category. But algebra tensor products need a braided monoidal category to permute b_1 , a_2 in

$$(a_1\otimes b_1)\cdot(a_2\otimes b_2)=(a_1a_2)\otimes(b_1b_2).$$

There is no canonical induced coaction of (A, Δ_A) on B ⊗ B unless (A, Δ_A) is a group.
 So no notion of (A, Δ_A)-equivariance for Δ_B: B → B ⊗ B.

No-Go Theorem

Tensor products of algebras do not inherit quantum group coactions except group actions.

Introduction

Twisted tensor products and semidirect products Quantum groups with projection Quantum E(2) groups

Quantum E(2) groups by Woronowicz

Quantum E(2) as a Hopf *-algebra

- A_{μ} universal *-algebra generated by unitary v, normal n with $v^*nv = \mu n$
 - Δ maps $v \mapsto v \otimes v$, $n \mapsto v \otimes n + n \otimes v^*$
 - projection to $\mathbb{C}[\mathbb{T}] = \mathbb{C}[v, v^*]$ maps $v \mapsto v$, $n \mapsto 0$

First problem: C*-algebras generated by unbounded operators

This is often hard, but easy here: Get $C_0(\mathbb{C}) \rtimes_{\alpha} \mathbb{Z}$ with $\alpha f(n) = f(\mu n)$.

Second problem: existence of coproduct

The coproduct does not exist on $C_0(\mathbb{C}) \rtimes \mathbb{Z}$! Must add relation Spectrum(n) $\subseteq \{z \in \mathbb{C} \mid |z| \in \{0\} \cup \mu^{\mathbb{Z}}\}$.

R. Meyer, S. Roy, St.L. Woronowicz Projections and braided quantum groups

Twisted tensor products and semidirect products

- The second piece (B, Δ_B) in a semidirect product is a braided quantum group:
 - $\Delta_B \colon B \to B \boxtimes B$ with a "twisted" tensor product \boxtimes .
- We proceed as follows
 - ${\scriptstyle \bullet} \,$ easy example of \boxtimes
 - ${\scriptstyle \bullet }~\boxtimes$ for two linked quantum groups
 - aside: crossed products and dual actions
 - define semidirect product data
 - build semidirect product

Twisted tensor products Semidirect products

Tensor product for circle actions

A, B C*-algebras with \mathbb{T} -actions α, β

 A_n, B_m subspaces where $\alpha_z(a_n) = z^n a_n, \ \beta_z(b_m) = z^m b_m$ ζ scalar $\zeta \in \mathbb{T}$

 $\alpha imes \beta$ induced action of $\mathbb{T} imes \mathbb{T}$ on $A \otimes B$

 $A \boxtimes_{\zeta} B$ Rieffel deformation of $A \otimes B$ with parameter ζ

$$b_m a_n = \zeta^{mn} a_n b_m$$
 $b_m \in B_m, a_n \in A_n$

Theorem

 \mathbb{T} -C*-Algebras with \boxtimes_{ζ} form a monoidal category. \boxtimes_{ζ} associative and unital with unit \mathbb{C} .

Tensor product for $\mathbb{Z}/2$ -graded C*-algebras

A, B C*-algebras with $\mathbb{Z}/2$ -gradings

- A_{\pm}, B_{\pm} subspaces where $\alpha_z(a_n) = \pm a_n$, $\beta_z(b_m) = \pm b_m$ induced $\mathbb{Z}/2 \times \mathbb{Z}/2$ -grading on $A \otimes B$
 - $A \boxtimes B$ Rieffel deformation of $A \otimes B$ for unique non-trivial bicharacter on $\mathbb{Z}/2 \times \mathbb{Z}/2$ (Koszul sign rule)

Theorem

 $\mathbb{Z}/2\text{-}graded$ C*-algebras with \boxtimes form a symmetric monoidal category.

General twisted tensor product construction

Idea of construction

- represent (C, γ, A, Δ_A) on Hilbert space \mathcal{H}
- **2** represent (D, δ, B, Δ_B) on Hilbert space \mathcal{K}
- $\textbf{3} \hspace{0.1 cm} \chi \hspace{0.1 cm} \text{gives unitary on} \hspace{0.1 cm} \mathcal{H} \otimes \mathcal{K}$
- $C \boxtimes_{\chi} D$ is the closed linear span of $(C \otimes 1) \cdot \chi(1 \otimes D) \chi^*$
- o difficult: proof that this is a C*-algebra

Quantum group crossed product

 B, Δ_B dual quantum group $(\widehat{A}, \widehat{\Delta}_A)$

 D, Δ_D also $(\widehat{A}, \widehat{\Delta}_A)$

 χ reduced multiplicative unitary $W^{\mathcal{A}} \in \mathcal{U}(\widehat{\mathcal{A}} \otimes \mathcal{A})$

 $C \boxtimes \widehat{A}$ reduced crossed product for (A, Δ_A) -coaction (C, γ)

- ${\scriptstyle \bullet}$ \boxtimes is functorial for equivariant morphisms
- $\widehat{\Delta}_A : \widehat{A} \to \widehat{A} \otimes \widehat{A}$ is \widehat{A} -equivariant if \widehat{A} coacts on $\widehat{A} \otimes \widehat{A}$ on second factor only
- $C \boxtimes (\widehat{A} \otimes \widehat{A}) \cong \widehat{A} \otimes (C \boxtimes \widehat{A})$
- $\Rightarrow \widehat{\Delta}_{A} \text{ induces } C \boxtimes \widehat{A} \to \widehat{A} \otimes (C \boxtimes \widehat{A}).$
 - This is the dual action.

It is coassociative by abstract nonsense.

Twisted tensor products Semidirect products

Yetter-Drinfeld algebra

- We must iterate \boxtimes to speak about $B \boxtimes B \boxtimes B$.
- Assume that *B* carries coactions of both *A* and \widehat{A} .
- Assume compatibility condition between the coactions of A and to make ⊠ associative:
 Yetter–Drinfeld algebra

Theorem (Vaes, Nest–Voigt)

Yetter–Drinfeld algebras over (A, Δ_A) with \boxtimes form a monoidal category.

Twisted tensor products Semidirect products

Semidirect product data

- A, B C*-algebras
 - β coaction $B \to B \otimes A$
 - \widehat{eta} coaction $B o B \otimes \widehat{A}$

 Δ_A comultiplication $A \to A \otimes A$ Δ_B comultiplication $B \to B \boxtimes B$

Assumptions

- Δ_A coassociative
- 2 β coaction
- $\ \, \mathfrak{\widehat{\beta}} \ \, \mathsf{coaction} \ \,$
- Yetter–Drinfeld compatibility between β and β

- **(3)** Δ_B equivariant for β
- **o** Δ_B equivariant for $\widehat{\beta}$
- Δ_B coassociative

Twisted tensor products Semidirect products

Circle-braided case

 $\begin{array}{l} A = \mathsf{C}(\mathbb{T}) \\ & \Delta_A \ \text{dual of usual group structure on } \mathbb{T} \\ & B \ \mathsf{C}^*\text{-algebra} \\ & \beta \ \text{coaction } B \to B \otimes A \\ & \widehat{\beta} \ \text{compose } \beta \ \text{with } A = \mathsf{C}(\mathbb{T}) \to \mathsf{C}_0(\mathbb{Z}) = \widehat{A} \\ & \text{from a bicharacter} \end{array}$

 Δ_B comultiplication $B \to B \boxtimes B$

Assumptions

- β coaction
- Δ_B equivariant for β
- Δ_B coassociative
- Podleś/cancellation conditions for $\Delta_A, \beta, \Delta_B$

Construction of the semidirect product

- The C*-algebra of the semidirect product is C = A ⊠ B. This is the crossed product of B for the Â-coaction.
- Comultiplication (cheating a bit) $A \boxtimes B \xrightarrow{id_A \boxtimes \Delta_B} A \boxtimes B \boxtimes B \xrightarrow{j_{124}} A \boxtimes B \boxtimes A \boxtimes B \cong (A \boxtimes B) \otimes (A \boxtimes B)$
- Above formula uses a Yetter–Drinfeld structure on *A*, which only exists under "regularity" assumptions on *A*.
- This assumption is avoided in our paper by a different formula.

Example: Braided SU(2) and braided free orthogonal quantum groups

- There is a braided variant of Woronowicz' quantum SU(2) for complex q, using ⊠_{q/q̃} with respect to a circle action (Kasprzak–M–R–W).
- resulting semidirect product is quantum U(2) of Zhang–Zhao.
- T-braided free orthogonal quantum groups are universal T-braided quantum groups for a finite-dimensional representation u with a given invariant vector in u ⊗ u(d) (d): shift of T-action.

Introduction Twisted tensor products and semidirect products Quantum groups with projection Analysis and synthesis: multiplicative unitaries

Question

How can we see that a C*-quantum group is a semidirect product? And if it is, how to construct the two pieces?

- We first answer this question for groups.
- This leads to the notion of a C*-quantum group with projection.
- We go back and forth between braided quantum groups and quantum groups with projection on the level of multiplicative unitaries.

Rough ideas

Quantum groups and homomorphisms Analysis and synthesis: multiplicative unitaries

Detecting semidirect product groups

Proposition

semidirect product decomposition of a group $L \equiv$ idempotent group homomorphism $p: L \rightarrow L$ (projection)

Proof.

• if
$$L = H \rtimes_{\alpha} G$$
, let $p \colon L \twoheadrightarrow G \hookrightarrow L$

•
$$G = p(L)$$

- $H \times G \rightarrow L$, $(h,g) \mapsto h \cdot g$, is homeomorphism
- read $\alpha \colon G \to \operatorname{Aut}(H)$ from product in $H \times G \cong L$

Rough ideas

Quantum groups and homomorphisms Analysis and synthesis: multiplicative unitaries

Quantum Groups with Projection

Definition (quantum group with projection)

quantum group L with idempotent homomorphism $p \colon L \to L$

Example

Many deformations of semidirect product groups have a projection:

- $U_q(2)$ by Zhang–Zhao
- $E_q(2)$ by Woronowicz
- quantum az + b by Woronowicz and Soltan
- quantum ax + b by Woronowicz–Zakrzewski

Theorem

Semidirect products admit a projection.

Rough ideas

Quantum groups and homomorphisms Analysis and synthesis: multiplicative unitaries

Quantum Group Extensions

Quantum group extensions are another construction of quantum groups out of two smaller pieces inspired by group extensions.

Example

Most quantum group extensions have no projection:

- quantum az + b groups by Baaj and Skandalis
- quantum ax + b group by Stachura
- κ-Poincaré group by Stachura

Rough ideas Quantum groups and homomorphisms Analysis and synthesis: multiplicative unitari

The Factors of a Quantum Group with Projection

Let $p: L \rightarrow L$ be an idempotent quantum group homomorphism.

Proposition There is an image quantum group G: There are quantum group homomorphisms $L \xrightarrow{\pi} G \xrightarrow{\iota} L$ with $p = \iota \circ \pi$ and $\pi \circ \iota = id_G$.

- The kernel of p should be a braided quantum group H over G.
- We expect $C^*(L) = C^*(H) \boxtimes C^*(G)$.
- This is a reduced crossed product. Landstad theory reconstructs the coefficients from a crossed product. It only works if *G* is "regular."
- We shall use another approach to quantum groups.

Rough ideas Quantum groups and homomorphisms Analysis and synthesis: multiplicative unitaries

Quantum groups and homomorphisms

Definition (Woronowicz, Sołtan)

A C*-quantum group is a C*-bialgebra (A, Δ) coming from a manageable multiplicative unitary $W \in U(\mathcal{H} \otimes \mathcal{H})$. Then $W \in U(\widehat{A} \otimes A)$.

Problem

C^{*}-quantum group theory prefers reduced over full group C^{*}-algebras. A group homomorphism $G \to H$ need not induce a Hopf *-homomorphism $C_r^*(G) \to C_r^*(H)$.

Definition (Ng, M–R–W)

quantum group homomorphism $(A, \Delta_A) \rightarrow (B, \Delta_B)$ \equiv unitary bicharacter in $\widehat{A} \otimes B$

Characterisations of quantum group homomorphisms

- unitary bicharacter in $\widehat{A} \otimes B$
- ② unitary operator on $\mathcal{H}_A\otimes\mathcal{H}_B$ with two pentagon equations
- **③** Hopf *-homomorphism $A^{u} \rightarrow B^{u}$ on universal quantum groups
- functor from A-coactions to B-coactions on C*-algebras not changing the underlying C*-algebra
- tensor functor from A-corepresentations to B-corepresentations not changing the underlying Hilbert space
- **o** coaction of *B* on *A* with a comultiplicativity property

Theorem (Tannaka–Krein)

A C^{*}-quantum group is determined uniquely up to isomorphism by its tensor category of representations with its fibre functor.

Rough ideas Quantum groups and homomorphisms Analysis and synthesis: multiplicative unitaries

Quantum group with projection

Lemma

A quantum group with projection is equivalent to unitaries $W, P \in U(\mathcal{H} \otimes \mathcal{H})$ satisfying the pentagon equations

$$\begin{split} & \mathcal{W}_{23}\mathcal{W}_{12} = \mathcal{W}_{12}\mathcal{W}_{13}\mathcal{W}_{23}, \\ & \mathcal{P}_{23}\mathcal{W}_{12} = \mathcal{W}_{12}\mathcal{P}_{13}\mathcal{P}_{23}, \\ & \mathcal{W}_{23}\mathcal{P}_{12} = \mathcal{P}_{12}\mathcal{P}_{13}\mathcal{W}_{23}, \\ & \mathcal{P}_{23}\mathcal{P}_{12} = \mathcal{P}_{12}\mathcal{P}_{13}\mathcal{P}_{23}, \end{split}$$

such that W is manageable. Then P is also manageable.

Rough ideas Quantum groups and homomorphisms Analysis and synthesis: multiplicative unitaries

Braided multiplicative unitary

Definition

Let $W \in U(\mathcal{H} \otimes \mathcal{H})$ be a manageable, multiplicative unitary. A braided multiplicative unitary over W consists of unitaries

 $U \in \mathcal{U}(\mathcal{L} \otimes \mathcal{H}), \quad \widehat{V} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{L}), \quad F \in \mathcal{U}(\mathcal{L} \otimes \mathcal{L})$

- **2** U right corepresentation of W
- U, \hat{V} Drinfeld compatible
- **5** F is $U \otimes U$ -invariant
- **o** F is $\widehat{V} \otimes \widehat{V}$ -invariant
- F satisfies braided pentagon equation

Semidirect product for braided multiplicative unitaries

Theorem

Let (U, \hat{V}, F) be a manageable braided multiplicative unitary over W. Define

$$X = W_{13}U_{23}\widehat{V}_{34}^*F_{24}\widehat{V}_{34},$$
$$P = W_{13}U_{23}$$

on $\mathcal{H} \otimes \mathcal{L} \otimes \mathcal{H} \otimes \mathcal{L}$. This is a C^{*}-quantum group with projection.

Proof.

Long direct checking, manageability is always technical. Pentagon equation for X uses all 7 conditions on (W, U, \hat{V}, F) . Better argument uses regular objects by Pinzari–Roberts.

Rough ideas Quantum groups and homomorphisms Analysis and synthesis: multiplicative unitaries

Braided multiplicative unitary from projection

Theorem

A C^{*}-quantum group (X, P) with projection on \mathcal{H} gives a manageable braided multiplicative unitary (U, \widehat{V}, F) on $\overline{\mathcal{H}} \otimes \mathcal{H}$. The C^{*}-quantum group of (P, U, \widehat{V}, F) is isomorphic to (X, P).

Proof.

The Hilbert space is enlarged to $\overline{\mathcal{H}} \otimes \mathcal{H}$ to make room for a Drinfeld compatible pair. There are explicit formulas for U, \widehat{V}, F in terms of certain canonical representations of X on $\overline{\mathcal{H}} \otimes \mathcal{H}$. Introduction Rough ideas Twisted tensor products and semidirect products Quantum groups with projection Analysis and synth

Summary

- The quantum group analogue of the semidirect product construction for groups starts with braided quantum groups.
- A semidirect product decomposition of a quantum group is the same as a projection on that quantum group.