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Boundary CFT on the half-plane x > 0 (H.K. Rehren, R.L.)
Stress-energy tensor left/right movers TL = 1

2 (T00 + T01) and
TR = 1

2 (T00 − T01) : TL = TL(t + x), TR = TR(t − x).

Boundary condition: no energy flow across the boundary:

T01(t, x = 0) = 0 ⇔ TL = TR ≡ T .

so T10 = T01, T11 = T00 are of the form

T00(t, x) = T (t+x)+T (t−x), T01(t, x) = T (t+x)−T (t−x),

i.e., bi-local expressions in terms of T
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Fig. 1: A point in the half space M+. A canonical field localized at (t, x)
is a bi-local linear combination of chiral field localized at t + x and t − x .



The chiral fields of a boundary CFT generate a net

O 7→ A+(O).

A+(O) is generated by chiral fields smeared in the variable t + x
over the interval I and in the variable t − x over the interval J,
where O = I × J, I > J, is an open double-cone in M+. So

A+(O) = A(I ) ∨ A(J) (O = I × J, I > J).

A double−cone

O = I x J
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chiral extension → boundary condition

If I 7→ B(I ) is an irreducible chiral extension of I 7→ A(I ) (possibly
non-local, but relatively local with respect to A), then the induced
net is defined by

O 7→ B ind
+ (O) := B(L) ∩ B(K )′.

Intervals for 

"induction"
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K



BCFT → non-local chiral net
A boundary CFT O 7→ B+(O) generates a chiral net I 7→ Bgen(I )
(the associated boundary net)

Bgen(I ) :=
∨

O⊂WL

B+(O) ≡ B+(WL)

WL = left wedge spanned by I

Double−cones for

"generation"

I



If B is a chiral extension of A, then

(B ind
+ )gen = B

Conversely
(Bgen

+ )ind = Bdual
+

where Bdual(O) ≡ B(O ′)′. Conclusion:

non-local chiral extensions of A↔ local extensions of A+



Classification of non-local extensions

All irreducible (non-local) extensions of nets Virc , c < 1, are
classified (Kawahigashi, Penning, Rehren, L.)

⇓

All conformal (local) Boundary CFT with c < 1 are classified

Classification by modular invariants and α-induction (D. Evans, Y.
Kawahigashi,...).



The semigroup E(A)(E. Witten, R.L.)

Let A be a local Möbius covariant net of von Neumann algebras
on R

I ⊂ R interval→ A(I )

T one-parameter unitary translation group. Then
T (t)A(I )T (−t) = A(I + t), T has positive generator P and
T (t)Ω = Ω where Ω is the vacuum vactor.

Let V be a unitary on H commuting with T . The following are
equivalent:

(i) VA(I2)V ∗ commutes with A(I1) for all intervals I1, I2 of R
such that I2 > I1 (I2 is contained in the future of I1).

(ii) VA(a,∞)V ∗ ⊂ A(a,∞) for every a ∈ R.

(iii) VA(0,∞)V ∗ ⊂ A(0,∞).



Boundary QFT models associated with semigroup elements

A local net on R, V ∈ E(A) give a local, translation covariant
QFT net AV on R

AV (O) = A(I ) ∨ AV (J)

O = I × J

Problem: find non trivial elements in the semigroup.



Inner functions

Sπ ≡ {z ∈ C : 0 < =z < 1} strip, H∞(Sπ) Hardy space.

ϕ ∈ H∞(Sπ)⇒
∃ ϕ(t) ≡ lims→1+ ϕ(t + is) a.e. on R
∃ ϕ(t + iπ) ≡ lims→π− ϕ(t + is) a.e. on R

ϕ ∈ H∞(Sπ) is an inner function if |ϕ(z)| = 1 for almost all
z ∈ ∂Sπ.

Inner functions on the circle D:

ϕ(z) = αB(z) exp

(
−
∫ π

−π

e iθ + z

e iθ − z
dµ(e iθ)

)
,

µ is a positive, Lebesgue singular measure on ∂D, α is a constant
with |α| = 1, B(z) is a Blaschke product: B(z) ≡

∏∞
n=1 Ban(z),

an ∈ D,
∑∞

n=1(1− |an|) <∞, Ba(z) = |a|
a

z−a
1−āz (Blaschke factor).



Formula, notions go to Sπ,S∞ by conformal identification:
h(z) ≡ i 1+z

1−z ,

D h−→ S∞
log−→ Sπ

Symmetric inner functions:

ϕ ∈ H∞(Sπ) inner is symmetric if ϕ(q + iπ) = ϕ̄(q), q ∈ R a.e.

Scattering functions:

A scattering function is a symmetric inner function f on Sπ s.t.
ϕ(−p) = ϕ(p).

Problem: construct QFT models from scattering function (cf.
Lechner models)



Beurling-Lax theorem (1949-1959)

S shift operator on H2(D):

Sf (z) = zf (z)

A closed S-invariant subspace K of H2(D) has the form

K = ϕH2(D), ϕ an inner function

This implies: f ∈ H2 (or f ∈ Hp, p ≥ 1) has a factorization:

f (z) = ϕ(z)ψ(z)

ϕ is inner and ψ is outer ψ(z) = exp
(

1
2π

∫ π
−π

e it+z
e it−z log |f (e it)|dt

)
Lax generalization to H2(S∞), one-param. unitary translations in
Fourier transform.



Real subspaces and inner functions (preliminaries)

H be a (complex) Hilbert space, H1 a real Hilbert subspace of H
K a selfadjoint operator on H.
Suppose that

e itKH1 ⊂ H1, ∀t ≥ 0 .

For f and its Fourier transform ϕ:

ϕ(K ) =

∫ ∞
−∞

f (t)e itKdt .

Then, if supp(f ) ⊂ R+, we have ϕ(K )H1 ⊂ H1.
K has Lebesgue spectrum, taking limits → we have

ϕ(K )H1 ⊂ H1 , ∀ϕ ∈ H∞(S∞), ϕ symmetric,

→ every symmetric inner function ϕ on S∞ gives a unitary
V = ϕ(K ) such that VH1 ⊂ H1.



Endomorphisms of standard subspaces

A standard pair of H is a pair (H,T ) such that

• H is a standard subspace,
• T is a one-par. unitary group, with positive generator P, s.t.
T (t)H ⊂ H, t ≥ 0.

Thm. Assume (H,T ) to be irreducible and let V be a unitary on
H. The following are equivalent:

(i) VH ⊂ H and V commutes with T ,

(ii) V = ψ(Q) with Q ≡ logP and ψ is the boundary value of a
symmetric inner function in H∞(Sπ).

The semigroup E(H) of endomorphisms of (H,T ) is isomorphic to
the semigroup of symmetric inner functions on the strip
0 < =z < π.

Note: Compare with the Beurling-Lax theorem.



Constructing models (E. Witten, R.L.)

A free field on R acting on the Fock space F (H).

H standard subspace of H → von Neumann algebra on F (H)

A(H) = {W (h) : h ∈ H}′′

Take H = H(0,∞).

V ∈ E(H)→ Γ(V ) ∈ E(A)

therefore

symmetric inner function→ V ∈ E(A)→ Boundary QFT net AV on M+

In particular

ϕ scattering function→ Boundary QFT



More general BQFT’s

A = AN Buchholz-Mach-Tododorv extension of U(1)-current net:

symmetric inner function Hölder continuous at 0 & V ∈ E(A)

↓

Boundary QFT net AV on M+

More models: Bischoff, Lechner, Tanimoto

Problem: Non-trivial elements of E(A) for loop group, Virasoro
models, etc.



Phase boundaries, (Bischoff, Kawahigashi, Rehren, L.

ML ≡ {(t, x) : x < 0}, MR ≡ {(t, x) : x > 0} left and right half
Minkowski plane.

A (transmissive) phase boundary is given by specifying two local
conformal nets BL and BR on M, covariantly represented on the
same Hilbert space H; BL and BR both contain a common chiral
subnet A = A+ ⊗A−. Initially BL/R is defined on ML/R

ML ⊃ O 7→ BL(O) ; MR ⊃ O 7→ BR(O) ,

yet BL/R extends on the entire M by covariance. Indeed, the chiral
nets A± on R contain the unitaries implementing the local
diffeomorphisms, and hence both nets BL and BR share the same
unitary representation of the symmetry group Diff(R)×Diff(R).



Causality requires that the algebras BL(O1) and BR(O2) commute
whenever O1 ⊂ ML and O2 ⊂ MR are spacelike separated. By
diffeomorphism covariance, BR is thus right local with respect to
BL, i.e. if O1 is spacelike to O2 and O2 is to the left of OR , then
we have [BL(O2),BR(O1)] = 0.

Given a phase boundary, we consider the von Neumann algebras
generated by BL(O) and BR(O):

D(O) ≡ BL(O) ∨ BR(O) , O ∈ K .

D is another extension of A, but D is in general non-local, but
relatively local w.r.t. A. D(O) may have non-trivial center. In the
completely rational case, A(O) ⊂ D(O) has finite Jones index, so
the center of D(O) is finite dimensional; by standard arguments,
we may cut down the center to C by a minimal projection of the
center, and we may then assume D(O) to be a factor, as we will
do for simplicity in the following.



The universal construction

A phase boundary is a transmissive boundary with chiral
observables A2D = A+ ⊗A−. The phases on both sides of the
boundary are given by a pair of Q-systems AL = (ΘL,W L,X L) and
AR = (ΘR ,W R ,XR) in the sectors of A2D, describing local 2D
extensions A2D ⊂ BL2D and A2D ⊂ BR2D.
Now consider the braided product Q-systems (Evans, Pinto)

(Θ = ΘL ◦ΘR ,W = W L×W R ,X = (1× ε±
ΘL,ΘR ×1)◦ (X L×XR))

and the corresponding extensions A2D ⊂ D±2D. The original
extensions BL2D, BR2D are intermediate

A2D ⊂ BL2D ⊂ D±2D A2D ⊂ BR2D ⊂ D±2D,

and the nets D±2D are generated by A2D and two sets of charged
fields ΨL

σ⊗τ (σ ⊗ τ ≺ ΘL) and ΨR
σ⊗τ (σ ⊗ τ ≺ ΘR), suppressing

possible multiplicity indices.



The braided product Q-system determines their commutation
relations among each other:

ΨR
σ⊗τΨL

σ′⊗τ ′ = ε±σ′⊗τ ′,σ⊗τ ·Ψ
L
σ′⊗τ ′Ψ

R
σ⊗τ .

ε−σ′⊗τ ′,σ⊗τ = 1 whenever σ′ ⊗ τ ′ is localized to the spacelike left of

σ ⊗ τ . Thus, the choice of ±-braiding ensures that BL is left-local
w.r.t. BR , as required by causality. Thus

Θ = (ΘL,W L,X L)×− (ΘR ,W R ,XR),

Universal construction:

The extension D of A defined by the above Q-system implements
a transmissive boundary condition in the sense. It is universal in
the sense that every irreducible boundary condition appears as a
representation of D.

Cf. the work of Fröhlich, Fuchs, Runkel, Schweigert (Euclidean
setting)



Kac-Wakimoto formula

Kac-Wakimoto formula (conjecture)

Let A be a conformal net, ρ representations of A, then

lim
t→0+

Tr(e−tL0,ρ)

Tr(e−tL0)
= d(ρ)

Analog of the Kac-Wakimoto formula (theorem)

ρ a representation of A:

(ξ, e−2πKρξ) = d(ρ)

where Kρ is the generator of the dilations δI and ξ is any vector
cyclic for ρ(A(I ′)) such that (ξ, ρ(·)ξ) is the vacuum state on
A(I ′).



A classification of KMS states (Camassa, Tanimoto,
Weiner, L.)

How many KMS states do there exist?

Completely rational case

Thm A completely rational: only one KMS state (geometrically
constructed) β = 2π
exp: net on R A → restriction of A to R+

exp �A(I ) = AdU(η)

η diffeomorphism, η�I = exponential

geometric KMS state on A(R) = vacuum state on A(R+) ◦ exp

ϕgeo = ω ◦ exp

Scaling with dilation, we get the geometric KMS state at any give
β > 0.



Comments

About the proof:

Essential use of the thermal completion and Jones index.

A net on R, ϕ KMS state:

In the GNS representation we apply Wiesbrock theorem

A(R+) ⊂ A(R) hsm modular inclusion→ new net Aϕ

Want to prove duality for Aϕ in the KMS state, but Aϕ satisfies
duality up to finite Jones index.

Iteration of the procedure...

Conjecture: A ⊂ B finite-index inclusion of conformal nets,
ε : B → A conditional expectation. If ϕ is a translation KMS on A
then ϕ ◦ ε is a translation KMS on B.



Non-rational case: U(1)-current model

The primary (locally normal) KMS states of the U(1)-current net
are in one-to-one correspondence with real numbers q ∈ R; each
state ϕq is uniquely determined by

ϕq (W (f )) = e iq
∫
f dx · e−

1
4
‖f ‖2

Sβ

where ‖f ‖2
Sβ

= (f ,Sβf ) and Ŝβf (p):=coth βp
2 f̂ (p).

Geometric KMS state: ϕgeo = ϕ0

Any other primary KMS state

ϕq = ϕgeo ◦ γq.

where
γq (W (f )) = e iq

∫
R fdxW (f ) .



Virasoro net: c = 1

(With c < 1 there is only one KMS state: the net is completely
rational)

Primary KMS states of the Vir1 net are in one-to-one
correspondence with positive real numbers |q| ∈ R+; each state
ϕ|q| is uniquely determined by its value on the stress-energy
tensor T :

ϕ|q| (T (f )) =

(
π

12β2
+

q2

2

)∫
f dx .

The geometric KMS state corresponds to q = 0, and the

corresponding value of the ‘energy density’ π
12β2 + q2

2 is the lowest
in the set of the KMS states.

(We construct these KMS states by composing the geometric state
with automorphisms on the larger U(1)-current net.)



Virasoro net: c > 1

There is a set of primary (locally normal) KMS states of the Virc
net with c > 1 w.r.t. translations in one-to-one correspondence
with positive real numbers |q| ∈ R+; each state ϕ|q| can be
evaluated on the stress-energy tensor

ϕ|q| (T (f )) =

(
π

12β2
+

q2

2

)∫
f dx

and the geometric KMS state corresponds to q = 1
β

√
π(c−1)

6 and
energy density πc

12β2 .

Are they all? Probably yes...

Rotation KMS states: Tanimoto’s talk



Non-equilibrium thermodynamics

The purpose of non-equilibrium thermodynamics is to study
physical systems that are not in thermodynamic equilibrium but
can be basically described by thermal equilibrium variables. It thus
deals with systems that are in some sense near equilibrium.
Although the research on non-equilibrium thermodynamics has
been effectively pursued for decades with important achievements,
the general theory still missing. The framework is even more
incomplete in the quantum case, non-equilibrium quantum
statistical mechanics.
Non-equilibrium thermodynamics deals with inhomogeneous
systems. A typical model system is given by two infinite reservoirs,
initially in equilibrium at different temperatures and different
chemical potentials, set in contact at the boundary with an energy
flux from one reservoir to the other; possibly the global system
may incorporate a probe between the two reservoirs.



Non-equilibrium steady states

KMS states:

A a C ∗-algebra, τ a one-parameter group of automorphisms of A
and B a dense ∗-subalgebra of A. A state ω of A is KMS at
inverse temperature β > 0 if

(a) FXY (t) = ω
(
X τt(Y )

)
,

(b) FXY (t + iβ) = ω
(
τt(Y )X

)
,

where A(Sβ) is the algebra of functions analytic in the strip
Sβ = {0 < =z < β}, bounded and continuous on the closure S̄β.

Non-equilibrium statistical mechanics:

A non-equilibrium steady state NESS ω of A satisfies property (a)
in the KMS condition, for all X ,Y in a dense ∗-subalgebra of B,
but not necessarily property (b). (Ruelle)

E.g. tensor product of KMS states at different temperatures.



NESS in CFT. (S. Hollands, R.L.)
Let us consider two local conformal nets BL and BR on the
Minkowski plane M and both containing the same chiral net
A = A+ ⊗A−. For the moment BL/R is completely rational, and
we use the uniqueness of the geometric KMS state later we get on
the case where chemical potentials are present.

Before contact. The two systems BL and BR are, separately, each

in a thermal equilibrium state. KMS states ϕ
L/R
βL/R

on BL/R at

inverse temperature βL/R w.r.t. τ , possibly with βL 6= βR .

The two systems BL and BR live independently in their own half
plane ML and MR and their own Hilbert space. The composite
system is described by the net on ML ∪MR given by

ML ⊃ O 7→ BL(O) , MR ⊃ O 7→ BR(O) .

The C ∗-algebra of the composite system is BL(ML)⊗BR(MR)
and the state of the system is

ϕ = ϕL
βL
|BL(ML) ⊗ ϕR

βR
|BR(MR) ;

ϕ is a stationary state, NESS but not KMS.





After contact.

At time t = 0 we put the two systems BL on ML and BR on MR in
contact through a totally transmissible phase boundary and the
time-axis the defect line. We are in the phase boundary case, with
BL and BR now nets on M acting on a common Hilbert space H.
With O1 ⊂ ML, O2 ⊂ MR double cones, the von Neumann
algebras BL(O1) and BR(O2) commute if O1 and O2 are spacelike
separated, so BL(WL) and BR(WR) commute.
We want to describe the state ψ of the global system after time
t = 0. As above, we set

D(O) ≡ BL(O) ∨ BR(O)

The origin 0 is the only t = 0 point of the defect line; the
observables localized in the causal complement WL ∪WR of the 0
thus do not feel the effect of the contact, so ψ should be a natural
state on D that satisfies

ψ|BL(WL) = ϕL
βL
|BL(WL), ψ|BR(WR) = ϕR

βR
|BR(WR) .



In particular, ψ is to be a local thermal equilibrium state on WL/R

in the sense of Buchholz.

Since BL(ML) and BR(MR) are not independent, the existence of
such state ψ is not obvious. Clearly the C ∗-algebra on H
generated by BL(WL) and BR(WR) is naturally isomorphic to
BL(WL)⊗BR(WR) (BL(WL)′′ and BR(WR)′′ are commuting
factors) and the restriction of ψ to it is the product state
ϕL
βL
|BL(WL) ⊗ ϕR

βR
|BR(WR).

Construction of the doubly scaling automorphism:
Let C be a conformal net on R. Given λ−, λ+ > 0, there exists an
automorphism α of the C ∗-algebra C(Rr {0}) or D(M̌) such that

α|C(−∞,0) = δλ− , α|C(0,∞) = δλ+ ,



Then we construct an automorphism on the C ∗-algebra
D(x ± t 6= 0)

α|D(WL) = δλL , α|D(WR) = δλR .

where δλ is the λ-dilation automorphism of A±(R).

There exists a natural state ψ ≡ ψβL,βR on D(x ± t 6= 0) such that

ψ|B(WL/R) is ϕ
L/R
βL/βR

.

The state ψ is given by ψ ≡ ϕ · αλL,λR , where ϕ is the geometric
state on D (at inverse temperature 1) and α = αλL,λR is the above
automorphism with λL = β−1

L , λR = β−1
R .

It is convenient to extend the state ψ to a state on D by the
Hahn-Banach theorem. By inserting a probe ψ the state will be
normal.



The large time limit. Waiting a large time we expect the global
system to reach a stationary state, a non equilibrium steady state.
The two nets BL and BR both contain the same net
A = A+ ⊗A−. And the chiral net A± on R contains the Virasoro
net with central charge c±. In particular BL and BR share the
same stress energy tensor.

Let ϕ+
βL

, ϕ−βR be the geometric KMS states respectively on A+ and
A− with inverse temperature βL and βR ; we define

ω ≡ ϕ+
βL
⊗ ϕ−βR · ε ,

so ω is the state on D obtained by extending ϕ+
βL
⊗ ϕ−βR from A to

D by the conditional natural expectation ε : D→ A. Clearly ω is a
stationary state, indeed:

ω is a NESS on D with β = min{βL, βR}.



We now want to show that the evolution ψ · τt of the initial state
ψ of the composite system approaches the non-equilibrium steady
state ω as t → +∞.

Note that:
ψ|D(O) = ω|D(O) if O ∈ K(V+)

Proposition

For every Z ∈ D we have:

lim
t→+∞

ψ
(
τt(Z )

)
= ω(Z ) .

Proof. Let Z ∈ D(O) with O ∈ K(M). If t > tO , we have
τt(Z ) ∈ D(V+) as said, so

ψ
(
τt(Z )

)
= ω

(
τt(Z )

)
= ω(Z ) , t > tO ,

because of the stationarity property of ω. Therefore the limit holds
true if Z belongs to the norm dense subalgebra of D generated by
the D(O)’s, O ∈ K, hence for all Z ∈ D by the density
approximation argument. �

See the picture.
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Spacetime diagram of our setup.



We now get back in the phase boundary framework, but we
suppose here that A± is the above net C generated by the
U(1)-current J± (thus BL/R is non rational with central charge
c = 1).
Given q ∈ R, the β-KMS state ϕβ,q on D with charge q is defined
by

ϕβ,q = ϕ+
β,q ⊗ ϕ

−
β,q · ε ,

where ϕ±β,q denote the state characterized by the previous lemma
and theorem on A±. ϕβ,q satisfies the β-KMS condition on D
w.r.t. the one-parameter automorphism group t 7→ τt · αt , where τ
is the time-translation one-parameter automorphism group of D
and α a one-parameter subgroup of the gauge group of D.



Similarly as above we have:

Given βL/R > 0, qL/R ∈ R, there exists a state ψ on D such that

ψ|BL(WL) = ϕβL,qL |BL(WL) , ψ|BR(WR) = ϕβR ,qR |BR(WR) .

and for every Z ∈ D we have:

lim
t→+∞

ψ
(
τt(Z )

)
= ω(Z ) .

We can explicitly compute the expected value of the asymptotic
NESS state ω on the stress energy tensor and on the current
(chemical potential enters):



Now ω = ϕ+
βL,qL

⊗ ϕ−βR ,qR · ε is a steady state is a NESS and ω is
determined uniquely by βL/R and the charges qL/R

ϕ+
βL,qL

(
J+(0)

)
= qL , ϕ−βR ,qR

(
J−(0)

)
= qR .

We also have

ϕ+
βL,qL

(
T+(0)

)
=

π

12β2
L

+
q2
L

2
, ϕ−βR ,qR

(
T−(0)

)
=

π

12β2
R

+
q2
R

2
.

In presence of chemical potentials µL/R = 1
πqL/R , the large time

limit of the two dimensional current density expectation value
(x-component of the current operator Jµ) in the state ψ is, with
Jx(t, x) = J−(t + x)− J+(t − x)

lim
t→+∞

ψ
(
Jx(t, x)

)
= ϕ−βL,qL

(
J−(0)

)
−ϕ+

βR ,qR

(
J+(0)

)
= −π(µL−µR) ,

whereas on the stress energy tensor

lim
t→+∞

ψ
(
Ttx(t, x)

)
= ϕ+

βL,qL

(
T+(0)

)
− ϕ−βR ,qR

(
T−(0)

)
=

π

12

(
β−2
L − β

−2
R

)
+
π2

2

(
µ2
L − µ2

R

)
,

(cf. Bernard-Doyon)
The above discussion could be extended to the case A± contains a
higher rank current algebra net.


	Inner functions

