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Jones index. N C M inclusion of factors.
M to be finite, namely there exists a (unique)
tracial state w = (:2,2) on M. With e the
projection onto N2, the von Neumann algebra
generated by M and e

M1 = (M,e) = J NI

is a semifinite factor (3 unbounded trace).

N C M has finite index & My is finite. The

index is defined as

M N] = w(e) !

with w also denoting the trace of Mj.

Jones thm.

M N] € {4C052%,n > 3} U [4, 0] .

A probabilistic definition of the index was given
by Pimsner and Popa through the inequality

e(z) >z, z€MT,



A= [M:N]"1 where e : M — N is the trace
preserving conditional expectation.

N C M any inclusion of factors, ¢ : M — N
normal expectation:

M : N]: defined by Popa, Kosaki (e.g. by
Pimsner-Popa inequality)
Minimal index (Hiai, L.)

M N] = irgf[/\/l N = [M: N

where ¢qg is the unique minimal conditional ex-
pectation.

Joint modular structure. Sectors. N C M
type III factors. Jys and Jp, modular conjuga-
tions of N/ and M.

Theunitary I' = JyrJ g implements a canonical
endomorphism of M into N/

v(x) = Mxl*, xr e M.




Proof. TMIT = JyJpMIpdy = Iy My C
INN Iy = N.

v depends on Jy and Jjyg only up to inners of
N; ~ is canonical as a sector of M:

The sectors of M are

Sect(M) = End(M)/Inn(M)

p,p € End(M), p ~ p/ iff there is a unitary u €
M such that p/(z) = up(z)u* for all z € M.

Sect(M) is a *-semiring

Addition (direct sum): Let p1,p> € End(M);
then p=p1 P po

. p1(z) O
p.:UE./\/l—>[ 0 polz)

naturally up to inners, thus in Sect(M).

] € Mato(M) ~ M



Composition (monoidal product). Usual com-
position of maps

p1 - p2(x) = p1(p2(x)), r € M
passes to the quotient Sect(M).

Conjugation. With p € End(M), choose a
canonical endomorphism ~, : M — p(M). Then

p=p1v

well-defines a conjugation in Sect(M). Thus
have

Yo — PP

Connes bimodules and sectors. LQ(M) IS a
normal bimodule for M

z,y €M, € € L*(M) — xty = aJy*J¢

If p € End(M) the bimodule L5(M) is L?(M)
with left-rigth actions

z,y €M, €€ L*(M) — p(x)¢y = zJy*J¢



All normal bimodules on M arise in this way
up to unitary equivalence.

Representation concepts make sense.

Bimod(M), = Sect(M)
Ind(p) = [M 1 p(M)].

Prop. p € End(M) irreducible.

Ind(p) <oco< pp>=1t & pp =t

Analytic def. of conjugate = algebraic def. of
conjugate

One may represent objects with non-integral

dimension d(p) = /Ind(p) as quantum groups,
loop groups, infinite-dimensional Lie algebras,

superselection sectors, ...




The tensor category End(M).

Tensor category = category equipped with mo-
noidal product (internal tensor product) on ob-
jects and arrows (4 natural compatibility con-
ditions).

Tensor C*-category = tensor category + ar-
rows form a Banach space with an involution
reversing directions. C* property ||[T* o T|| =

|T'||? (Doplicher, Roberts).

M an infinite factor — End(M) is a tensor C*-
category:.

Objects: = End(M)
Hom(p,p') ={a € M : ap(z) = p'(z)a Vx € M}

Composition of intertwiners (arrows). opera-
tor product



C* property. obvious
Tensor product of objects: p® p' = pp’

Tensor product of arrows: o,0’ € End(M), t €
Hom(p, o), s € Hom(o, o),

t@s=tp(s) =p(s)t e Hom(p® o, p @) .

If p is irreducible (i.e. p(M) N M = C) and has
finite index, then p is the unique sector such
that pp contains the identity sector.

p,p € End(M) are conjugate as sectors iff 3
isometries v € Hom(¢,pp) and v € Hom(e, pp)
such that

(7 ®15) - (1;®v) = 55(v) =

Y

Y

Q|-

(v ®1p) - (1,0 0) =0 p(v) =

for some d > 0.



The minimal d is the dimension d(p); it is re-
lated to the minimal index by

[M : p(M)] = d(p)?

(tensor categorical definion of the index)

d(p1 @ p2) = d(p1) + d(p2)

d(p1p2) = d(p1)d(p2)

d(p) = d(p).

Every subset of End(M) having finite-index gen-

erate (by composition, subobjects, diret sum)
a C*-tensor category with conjugates.

Example 1. (Connes) G discrete (or locally
compact) group,

7 finite-dimensional unitary rep. of G on H



A ® m acts on the left on (2(G) @ H
p ® ¢ acts on the right on 2(G) @ H

A7 ~ A (absorbing propery of \) = /2(G)®
H is a VN(G) bimodule with dimension dim¥H.

Tensor product of reps. <« tensor product of
sectors.

Embedding an abstract tensor C*-category 7T .
(Popa, Yamagami)

Every countable rigid tensor C*-category is equiv-
alent to a full sub-tensor C*-category of End(M)
for some factor M.

End(M) “universal” tensor C* tensor category




Conformal Nets

Mobius covariants nets on Sl. A (local)
Mébius covariant net A on S is a map

IeZ— A(I) C B(H)

7 = family of proper intervals of S1, that sat-
isfies:

A. Isotony. I1 C I, = A(I1) C A(Ip)
B. Locality. I1Nl», = o = [A([1), A(I>)] = {O}

C. Mobbius covariance. 3 unitary rep. U of the
Mobius group Mob on ‘H such that

U(g)A(IU(g)* = A(gl), ge Mbb, I €T

D. Positivity of the energy. Generator Lg of
rotation subgroup of U (conformal Hamilto-
nian) is positive.

E. Existence of the vacuum. 3! U-invariant
vector 2 € H (vacuum vector), and 2 is cyclic
for Viez A(I) and unique U-invariant.



Sectors of A. A representation = of A on a
Hilbert space ‘H isa map I € Z — my, with 7;
a normal representation of A(I) on B(#H) such
that

WTTA(I)Zﬂ-Ia ICT? IaiCI

7w IS MODbius covariant if there is a projective
unitary representation U; of MOb on H such
that

ma1(U(g)xzU(g)") = Ur(g)m(x)Ur(g)”
forall I e€Z, x € A(I) and g € M&b.

Every rep. on a separable Hilbert space is
equivalent to a DHR localised endomorphism,
hence we may compose them.

Localised end. naturally form a tensor C*-category

Equivalence classes of localised endoorphisms
are the sectors of A.



DHR statistics. p localized rep. in I € I, i.e.
p acts identically on each A(Iy), I C I'.

Choose p; ~ p localized in I1 C I': p1 = up(-)u*
with v € A(l). Two choices + of I DITUI;
are possible up to deformation.

pp1 = p1p gives e = u*p(u) € p?(A) (e =¢7)

€ = pi_1(€)7 1 €N,

€i€; = €¢;  if |i —j] > 2,
€€i4+1€ = €i416i6i+1
unitary rep. of By, the statistics of p.

There is an expectation ¢ : A(I) — p(A(1)).
p irreducible: statistics parameter A\, = e(e)
Ap = lﬁ:p/dDHR(p) with dpyr(p) > 0 and kp € T.

dpur(p) is the statistical dimension of p;



Index-statistics thm.

DHR dim. d(p) = \/Jones index Ind(p)

tensor category  full functor, tensor category
End. local. in I restriction End. of A(I)

Hom(p, o) = Hom(pr,07)

Local intertwiners = global intertwiners (Guido,L.)
In particular

Superselection sectors — Sect(M).

Subfactor theory contains all local information.

Index-statistics thm. gives by Jones’ thm:

d(p) € {QCOS%,R > 3} U [2, ].

02 =p1 @ - D pn irred. decomposition.

n < 3, in particular for “small’ index, statistics
is classified by the braid group rep., that is by
Jones and Kauffman knot/link invariants.




We have

4 < d(p)2 <6
= d(p)2 =5, 5.049...,5.236...,5.828...

(Rehren, L.) while Jones index values D [4, co)!.

(Locally normal) universal algebra.

A(D L c*(A)

”l lw

B(H) — B(H)

Locally norm. reps of A<« Endom. of C*(A)
J

Fusion of representations

1
End(C*(A)) is braided tensor category

canonical intertwiners ¢(p,0) : po — op

(Fredenhagen, Rehren, Schroer)



Thm. (Carpi, Conti, Weiner) If A is rational
(finitely many irr. reps, all with finite index)
then

C*(A)>2F1 o ®---& Fy

Fy, type I factors. So C*(A) is a von Neu-
mann algebra, with finite dimensional center!

Conformal spin-statistics thm. (Guido, L.)
m rep. of A, A\, DHR statistics parameter

kp = Ph(Ap) =€

hp = = spin, i.e. lowest eigenvalue of L,.

Proof. (some argument) I; = upper half-circle,
I> = right half-circle p automorphism localized
in I1 N I».

,0|A(Il,) — Araki-Connes-Haagerup unitary stan-
dard implementation V;



V1 and Vo, commute up to a phase

ViVo = pVoVi.

@ algebraic invariant & geometric invariant:
compare the two aspects. ..

Diff(S1) and the Virasoro algebra. Diff(S!) =
smooth oriented diffeomorphisms of S1. The
(complexification of) Lie algebra of Diff(S1) is
Vect(S1) (Witt algebra)

. d
[Lm,Ln] = (m —n)Lyapn, Ln= iemt&

The Virasoro algebra is the unique, non-trivial
one-dim. central extension of the Witt alg.

C
[Lm, Ln] = (m — n)Lm—I—n + E(m?) - m)5m,—n




and [Ln,c] = 0. ¢ is called central charge.

Unitary irreducible representation
of Virasoro alg. on Hilbert space H
7
Irr. family of operators L, on ‘H and c € R
with Virasoro relations and L} = L_,,.

Li,L_1,Lo = generators of complex span of
sf(2,R) (Lie algebra of Mobius group):

[L1,Lol = L1, [L_1,Lo]l = —L_1, [L1,L_1] = 2Lyg.

Lo def conformal Hamiltonian (= generator of

rotations).

Positive energy unitary rep. U of Diff(S1):
Lo>0. ThusspU C {h,h+1,h+2,---}, h > 0.
h is called lowest weight.

For every possible value of ¢ and A 3! irr. pos.
energy rep. V., of Diff(S1). Possible values



(Friedan, Qui, Shenker ‘86):

c=1— 6 or c>1
n(n+ 1)

, o _((+Dp—ng)? -1

p,q — )

4dn(n+ 1)
1<p<n-1,1<gq<n, pqgeN, (pg) ~
(n—p,n+1—¢q). All values are taken (Goddard,
Kent, Olive ‘86).

Reps. with the same ¢ have fusion (internal
tensor product).

Long standing problem: is there a relation
between Jones index discrete series and Virasoro
central charge discrete series? We shall see an
interplay below.




Conformal nets. A local conformal net A is a
local Mobius covariant net s.t. 4 proj. unitary
rep. U of Diff(S1), extending the M&bius rep.,
S.t.

U(g9)A(DU(g)* = A(gI), g€ Diff(S1),
U(g)xU(g)* =z, xc€All), g¢€ Diff([’),

Diff(I) & {4 € DIff(S1) : g(t) = ¢ Vt € I'}.

U is unique (Carpi,Weiner), hence canonical.

Virasoro nets Vir..

Vire(1) = V.(Diff(1))"”

Ve = Ve p=0 (vacuum representation).

Buchholz Shultz-Mirbach, Carpi, recently com-
pleted by Weiner:

Reps of Vir. net < Unitary reps of Virasoro. algebra




in particular V. , and V_ ;, are locally equivalent

A (local) conformal net, Haag duality implies

U(Diff(I)) C A1),

U is direct sum of reps V. ; with the same cen-
tral charge ¢: the central charge of A

A D Vir,
every local conformal net
IS an extension of a Virasoro net

On the other hand Vir. is minimal, no nontriv-
ial subnet (Carpi):

universal role of Vire

A (irred.) representation = of A on H is diffeo-
morphism covariant if 3 projective unitary rep.
Urx of Diff(S1) extending the rep. U, of M&b
S.t.

o1 (U(9)xzU(g)") = Ur(g)mr(x)Ur(g)”



Automatic diff. covariance: D'Antoni, Freden-
hagen, Koester,

Complete rationality. Problem: characterize
intrinsically a ‘“rational” net (= finitely many
irr. sectors, all with d(p) < oo)

Def. A is completely rational if

e The u-index p 4 is finite, i.e.

pa=[AE) : A(E)] < o0

E=11Uly,, 1Nnl, =, A(E) = A(E") (failure
of Haag duality for disconneted regions).

g < oo for SU(N) loop group models (F. Xu).
General theory (Kawahigashi, Miiger, L.)

The pu-index is equal to global index:

PA= D d(p;)?




sum of the indeces of all irreducible sectors

For a completely rational net:

e A is rational and the representation tensor
category is modular has non-degenerate braiding

e A(E) C A(FE) is the quantum double inclusion
of Rehren, L.

e All irreducible extensions of A have finite Jones
index (by Izumi, Popa, L.)

e A is strongly additive (Xu, L.)

A(I ~ {point}) = A(I)



Loop group and coset models. G compact
Lie group,

LG loop group, i.e. LG ={g:te St - G}
(smooth maps with pointwise multiplication),

U : LG — B(H) pos. energy unitary rep. of
LG, i.e. the action of Diff(S1) on Aut(LG) is

implements by a pos. energy rep.

Vacuum irr. reps. (pos. energy) U of LG ( O
eigenvalue of Lg) are labeled by a parameter,
the level of U. Fix a level ¢ rep. U:

A(D) ={U(g9),g € LG : g(t)=t, teTl}

is a conformal net.

H C G closed subgroup

B(I) ={U(g),ge LH: g(t) =1, teI}

conformal subnet.



C(I) = B(I)'n A(I) coset model of H C G.

Vire = coset SU(2),,—1 C SU(2)y—1 X SU(2)1

c? 1—m(£+1) (GKO, Xu, Carpi, Kawahigashi,
L.).

= Vir. is completely rational ¢ < 1
= All extensions of Vir. have finite Jones index

= Sectors of Vir. have finite index (Loke)



T he classification problem for the discrete
series (Kawahigashi, L.)

Classify conformal nets with ¢ < 1

)

Classify all irreducible extensions of Vir,

Verlinde-Rehren matrices. A rational, i.e.
finitely many irr. sectors p, = id, p1,... pn

Yi; = did;®;(e(pj, pi)"e(pir pi)™)

e non degenerate & [0|° = Y d? with o =
—1 2
2Ky~ d
\1/3
o

SST =771 =id,
STS =T1-1s7 1
52 =C,
TC = CT,

where Cj; = §;7. In our case (Vire) C =id. =
T and S generate unitary rep. of SL(2,7Z).




Modular invariants. Given a unitary, finite-
dim. rep. of SL(2,7Z), a modular invariant is a
matrix Z € Mat(Z4), Zgo = 1, s.t.

2U =UZ

e Rational net with non-degenerate braiding —
unitary rep. of SL(2,7Z) — modular invariants

e Thus (KLM): complete rational nets — mod-
ular invariants

e Capelli, Itzykson, Zuber ‘87: ADE classifica-
tion of modular invariants for Virg, ¢ <1

e Bockenhaur, Evans, Kawahigashi 2000: A C
B conformal nets, [B: A] < oo, then
a — induction — modular invariants
Zy = dimHom(a;l, o))

aFf = extension of DHR sector p of A to right/left
solitonic sector of B (Roberts, Rehren-L., Xu)



Q-systems. Recall: M factor, p € End(M)
then

Yo = PP
Converse problem: given v € End(M), when is
~ canonical?

The problem is finding a ‘square root” p.
The conjugate equations give conditions:

~ canonical with finite index

U

3 isometry T' € Hom(+,~), and a co-isometry
S € Hom(y2,7)

SS = S~(S)
S~(T) € C\{0} , ST € C\{0}

Def. A Q-system is a triple (v,71,5) where
~ € End(M), T € Hom(e,v) is an isometry,



S € Hom(~2,v) is a co-isometry satisfying the
above relations.

Thm. Q-system (~,7,S) — finite-index sub-
factor N ¢ M with v : M — N canonical en-

domorphism.

3 bijection

subfactors < Q-systems

Application 1: Quantum double (Rehren, L.),
see below.

Application 2: Duality for finite-dimensional
complex semisimple Hopf algebras (L.).

Two @Q-systems (p,7T71,S1) and (p,15,S5) are
equivalent if 3u € Hom(p, p) satisfying

T> = uTy, uS1 = Soup(u).



Equivalence of ()-systems < inner conjugacy
of subfactors.

NcCM Jones construction M S5 M

can. endomorphism
Problem: classify QQ-systems up to equivalence
when a system of endomorphisms is given and
p is a direct sum of endomorphisms in the sys-
tem.

Izumi-Kosaki cohomology for Q-systems: finite
groups.



Classification of local extensions of the Vi-
rasoro nets (Kawahigashi, L.)

e Consider the Cappelli-Itzykson-Zuber classi-
fication of the modular invariants for the Vira-
soro nets with central charge c=1—-6/m(m+
1)<1, m=2,3,4,....

e Show that each ‘type I' modular invariant
IS realized with a-induction for an extension
Vir. C M as in Bockenhauer-Evans-Kawahigashi

o Use ()-system to detect the local extension
of Vire, ¢ < 1

U
6

Classification of local conformal nets, c=1 —
m(m-1)



m Labels for Z

n (An—17 An)
4n + 1 (Agn, DQn—I—Q)
4n + 2 | (Dopy2; Agnt2)

11 (A10, E6)
12 (Eg, A12)
29 (Aoxg, Eg)
30 (Esg, Azg)

Thm. (Kawahigashi,L.) Local conformal nets
with ¢ < 1 are classified by pair of Dynkin di-

agrams A — Dy, — Egg s.t. the difference of
Coxeter numbers is 1.

Simple current extensions. The simple current
extensions of index 2

T he four exceptional cases.

(Eg, A12), (FEg, A3g) coset constructions (con-
jectuered by Bockenhauer-Evans

(Aq1g, Eg) coset construction (Koster)



One new example (Asg, Eg), most probably
not constructable as coset.

Case ¢ = 1 classified by Xu, Carpi (with a
spectral condition, probably always true)

Many new models by mirror symmetry F. Xu.




