Lecture 2

Sendai, August 2016

Operator Algebras and Conformal Field Theory

Roberto Longo

Jones index. $\mathcal{N} \subset \mathcal{M}$ inclusion of factors. \mathcal{M} to be finite, namely there exists a (unique) tracial state $\omega = (\cdot \Omega, \Omega)$ on \mathcal{M} . With *e* the projection onto $\overline{\mathcal{N}\Omega}$, the von Neumann algebra generated by \mathcal{M} and *e*

$$\mathcal{M}_1 = \langle \mathcal{M}, e \rangle = J_{\mathcal{M}} \mathcal{N}' J_{\mathcal{M}}$$

is a semifinite factor (\exists unbounded trace).

 $\mathcal{N}\subset\mathcal{M}$ has finite index $\stackrel{\text{def}}{=}\mathcal{M}_1$ is finite. The index is defined as

$$[\mathcal{M}:\mathcal{N}] = \omega(e)^{-1}$$

with ω also denoting the trace of \mathcal{M}_1 .

Jones thm.

$$\left[\mathcal{M}:\mathcal{N}\right]\in\left\{4\cos^2\frac{\pi}{n},n\geq 3\right\}\cup\left[4,\infty
ight].$$

A *probabilistic definition* of the index was given by Pimsner and Popa through the inequality

$$\varepsilon(x) \ge \lambda x, \quad x \in \mathcal{M}^+,$$

 $\lambda = [\mathcal{M} : \mathcal{N}]^{-1}$ where $\varepsilon : \mathcal{M} \to \mathcal{N}$ is the trace preserving conditional expectation.

 $\mathcal{N}\subset\mathcal{M}$ any inclusion of factors, ε : $\mathcal{M}\to\mathcal{N}$ normal expectation:

 $[\mathcal{M} : \mathcal{N}]_{\varepsilon}$ defined by Popa, Kosaki (e.g. by Pimsner-Popa inequality)

Minimal index (Hiai, L.)

$$[\mathcal{M}:\mathcal{N}] = \inf_{\varepsilon} [\mathcal{M}:\mathcal{N}]_{\varepsilon} = [\mathcal{M}:\mathcal{N}]_{\varepsilon_0}$$

where ε_0 is the unique *minimal conditional expectation*.

Joint modular structure. Sectors. $\mathcal{N} \subset \mathcal{M}$ type III factors. $J_{\mathcal{N}}$ and $J_{\mathcal{M}}$ modular conjugations of \mathcal{N} and \mathcal{M} .

The unitary $\Gamma = J_N J_M$ implements a *canonical* endomorphism of \mathcal{M} into \mathcal{N}

$$\gamma(x) = \Gamma x \Gamma^*, \qquad x \in \mathcal{M}.$$

Proof. $\Gamma \mathcal{M} \Gamma = J_{\mathcal{N}} J_{\mathcal{M}} \mathcal{M} J_{\mathcal{M}} J_{\mathcal{N}} = J_{\mathcal{N}} \mathcal{M}' J_{\mathcal{N}} \subset J_{\mathcal{N}} \mathcal{N}' J_{\mathcal{N}} = \mathcal{N}.$

 γ depends on $J_{\mathcal{N}}$ and $J_{\mathcal{M}}$ only up to inners of \mathcal{N} ; γ is canonical as a sector of \mathcal{M} :

The sectors of ${\mathcal M}$ are

 $\mathsf{Sect}(\mathcal{M}) = \mathsf{End}(\mathcal{M}) / \mathsf{Inn}(\mathcal{M})$

 $\rho, \rho' \in \operatorname{End}(\mathcal{M}), \ \rho \sim \rho' \text{ iff there is a unitary } u \in \mathcal{M}$ such that $\rho'(x) = u\rho(x)u^*$ for all $x \in \mathcal{M}$.

 $Sect(\mathcal{M})$ is a *-semiring

Addition (direct sum): Let $\rho_1, \rho_2 \in End(\mathcal{M})$; then $\rho \equiv \rho_1 \oplus \rho_2$

$$\rho: x \in \mathcal{M} \to \begin{bmatrix} \rho_1(x) & 0\\ 0 & \rho_2(x) \end{bmatrix} \in \operatorname{Mat}_2(\mathcal{M}) \simeq \mathcal{M}$$

naturally up to inners, thus in $Sect(\mathcal{M})$.

Composition (monoidal product). Usual composition of maps

$$\rho_1 \cdot \rho_2(x) = \rho_1(\rho_2(x)), \qquad x \in \mathcal{M}$$

passes to the quotient $Sect(\mathcal{M})$.

Conjugation. With $\rho \in \text{End}(\mathcal{M})$, choose a canonical endomorphism $\gamma_{\rho} : \mathcal{M} \to \rho(\mathcal{M})$. Then

$$\bar{\rho} = \rho^{-1} \cdot \gamma_{\rho}$$

well-defines a conjugation in $Sect(\mathcal{M})$. Thus have

$$\gamma_{\rho} = \rho \cdot \bar{\rho}$$

Connes bimodules and sectors. $L^2(\mathcal{M})$ is a normal bimodule for \mathcal{M}

$$x, y \in \mathcal{M}, \ \xi \in L^2(\mathcal{M}) \mapsto x\xi y \equiv xJy^*J\xi$$

If $\rho \in \text{End}(\mathcal{M})$ the bimodule $L^2_{\rho}(\mathcal{M})$ is $L^2(\mathcal{M})$ with left-rigth actions

$$x, y \in \mathcal{M}, \ \xi \in L^2(\mathcal{M}) \mapsto \rho(x)\xi y \equiv xJy^*J\xi$$

All normal bimodules on \mathcal{M} arise in this way up to unitary equivalence.

Representation concepts make sense.

 $\mathsf{Bimod}(\mathcal{M})_{/\sim} = \mathsf{Sect}(\mathcal{M})$

 $\operatorname{Ind}(\rho) \equiv [\mathcal{M} : \rho(\mathcal{M})].$

Prop. $\rho \in End(\mathcal{M})$ irreducible.

 $\operatorname{Ind}(\rho) < \infty \Leftrightarrow \rho \overline{\rho} \succ \iota \And \overline{\rho} \rho \succ \iota$

Analytic def. of conjugate = algebraic def. of conjugate

One may represent objects with <u>non-integral</u> <u>dimension</u> $d(\rho) = \sqrt{\text{Ind}(\rho)}$ as quantum groups, loop groups, infinite-dimensional Lie algebras, superselection sectors, ...

The tensor category End(M).

Tensor category = category equipped with monoidal product (internal tensor product) on objects and arrows (+ natural compatibility conditions).

Tensor C^* -category = tensor category + arrows form a Banach space with an involution reversing directions. C^* property $||T^* \circ T|| = ||T||^2$ (Doplicher, Roberts).

 \mathcal{M} an infinite factor $\rightarrow \operatorname{End}(M)$ is a *tensor* C^* -*category*:

Objects: = End(M)

 $\operatorname{Hom}(\rho, \rho') \equiv \{a \in M : a\rho(x) = \rho'(x)a \ \forall x \in M\}$

Composition of intertwiners (arrows): operator product

C^* property: obvious

Tensor product of objects: $\rho \otimes \rho' = \rho \rho'$

Tensor product of arrows: $\sigma, \sigma' \in \text{End}(M), t \in \text{Hom}(\rho, \rho'), s \in \text{Hom}(\sigma, \sigma'),$

$$t \otimes s \equiv t\rho(s) = \rho'(s)t \in \operatorname{Hom}(\rho \otimes \sigma, \rho' \otimes \sigma')$$
.

If ρ is irreducible (i.e. $\rho(M)' \cap M = \mathbb{C}$) and has finite index, then $\overline{\rho}$ is the unique sector such that $\rho\overline{\rho}$ contains the identity sector.

 $\rho, \overline{\rho} \in \text{End}(M)$ are conjugate as sectors iff \exists isometries $v \in \text{Hom}(\iota, \rho\overline{\rho})$ and $\overline{v} \in \text{Hom}(\iota, \overline{\rho}\rho)$ such that

$$egin{aligned} &(ar v^*\otimes 1_{ar
ho})\cdot(1_{ar
ho}\otimes v)\equivar v^*ar
ho(v)=rac{1}{d},\ &(v^*\otimes 1_
ho)\cdot(1_
ho\otimesar v)\equiv v^*
ho(ar v)\equivrac{1}{d}, \end{aligned}$$

for some d > 0.

The minimal d is the dimension $d(\rho)$; it is related to the minimal index by

$$[M : \rho(M)] = d(\rho)^2$$

(tensor categorical definion of the index)

 $d(\rho_1 \oplus \rho_2) = d(\rho_1) + d(\rho_2)$

$$d(\rho_1 \rho_2) = d(\rho_1) d(\rho_2)$$

 $d(\bar{\rho}) = d(\rho).$

Every subset of End(M) having finite-index generate (by composition, subobjects, diret sum) a C^* -tensor category with conjugates.

Example 1. (Connes) G discrete (or locally compact) group,

 π finite-dimensional unitary rep. of G on ${\mathcal H}$

 $\lambda\otimes\pi$ acts on the left on $\ell^2(G)\otimes\mathcal{H}$

 $\rho \otimes \iota$ acts on the right on $\ell^2(G) \otimes \mathcal{H}$

 $\lambda \otimes \pi \sim \lambda$ (absorbing property of λ) $\implies \ell^2(G) \otimes \mathcal{H}$ is a vN(G) bimodule with dimension dim \mathcal{H} .

Tensor product of reps. \leftrightarrow tensor product of sectors.

Embedding an abstract tensor C^* -category \mathcal{T} . (Popa, Yamagami)

Every countable rigid tensor C^* -category is equivalent to a full sub-tensor C^* -category of End(\mathcal{M}) for some factor \mathcal{M} .

 $End(\mathcal{M})$ "universal" tensor C^* tensor category

Conformal Nets

Möbius covariants nets on S^1 . A (local) *Möbius covariant net* A on S^1 is a map

 $I \in \mathcal{I} \to \mathcal{A}(I) \subset B(\mathcal{H})$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

A. Isotony. $I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$

B. Locality. $I_1 \cap I_2 = \emptyset \Longrightarrow [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$

C. *Möbius covariance*. \exists unitary rep. U of the Möbius group Möb on \mathcal{H} such that

 $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), g \in \mathsf{M\"ob}, I \in \mathcal{I}.$

D. Positivity of the energy. Generator L_0 of rotation subgroup of U (conformal Hamiltonian) is positive.

E. Existence of the vacuum. $\exists ! U$ -invariant vector $\Omega \in \mathcal{H}$ (vacuum vector), and Ω is cyclic for $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I)$ and unique U-invariant.

Sectors of \mathcal{A} . A representation π of \mathcal{A} on a Hilbert space \mathcal{H} is a map $I \in \mathcal{I} \mapsto \pi_I$, with π_I a normal representation of $\mathcal{A}(I)$ on $B(\mathcal{H})$ such that

$$\pi_{\widetilde{I}} \upharpoonright \mathcal{A}(I) = \pi_I, \quad I \subset \widetilde{I}, \quad I, \widetilde{I} \subset \mathcal{I} \;.$$

 π is Möbius *covariant* if there is a projective unitary representation U_{π} of Möb on $\mathcal H$ such that

 $\pi_{qI}(U(g)xU(g)^*) = U_{\pi}(g)\pi_I(x)U_{\pi}(g)^*$

for all $I \in \mathcal{I}$, $x \in \mathcal{A}(I)$ and $g \in M\"ob$.

Every rep. on a separable Hilbert space is equivalent to a DHR localised endomorphism, hence we may compose them.

Localised end. naturally form a tensor C^* -category

Equivalence classes of localised endoorphisms are the *sectors* of A.

DHR statistics. ρ localized rep. in $I \in \mathcal{K}$, i.e. ρ acts identically on each $\mathcal{A}(I_1)$, $I_1 \subset I'$.

Choose $\rho_1 \sim \rho$ localized in $I_1 \subset I'$: $\rho_1 = u\rho(\cdot)u^*$ with $u \in \mathcal{A}(\tilde{I})$. Two choices \pm of $\tilde{I} \supset I \cup I_1$ are possible up to deformation.

 $\rho \rho_{1} = \rho_{1} \rho \text{ gives } \epsilon = u^{*} \rho(u) \in \rho^{2}(\mathcal{A})' \ (\epsilon^{+*} = \epsilon^{-})$ $\epsilon_{i} \equiv \rho^{i-1}(\epsilon), \ i \in \mathbb{N},$ $\begin{cases} \epsilon_{i} \epsilon_{j} = \epsilon_{j} \epsilon_{i} & \text{if } |i-j| \geq 2, \\ \epsilon_{i} \epsilon_{i+1} \epsilon_{i} = \epsilon_{i+1} \epsilon_{i} \epsilon_{i+1} \end{cases}$

unitary rep. of \mathbb{B}_{∞} , the *statistics* of ρ .

There is an expectation $\varepsilon : \mathcal{A}(I) \to \rho(\mathcal{A}(I))$.

 ρ irreducible: statistics parameter $\lambda_{\rho} = \varepsilon(\epsilon)$

 $\lambda_{\rho} = \kappa_{\rho}/d_{\mathsf{DHR}}(\rho)$ with $d_{\mathsf{DHR}}(\rho) > 0$ and $\kappa_{\rho} \in \mathbb{T}$.

 $d_{\mathsf{DHR}}(\rho)$ is the statistical dimension of ρ ;

Index-statistics thm.

DHR dim. $d(\rho) = \sqrt{\text{Jones index Ind}(\rho)}$

tensor category $\xrightarrow{\text{full functor}}$ tensor category End. local. in I restriction End. of $\mathcal{A}(I)$

 $\operatorname{Hom}(\rho,\sigma) = \operatorname{Hom}(\rho_I,\sigma_I)$

Local intertwiners = global intertwiners (Guido,L.) In particular

Superselection sectors $\longrightarrow \text{Sect}(\mathcal{M})$.

Subfactor theory contains all local information.

Index-statistics thm. gives by Jones' thm:

$$d(
ho) \in \{2\cosrac{\pi}{n}, n \geq 3\} \cup [2,\infty].$$

 $\rho^2 = \rho_1 \oplus \cdots \oplus \rho_n$ irred. decomposition.

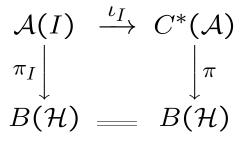
 $n \leq 3$, in particular for "small" index, statistics is <u>classified</u> by the braid group rep., that is by Jones and Kauffman knot/link invariants. We have

$$4 < d(\rho)^2 < 6$$

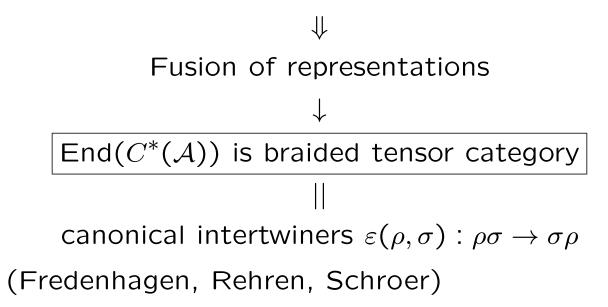
 $\Rightarrow d(\rho)^2 = 5, 5.049..., 5.236..., 5.828...$

(Rehren, L.) while Jones index values $\supset [4, \infty)!$.

(Locally normal) universal algebra.



Locally norm. reps of $\mathcal{A} \leftrightarrow$ Endom. of $C^*(\mathcal{A})$



Thm. (Carpi, Conti, Weiner) If \mathcal{A} is rational (finitely many irr. reps, all with finite index) then

$$C^*(\mathcal{A}) \simeq F_1 \oplus F_2 \oplus \cdots \oplus F_n$$

 F_k type I_∞ factors. So $C^*(\mathcal{A})$ is a von Neumann algebra, with finite dimensional center!

Conformal spin-statistics thm. (Guido, L.) π rep. of A, λ_{ρ} DHR statistics parameter

$$\kappa_{\rho} \equiv \mathsf{ph}(\lambda_{\rho}) = e^{2\pi i h_{\rho}}$$

 $h_{\rho} = = spin$, i.e. lowest eigenvalue of L_{ρ} .

Proof. (some argument) I_1 = upper half-circle, I_2 = right half-circle ρ automorphism localized in $I_1 \cap I_2$.

 $\rho|_{\mathcal{A}(I_i)} \rightarrow \text{Araki-Connes-Haagerup}$ unitary standard implementation V_i

 V_1 and V_2 commute up to a phase

$$V_1V_2 = \mu V_2V_1.$$

 μ algebraic invariant & geometric invariant: compare the two aspects. . .

Diff(S¹) and the Virasoro algebra. Diff(S^1) = smooth oriented diffeomorphisms of S^1 . The (complexification of) Lie algebra of Diff(S^1) is Vect(S^1) (Witt algebra)

$$[L_m, L_n] = (m - n)L_{m+n}, \quad L_n = ie^{int} \frac{\mathrm{d}}{\mathrm{d}t}$$

The *Virasoro algebra* is the unique, non-trivial one-dim. central extension of the Witt alg.

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m, -n}$$

and $[L_n, c] = 0$. c is called *central charge*.

Unitary irreducible representation of Virasoro alg. on Hilbert space \mathcal{H} \updownarrow Irr. family of operators L_n on \mathcal{H} and $c \in \mathbb{R}$

with Virasoro relations and $L_n^* = L_{-n}$.

 $L_1, L_{-1}, L_0 =$ generators of complex span of $s\ell(2,\mathbb{R})$ (Lie algebra of Möbius group):

 $[L_1, L_0] = L_1, [L_{-1}, L_0] = -L_{-1}, [L_1, L_{-1}] = 2L_0.$ $L_0 \stackrel{\text{def}}{=} conformal Hamiltonian (= generator of rotations).$

Positive energy unitary rep. U of Diff (S^1) : $L_0 \ge 0$. Thus sp $U \subset \{h, h+1, h+2, \dots\}, h \ge 0$. h is called *lowest weight*.

For every possible value of c and $h \exists !$ irr. pos. energy rep. $V_{c,h}$ of Diff (S^1) . Possible values (Friedan, Qui, Shenker '86):

$$c = 1 - rac{6}{n(n+1)}$$
 or $c \ge 1$

$$h_{p,q} = rac{((n+1)p - nq)^2 - 1}{4n(n+1)},$$

 $1 \leq p \leq n-1$, $1 \leq q \leq n$, $p,q \in \mathbb{N}$, $(p.q) \sim (n-p, n+1-q)$. All values are taken (Goddard, Kent, Olive '86).

Reps. with the same c have *fusion* (internal tensor product).

Long standing problem: <u>is there a relation</u> <u>between Jones index discrete series and Virasoro</u> <u>central charge discrete series</u>? We shall see an interplay below. **Conformal nets.** A local conformal net \mathcal{A} is a local Möbius covariant net s.t. \exists proj. unitary rep. U of Diff (S^1) , extending the Möbius rep., s.t.

$$U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), \quad g \in \mathsf{Diff}(S^1),$$
$$U(g)xU(g)^* = x, \quad x \in \mathcal{A}(I), \ g \in \mathsf{Diff}(I'),$$
$$\mathsf{Diff}(I) \stackrel{\mathsf{def}}{=} \{g \in \mathsf{Diff}(S^1) : g(t) = t \ \forall t \in I'\}.$$

U is <u>unique</u> (Carpi, Weiner), hence canonical.

Virasoro nets Vir_c.

 $\operatorname{Vir}_{c}(I) \equiv V_{c}(\operatorname{Diff}(I))''$ $V_{c} \equiv V_{c,h=0}$ (vacuum representation).

Buchholz Shultz-Mirbach, Carpi, recently completed by Weiner:

Reps of Vir_c net \leftrightarrow Unitary reps of Virasoro_c algebra

in particular $V_{c,h}$ and $V_{c,h'}$ are locally equivalent

 \mathcal{A} (local) conformal net, Haag duality implies

$U(\mathsf{Diff}(I)) \subset \mathcal{A}(I),$

U is direct sum of reps $V_{c,h}$ with the same central charge c: the central charge of \mathcal{A}

$\mathcal{A} \supset \mathsf{Vir}_c$

every local conformal net

is an extension of a Virasoro net

On the other hand Vir_c is <u>minimal</u>, no nontrivial subnet (Carpi):

universal role of Vir_c

A (irred.) representation π of \mathcal{A} on \mathcal{H} is diffeomorphism covariant if \exists projective unitary rep. U_{π} of Diff (S^1) extending the rep. U_{π} of Möb s.t.

$$\pi_{qI}(U(g)xU(g)^*) = U_{\pi}(g)\pi_I(x)U_{\pi}(g)^*$$

Automatic diff. covariance: D'Antoni, Fredenhagen, Koester,

Complete rationality. Problem: characterize intrinsically a "rational" net (= finitely many irr. sectors, all with $d(\rho) < \infty$)

Def. \mathcal{A} is completely rational if

• The μ -index μ_A is finite, i.e.

 $\mu_{\mathcal{A}} \equiv [\widehat{\mathcal{A}}(E) : \mathcal{A}(E)] < \infty$

 $E = I_1 \cup I_2$, $I_1 \cap I_2 = \emptyset$, $\widehat{\mathcal{A}}(E) = \mathcal{A}(E')'$ (failure of Haag duality for disconneted regions).

 $\mu_A < \infty$ for SU(N) loop group models (F. Xu). General theory (Kawahigashi, Müger, L.)

The μ -index is equal to global index:

$$\mu_{\mathcal{A}} = \sum_{i} d(\rho_i)^2$$

sum of the indeces of all irreducible sectors

For a completely rational net:

• *A* is *rational* and the representation tensor category is *modular* has <u>non-degenerate</u> braiding

• $\mathcal{A}(E) \subset \widehat{\mathcal{A}}(E)$ is the quantum double inclusion of Rehren, L.

• All irreducible extensions of \mathcal{A} have <u>finite Jones</u> index (by Izumi, Popa, L.)

• \mathcal{A} is strongly additive (Xu, L.)

 $\mathcal{A}(I \smallsetminus \{\mathsf{point}\}) = \mathcal{A}(I)$

Loop group and coset models. G compact Lie group,

LG loop group, i.e. $LG = \{g : t \in S^1 \to G\}$ (smooth maps with pointwise multiplication),

 $U: LG \to B(\mathcal{H})$ pos. energy unitary rep. of LG, i.e. the action of $\text{Diff}(S^1)$ on Aut(LG) is implements by a pos. energy rep.

Vacuum irr. reps. (pos. energy) U of LG (0) eigenvalue of L_0) are labeled by a parameter, the *level* of U. Fix a level ℓ rep. U:

 $\mathcal{A}(I) \equiv \{U(g), g \in LG : g(t) = t, t \in I'\}''$

is a conformal net.

 $H \subset G$ closed subgroup

 $\mathcal{B}(I) \equiv \{U(g), g \in LH : g(t) = 1, t \in I'\}''$ conformal subnet. $C(I) = \mathcal{B}(I)' \cap \mathcal{A}(I) \text{ coset model of } H \subset G.$ $Vir_c = \text{coset } SU(2)_{m-1} \subset SU(2)_{m-1} \times SU(2)_1$ $c = 1 - \frac{6}{m(m+1)} \text{ (GKO, Xu, Carpi, Kawahigashi, L.).}$

 \Rightarrow Vir_c is completely rational c < 1

- \Rightarrow All extensions of Vir_c have finite Jones index
- \Rightarrow Sectors of Vir_c have finite index (Loke)

The classification problem for the discrete series (Kawahigashi, L.)

Classify conformal nets with c < 1 \updownarrow Classify all irreducible extensions of Vir_c

Verlinde-Rehren matrices. \mathcal{A} rational, i.e. finitely many irr. sectors $\rho_o = id, \rho_1, \dots, \rho_n$

$$Y_{ij} \equiv d_i d_j \Phi_j(\varepsilon(\rho_j, \rho_i)^* \varepsilon(\rho_i, \rho_j)^*)$$

 ε non degenerate $\Leftrightarrow |\sigma|^2 = \sum d_i^2$ with $\sigma \equiv \sum \kappa_i^{-1} d_i^2$

$$S \equiv |\sigma|^{-1}Y, \qquad T \equiv \left(\frac{\sigma}{|\sigma|}\right)^{1/3} \text{Diag}(\kappa_i)$$

$$SS^{\dagger} = TT^{\dagger} = \text{id},$$

$$STS = T^{-1}ST^{-1},$$

$$S^{2} = C,$$

$$TC = CT,$$

where $C_{ij} = \delta_{i\bar{j}}$. In our case (Vir_c) $C = \text{id.} \Rightarrow \underline{T}$ and S generate unitary rep. of $SL(2,\mathbb{Z})$.

Modular invariants. Given a unitary, finitedim. rep. of $SL(2,\mathbb{Z})$, a *modular invariant* is a matrix $Z \in Mat(\mathbb{Z}_+)$, $Z_{00} = 1$, s.t.

ZU = UZ

• Rational net with non-degenerate braiding \rightarrow unitary rep. of $SL(2,\mathbb{Z}) \rightarrow$ modular invariants

 \bullet Thus (KLM): complete rational nets \rightarrow modular invariants

• Capelli, Itzykson, Zuber '87: ADE classification of modular invariants for Vir $_c$, c < 1

• Böckenhaur, Evans, Kawahigashi 2000: $\mathcal{A} \subset \mathcal{B}$ conformal nets, $[\mathcal{B} : \mathcal{A}] < \infty$, then

 $\alpha - induction \longrightarrow modular invariants$

$$Z_{\mu\nu} = \operatorname{dimHom}(\alpha_{\mu}^{+}, \alpha_{\nu}^{-})$$

 $\alpha_{\mu}^{\pm} = \text{extension of DHR sector } \mu \text{ of } \mathcal{A} \text{ to right/left}$ solitonic sector of \mathcal{B} (Roberts, Rehren-L., Xu) **Q-systems.** Recall: \mathcal{M} factor, $\rho \in \text{End}(\mathcal{M})$ then

$$\gamma_{\rho} = \rho \bar{\rho}$$

<u>Converse problem</u>: given $\gamma \in End(M)$, when is γ canonical?

The problem is finding a "square root" ρ .

The conjugate equations give conditions:

 γ canonical with finite index

 \Downarrow

 \exists isometry $T \in \text{Hom}(\iota, \gamma)$, and a co-isometry $S \in \text{Hom}(\gamma^2, \gamma)$

$$SS = S\gamma(S)$$

 $S\gamma(T) \in \mathbb{C} \setminus \{0\}, \quad ST \in \mathbb{C} \setminus \{0\}$

Def. A *Q*-system is a triple (γ, T, S) where $\gamma \in \text{End}(M)$, $T \in \text{Hom}(\iota, \gamma)$ is an isometry,

 $S \in \text{Hom}(\gamma^2, \gamma)$ is a co-isometry satisfying the above relations.

Thm. Q-system $(\gamma, T, S) \rightarrow$ finite-index subfactor $\mathcal{N} \subset \mathcal{M}$ with $\gamma : \mathcal{M} \rightarrow \mathcal{N}$ canonical endomorphism.

 \exists bijection

subfactors \leftrightarrow Q-systems

Application 1: Quantum double (Rehren, L.), see below.

Application 2: Duality for finite-dimensional complex semisimple Hopf algebras (L.).

Two Q-systems (ρ, T_1, S_1) and (ρ, T_2, S_2) are equivalent if $\exists u \in \text{Hom}(\rho, \rho)$ satisfying

 $T_2 = uT_1, \qquad uS_1 = S_2 u\rho(u).$

Equivalence of Q-systems \Leftrightarrow inner conjugacy of subfactors.

$N \subset M$	Jones construction	$\tilde{M} \supset M$
	can. endomorphism	

<u>Problem</u>: classify Q-systems up to equivalence when a system of endomorphisms is given and ρ is a direct sum of endomorphisms in the system.

Izumi-Kosaki cohomology for Q-systems: <u>finite</u> groups.

Classification of local extensions of the Virasoro nets (Kawahigashi, L.)

• Consider the Cappelli-Itzykson-Zuber classification of the modular invariants for the Virasoro nets with central charge c = 1 - 6/m(m + 1) < 1, m = 2, 3, 4, ...

• Show that each "type I" modular invariant is realized with α -induction for an extension $\operatorname{Vir}_c \subset \mathcal{M}$ as in Bockenhauer-Evans-Kawahigashi

• Use Q-system to detect the local extension of Vir $_c$, c < 1

 \Downarrow

Classification of local conformal nets, $c = 1 - \frac{6}{m(m+1)}$

m	Labels for Z	
n	(A_{n-1}, A_n)	
4n + 1	(A_{4n}, D_{2n+2})	
4n + 2	(D_{2n+2}, A_{4n+2})	
11	(A_{10}, E_6)	
12	(E_6, A_{12})	
29	(A_{28}, E_8)	
30	(E_8, A_{30})	

Thm. (Kawahigashi,L.) Local conformal nets with c < 1 are classified by pair of Dynkin diagrams $A - D_{2n} - E_{6,8}$ s.t. the difference of Coxeter numbers is 1.

Simple current extensions. The simple current extensions of index 2

The four exceptional cases.

 $(E_6, A_{12}), (E_8, A_{30})$ coset constructions (conjectuered by Böckenhauer-Evans

 (A_{10}, E_6) coset construction (Köster)

One *new example* (A_{28}, E_8) , most probably not constructable as coset.

Case c = 1 classified by Xu, Carpi (with a spectral condition, probably always true)

Many new models by mirror symmetry F. Xu.