Lecture 1 # Operator Algebras and Conformal Field Theory Roberto Longo Sendai, August 2016 # The "ax + b" group The (proper) "ax + b" group: transformations on $\mathbb R$ $$g = x \mapsto ax + b, \qquad a > 0, b \in \mathbb{R}.$$ One parameter subgroups: *translations* $x \mapsto x + b$ and *dilations* $x \mapsto ax$. Unitary representations of the group on a Hilbert space \mathcal{H} : two one-parameter unitary U and V groups on \mathcal{H} $$V(s)U(t)V(-s) = U(e^{s}t)$$ \exists unique unitary, irreducible representation of G with "positive energy" (where translations have no non-zero fixed points), because generator of V and log of generator of U satisfies CCR. # Modular Tomita-Takesaki theory. ${\mathcal M}$ von Neumann alg. on ${\mathcal H}.$ $\Omega\in{\mathcal H}$ cyclic and separating for ${\mathcal M},$ $$L^{\infty}(\mathcal{M}) \equiv \mathcal{M}, \quad L^{2}(\mathcal{M}) = \mathcal{H} \quad L^{1}(\mathcal{M}) = \mathcal{M}_{*},$$ where \mathcal{M}_* is the predual of \mathcal{M} (normal linear functionals), $$\begin{array}{ccc} \mathcal{M} & \xrightarrow{x \mapsto x^*} & \mathcal{M} \\ \downarrow x \to x\Omega & & \downarrow x \to x\Omega \end{array}$$ $$L^2(\mathcal{M}) \xrightarrow[\text{non isometric}]{x \cap x \cap S_0} \times^* \Omega \xrightarrow{L^2(\mathcal{M})} L^2(\mathcal{M})$$ S the closure of the anti-linear operator S_0 , $S=J\Delta^{1/2}$ polar decomposition, thus $\Delta=S^*S>0$ positive selfadjoint, J anti-unitary involution: $$\Delta^{it} \mathcal{M} \Delta^{-it} = \mathcal{M}$$ $$J \mathcal{M} J = \mathcal{M}'$$ $t \to \sigma_t^{\omega} = \mathsf{Ad}\Delta^{it}$ canonical "evolution" associated with ω (modular automorphisms). # Exponential Hilbert space ${\cal H}$ Hilbert space. The Fock space $$e^{\mathcal{H}} = \bigoplus_{n=0}^{\infty} \mathcal{H}_{\mathrm{sym}}^{\otimes^n}$$ is generated by the exp vectors $e^h = \bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n!}} h^{\otimes^n}$; The Weyl unitaries: $$W(h)e^{k} \equiv e^{-\frac{1}{2}(h,h)}e^{-(h,k)}e^{h+k}$$ satisfy $$W(h+k) = e^{i\Im(h,k)}W(h)W(k)$$. H real linear subspace of $\mathcal{H} o$ von Neumann algebra on $e^{\mathcal{H}}$ $$\mathcal{A}(H) = \{W(h) : h \in H\}''$$ # First and second quantisation First quantisation: map $$\mathcal{O} \subset \mathbb{R}^d \mapsto \mathcal{H}(\mathcal{O})$$ real linear space of \mathcal{H} local, covariant, etc. Second quantisation: map $$\mathcal{O} \subset \mathbb{R}^d \mapsto \mathcal{A}(\mathcal{O})$$ v.N. algebra on $e^{\mathcal{H}}$ The <u>free</u> QFT is determined by the QM structure $$\mathcal{O} \longrightarrow \mathcal{A}(\mathcal{O})$$ $$H(\mathcal{O})$$ $$\mathcal{A}(\mathcal{O}) = \mathcal{A}(\mathcal{H}(\mathcal{O}))$$ ## Standard subspaces ${\cal H}$ complex Hilbert space and $H\subset {\cal H}$ a closed, real linear subspace. Symplectic complement: $$H' = \{ \xi \in H : \Im(\xi, \eta) = 0 \ \forall \eta \in H \}$$ $H' = (iH)^{\perp}$ (real orthogonal complement), so H'' = H and $$H_1 \subset H_2 \Leftrightarrow H_2' \subset H_1'$$ *H* is cyclic if $(\overline{H+iH}=\mathcal{H})$ and separating if $(H\cap iH=\{0\})$. A standard subspace H of \mathcal{H} is a closed, real linear subspace of \mathcal{H} which is both cyclic and separating. H is standard iff H' is standard. H standard subspace \rightarrow anti-linear operator $S: D(S) \subset \mathcal{H} \rightarrow \mathcal{H}$, $$S: \xi + i\eta \to \xi - i\eta, \ \xi, \eta \in H$$ $S^2 = 1|_{D(S)}$. S is closed and densely defined, indeed $$S_H^* = S_{H'}$$ Conversely, S densely defined, closed, anti-linear involution on $\mathcal{H} \to \mathcal{H}_S = \{ \xi \in D(S) : S\xi = \xi \}$ is a standard subspace: $$H \leftrightarrow S$$ is a bijection Set $S = J\Delta^{1/2}$, polar decomposition of $S = S_H$. Then J is an anti-unitary involution, $\Delta>0$ is non-singular and $I \wedge I = \Lambda^{-1}$ $$H \leftrightarrow (J, \Delta)$$ is a bijection. #### Modular theory for standard subspaces $$\Delta^{it}H=H, JH=H'$$ (one particle Tomita-Takesaki theorem). #### (real subspace analog of) Borchers theorem H standard subspace, T a one-parameter group with positive generator s.t. $T(s)H \subset H$, s > 0. Then: $$\begin{cases} \Delta^{it} T(s) \Delta^{-it} = T(e^{-2\pi t} s) \\ JT(s) J = T(-s), \ t, s \in \mathbb{R} \end{cases}$$ (positive energy) representation of the proper "ax + b" group! *Proof* Based on the analytic extension of T(s) on the upper half-plane by positivity of the energy and the analytic extension of $(\xi, \Delta^{-is}\eta)$ on the trip $0<\Im z<1$ by the KMS condition. **Consequence**: If T has no non-zero fixed vector, the pair (H, T) is unique up to multiplicity Note: Setting K = T(1)H we have $$\Delta_H^{-it}K = \Delta_H^{-it}T(1)H = T(e^{2\pi t})\Delta_H^{it}H = T(e^{2\pi t})H \subset K, \ t > 0$$ $K \subset H$ is a half-sided modular inclusion, i.e. $\Delta_H^{-it} K \subset K$, t > 0. (real subspace analog of) Wiesbrock-Araki-Zsido theorem Let $K \subset H$ be a half-sided modular inclusion of standard subspaces. Then K = T(1)H as above translation generator $$= \frac{1}{2\pi}(\log \Delta_H - \log \Delta_K)$$ Therefore Δ_H^{-it} and Δ_K^{-is} generate a representation of the "ax + b" group. Symmetries \leftrightarrow Standard subspaces in certain relative positions # The Möbius group $\mathrm{SL}(2,\mathbb{R})=2\times 2$ real matrices with determinant one acts on $$\bar{\mathbb{R}} \equiv \mathbb{R} \cup \{\infty\}$$: $g \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts as $$g: x \mapsto gx \equiv \frac{ax+b}{cx+d}$$ Kernel = $\{\pm 1\}$. Möb $\equiv \mathrm{SL}(2,\mathbb{R})/\{1,-1\}$. We identify $\bar{\mathbb{R}} \sim S^1 \equiv \{z \in \mathbb{C} : |z| = 1\}$ $$C: x \in \mathbb{R} \mapsto -\frac{x-i}{x+i} \in S^1$$, $\mathrm{SL}(2,\mathbb{R})\sim SU(1,1)$ by C. Three one-parameter subgroups of **G**: rotation R, dilation δ , translation τ $$R(\theta)z = e^{i\theta}z$$ on S^1 ; $\delta(s)x = e^sx$ on \mathbb{R} ; $\tau(t)x = x + t$ on \mathbb{R} . The set of all intervals of S^1 will be denoted by \mathcal{I} . Note that Möb acts transitively on \mathcal{I} . If $I \in \mathcal{I}$, we denote by I' the interior of the complement of I in S^1 , which is an interval. Given any interval I, we now define two one-parameter subgroups of ${\bf G}$, the dilation δ_I and the translation group τ_I associated with I. Let I_1 be the upper semi-circle, i.e. the interval $\{e^{i\theta}, \theta \in (0,\pi)\}$, that corresponds to the positive real line \mathbb{R}_+ in the real line picture. We set $\delta_{I_1} \equiv \delta$, and $\tau_{I_1} \equiv \tau$. Then, if I is any interval, we chose $g \in {\bf G}$ such that $I = gI_1$ and set $$\delta_I \equiv g \delta_{I_1} g^{-1}, \qquad \tau_I \equiv g \tau_{I_1} g^{-1}.$$ δ_I is well defined; while τ_I is defined only up to a rescaling. If I is an open interval or half-line of $\mathbb R$ we write τ_I or δ_I to denote the translation or dilation group associated with C(I) thus, for example, $\tau_{(0,\infty)} = \tau_{I_1} = \tau$. # Nets of standard subspaces A local Möbius covariant net H of standard subspaces on S^1 is a map $$I \in \mathcal{I} \to H(I) \subset \mathcal{H}$$ $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies: - ▶ **A.** *Isotony*. $I_1 \subset I_2 \implies H(I_1) \subset H(I_2)$ - ▶ **B.** Locality. $I_1 \cap I_2 = \emptyset \implies H(I_1) \subset H(I_2)'$ - ▶ **C.** *Möbius covariance*. \exists unitary rep. U of the Möbius group $M\ddot{o}b = PSL(2,\mathbb{R})$ on \mathcal{H} s.t. $$U(g)H(I) = H(gI), g \in M\ddot{o}b, I \in \mathcal{I}.$$ - ▶ **D.** Positivity of the energy. Generator L_0 of rotation subgroup of U is positive. - ▶ **E.** *Irreducibility*. $\overline{lin.span}\{H(I), I \in \mathcal{I}\} = \mathcal{H}$ ## Some consequences - ▶ Reeh-Schlieder theorem: Each H(I) is a standard subspace. proof: $\xi \perp H(I) \Rightarrow \xi \perp T(s)H(I_0) = H(I_0 + s)$, if $\bar{I}_0 \subset I$, by analytic ext on $\Im z > 0$ - ▶ Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of $(H(I), \Omega)$, are $$U(\delta_I(2\pi t)) = \Delta_I^{it}, \ t \in \mathbb{R},$$ dilations $U(r_I) = J_I$ reflection proof: Use Borchers theorem ► Haag duality: H(I)' = H(I')proof: Use the geometric meaning of J_I # Converse construction (Brunetti, Guido, L.) Given a positive energy unitary representation U of (proper) Möb on $\mathcal H$ we set $$H(I) \equiv \{ \xi \in \mathcal{H} : S_I \xi = \xi \}, \qquad S_I \equiv J_I \Delta_I^{1/2}$$ where Δ_I is by definition given by $\Delta_I^{-it} = U(\delta_I(2\pi t))$ with Λ_I one-parameter group of "dilations" associated with I. Then *H* is a local Möb-covariant net of standard subspaces Therefore: Local net os standard subspaces Unitary, positive energy representation of $PSL(2,\mathbb{R})$. ## Möbius covariant nets A local Möbius covariant net A on S^1 is a map $$I \in \mathcal{I} \to \mathcal{A}(I) \subset \mathcal{B}(\mathcal{H})$$ $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies: - ▶ **A.** *Isotony.* $I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$ - ▶ **B.** Locality. $I_1 \cap I_2 = \emptyset \implies [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$ - ▶ **C.** *Möbius covariance*. \exists unitary rep. U of the Möbius group Möb on \mathcal{H} such that $$U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), \quad g \in \mathsf{M\"ob}, \ I \in \mathcal{I}.$$ - ▶ **D.** Positivity of the energy. Generator L_0 of rotation subgroup of U (conformal Hamiltonian) is positive. - ▶ **E.** Existence of the vacuum. $\exists !\ U$ -invariant vector $\Omega \in \mathcal{H}$ (vacuum vector), and Ω is cyclic for $\bigvee_{I \in \mathcal{T}} \mathcal{A}(I)$. ## Consequences $H(I) \equiv A(I)_{sa}\Omega$ is a standard subspace, therefore: - ▶ *Irreducibility*: $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = \mathcal{B}(H)$. - ▶ Reeh-Schlieder theorem: Ω is cyclic and separating for each $\mathcal{A}(I)$. - ▶ Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of $(\mathcal{A}(I), \Omega)$, are $$U(\delta_I(2\pi t)) = \Delta_I^{it}, \ t \in \mathbb{R},$$ dilations $U(r_I) = J_I$ reflection (Frölich-Gabbiani, Guido-L.) - ▶ Haag duality: A(I)' = A(I') - ▶ Factoriality: A(I) is III₁-factor (in Connes classification) - ▶ *Additivity*: $I \subset \cup_i I_i \implies \mathcal{A}(I) \subset \vee_i \mathcal{A}(I_i)$ (Fredenhagen, Jorss). # Split property ${\cal A}$ satisfies the *split* property if the von Neumann algebra $$\mathcal{A}(I_1) \vee \mathcal{A}(I_2) \simeq \mathcal{A}(I_1) \otimes \mathcal{A}(I_2)$$ (natural isomorphism) if $\bar{\mathit{I}}_{1} \cap \bar{\mathit{I}}_{2} = \varnothing$. $$\operatorname{Tr}(e^{-tL_0}) < \infty, \ \forall t > 0 \implies \operatorname{split}.$$ A recent result by Morinelli, Tanimoto, Weiner shows that the spit property follows by conformal symmetries! The spit property is general and will be assumed. # U(1) current net The unitary, irreducible, positive energy representations U of Möb are classified by the lowest eigenvalue ℓ of the conformal Hamiltonian L_0 , the generator of the rotation group, $\ell=1,2,\ldots$ Let $I\mapsto H_\ell(I)$ the net associated with the ℓ representation $$A_{\ell}(I) \equiv A(H_{\ell}(I))$$ the net of von Neumann algebras on the Fock space. \mathcal{A}_1 is the U(1)-current net, $\mathcal{A}_{1+\ell}$ the net associated with the ℓ derivative of the U(1) current. H_1 can be realized as the completion of $C^{\infty}(S^1)$ modulo constants, with scalar product $$(f,g) = \sum_{n=0}^{\infty} n\hat{f}(n)\hat{g}(-n)$$ f,g real. Real functions with support in I generate $H_1(I)$. ## Representations A representation π of \mathcal{A} on a Hilbert space \mathcal{H} is a map $I \in \mathcal{I} \mapsto \pi_I$, with π_I a normal representation of $\mathcal{A}(I)$ on $\mathcal{B}(\mathcal{H})$ such that $$\pi_{\tilde{I}} \upharpoonright \mathcal{A}(I) = \pi_{I}, \quad I \subset \tilde{I}, \quad I, \tilde{I} \subset \mathcal{I}.$$ π is Möbius *covariant* if there is a projective unitary representation U_π of Möb on $\mathcal H$ such that $$\pi_{gI}(U(g)xU(g)^*) = U_{\pi}(g)\pi_{I}(x)U_{\pi}(g)^*$$ for all $I \in \mathcal{I}$, $x \in \mathcal{A}(I)$ and $g \in M\ddot{o}b$. Version of DHR argument: given I and π rep. of \mathcal{A} , \exists an endomorphism $\rho \simeq \pi$ of \mathcal{A} localized in I; i.e. $\rho_{I'} = \operatorname{id} \upharpoonright_{\mathcal{A}(I')}$. Proof. $\mathcal{A}(I)$ is a type III factor, thus only one normal rep. - Fix *I*: choose $\rho \simeq \pi$, $\pi_{I'} = \mathrm{id}$. - By Haag duality $\rho_I(\mathcal{A}(I)) \subset \mathcal{A}(I)$. *Example.* Let \mathcal{A} be the local conformal net on S^1 associated with the U(1)-current algebra. In the real line picture \mathcal{A} is given by $$\mathcal{A}(I) \equiv \{W(f) : f \in C_{\mathbb{P}}^{\infty}(\mathbb{R}), \text{ supp} f \subset I\}''$$ where W is the representation of the Weyl commutation relations $$W(f)W(g) = e^{-i\int fg'}W(f+g)$$ associated with the vacuum state ω $$\omega(W(f)) \equiv e^{-||f||^2}, \quad ||f||^2 \equiv \int_0^\infty p|\tilde{f}(p)|^2 dp$$ where \tilde{f} is the Fourier transform of f. ## Buchholz-Mack-Todorov sectors and exensions There is a one parameter family $\{\alpha_q, q \in \mathbb{R}\}$ of irreducible sectors and all have index 1. $$\alpha_q(W(f)) \equiv e^{2i\int Ff}W(f), \quad F \in C^{\infty}, \quad \int F = q.$$ The "crossed product" of \mathcal{A}_N by a single α_q , $N=\frac{1}{2}q^2$ is a net on S^1 , local iff N is an integer. \mathcal{A}_N is maximal iff N is a product of distinct primes. Examples: \mathcal{A}_1 associated with level 1 su(2)-Kac-Moody algebra with c=1, \mathcal{A}_2 Bose subnet of free complex Fermi field net, \mathcal{A}_3 appears in the \mathbb{Z}_4 -parafermion current algebra analyzed by Zamolodchikov and Fateev, and in general \mathcal{A}_N is a coset model $SO(4N)_1/SO(2N)_2$. ## 2-dimensional CFT $M = \mathbb{R}^2$ Minkowski plane. $$\begin{pmatrix} T_{00} & T_{10} \\ T_{01} & T_{11} \end{pmatrix}$$ conserved and traceless stress-energy tensor. As is well known, $T_L = \frac{1}{2}(T_{00} + T_{01})$ and $T_R = \frac{1}{2}(T_{00} - T_{01})$ are chiral fields, $$T_L = T_L(t+x), \quad T_R = T_R(t-x).$$ Left and right movers. Ψ_k family of conformal fields on M: T_{ij} + relatively local fields $\mathcal{O} = I \times J$ double cone, I, J intervals of the chiral lines $t \pm x = 0$ $$\mathcal{A}(\mathcal{O}) = \{e^{i\Psi_k(f)}, \operatorname{supp} f \subset \mathcal{O}\}''$$ then by relative locality $$\mathcal{A}(\mathcal{O})\supset\mathcal{A}_L(I)\otimes\mathcal{A}_R(J)$$ $\mathcal{A}_L, \mathcal{A}_R$ chiral fields on $t \pm x = 0$ generated by T_L, T_R and other chiral fields (completely) rational case: $A_L(I) \otimes A_R(J) \subset A(\mathcal{O})$ finite Jones index