Lecture 1

Operator Algebras and Conformal Field Theory

Roberto Longo

Sendai, August 2016

The "ax + b" group

The (proper) "ax + b" group: transformations on $\mathbb R$

$$g = x \mapsto ax + b, \qquad a > 0, b \in \mathbb{R}.$$

One parameter subgroups: *translations* $x \mapsto x + b$ and *dilations* $x \mapsto ax$.

Unitary representations of the group on a Hilbert space \mathcal{H} : two one-parameter unitary U and V groups on \mathcal{H}

$$V(s)U(t)V(-s) = U(e^{s}t)$$

 \exists unique unitary, irreducible representation of G with "positive energy" (where translations have no non-zero fixed points),

because generator of V and log of generator of U satisfies CCR.

Modular Tomita-Takesaki theory.

 ${\mathcal M}$ von Neumann alg. on ${\mathcal H}.$ $\Omega\in{\mathcal H}$ cyclic and separating for ${\mathcal M},$

$$L^{\infty}(\mathcal{M}) \equiv \mathcal{M}, \quad L^{2}(\mathcal{M}) = \mathcal{H} \quad L^{1}(\mathcal{M}) = \mathcal{M}_{*},$$

where \mathcal{M}_* is the predual of \mathcal{M} (normal linear functionals),

$$\begin{array}{ccc} \mathcal{M} & \xrightarrow{x \mapsto x^*} & \mathcal{M} \\ \downarrow x \to x\Omega & & \downarrow x \to x\Omega \end{array}$$

$$L^2(\mathcal{M}) \xrightarrow[\text{non isometric}]{x \cap x \cap S_0} \times^* \Omega \xrightarrow{L^2(\mathcal{M})} L^2(\mathcal{M})$$

S the closure of the anti-linear operator S_0 , $S=J\Delta^{1/2}$ polar decomposition, thus $\Delta=S^*S>0$ positive selfadjoint, J anti-unitary involution:

$$\Delta^{it} \mathcal{M} \Delta^{-it} = \mathcal{M}$$
$$J \mathcal{M} J = \mathcal{M}'$$

 $t \to \sigma_t^{\omega} = \mathsf{Ad}\Delta^{it}$ canonical "evolution" associated with ω (modular automorphisms).

Exponential Hilbert space

 ${\cal H}$ Hilbert space. The Fock space

$$e^{\mathcal{H}} = \bigoplus_{n=0}^{\infty} \mathcal{H}_{\mathrm{sym}}^{\otimes^n}$$

is generated by the exp vectors $e^h = \bigoplus_{n=0}^{\infty} \frac{1}{\sqrt{n!}} h^{\otimes^n}$;

The Weyl unitaries:

$$W(h)e^{k} \equiv e^{-\frac{1}{2}(h,h)}e^{-(h,k)}e^{h+k}$$

satisfy
$$W(h+k) = e^{i\Im(h,k)}W(h)W(k)$$
.

H real linear subspace of $\mathcal{H} o$ von Neumann algebra on $e^{\mathcal{H}}$

$$\mathcal{A}(H) = \{W(h) : h \in H\}''$$

First and second quantisation

First quantisation: map

$$\mathcal{O} \subset \mathbb{R}^d \mapsto \mathcal{H}(\mathcal{O})$$
 real linear space of \mathcal{H}

local, covariant, etc.

Second quantisation: map

$$\mathcal{O} \subset \mathbb{R}^d \mapsto \mathcal{A}(\mathcal{O})$$
 v.N. algebra on $e^{\mathcal{H}}$

The <u>free</u> QFT is determined by the QM structure

$$\mathcal{O} \longrightarrow \mathcal{A}(\mathcal{O})$$

$$H(\mathcal{O})$$

$$\mathcal{A}(\mathcal{O}) = \mathcal{A}(\mathcal{H}(\mathcal{O}))$$

Standard subspaces

 ${\cal H}$ complex Hilbert space and $H\subset {\cal H}$ a closed, real linear subspace. Symplectic complement:

$$H' = \{ \xi \in H : \Im(\xi, \eta) = 0 \ \forall \eta \in H \}$$

 $H' = (iH)^{\perp}$ (real orthogonal complement), so H'' = H and

$$H_1 \subset H_2 \Leftrightarrow H_2' \subset H_1'$$

H is cyclic if $(\overline{H+iH}=\mathcal{H})$ and separating if $(H\cap iH=\{0\})$.

A standard subspace H of \mathcal{H} is a closed, real linear subspace of \mathcal{H} which is both cyclic and separating. H is standard iff H' is standard.

H standard subspace \rightarrow anti-linear operator $S: D(S) \subset \mathcal{H} \rightarrow \mathcal{H}$,

$$S: \xi + i\eta \to \xi - i\eta, \ \xi, \eta \in H$$

 $S^2 = 1|_{D(S)}$. S is closed and densely defined, indeed

$$S_H^* = S_{H'}$$

Conversely, S densely defined, closed, anti-linear involution on $\mathcal{H} \to \mathcal{H}_S = \{ \xi \in D(S) : S\xi = \xi \}$ is a standard subspace:

$$H \leftrightarrow S$$
 is a bijection

Set $S = J\Delta^{1/2}$, polar decomposition of $S = S_H$.

Then J is an anti-unitary involution, $\Delta>0$ is non-singular and $I \wedge I = \Lambda^{-1}$

$$H \leftrightarrow (J, \Delta)$$
 is a bijection.

Modular theory for standard subspaces

$$\Delta^{it}H=H, JH=H'$$

(one particle Tomita-Takesaki theorem).

(real subspace analog of) Borchers theorem

H standard subspace, T a one-parameter group with positive generator s.t. $T(s)H \subset H$, s > 0.

Then:

$$\begin{cases} \Delta^{it} T(s) \Delta^{-it} = T(e^{-2\pi t} s) \\ JT(s) J = T(-s), \ t, s \in \mathbb{R} \end{cases}$$

(positive energy) representation of the proper "ax + b" group!

Proof Based on the analytic extension of T(s) on the upper half-plane by positivity of the energy and the analytic extension of $(\xi, \Delta^{-is}\eta)$ on the trip $0<\Im z<1$ by the KMS condition.

Consequence: If T has no non-zero fixed vector, the pair (H, T) is unique up to multiplicity

Note: Setting K = T(1)H we have

$$\Delta_H^{-it}K = \Delta_H^{-it}T(1)H = T(e^{2\pi t})\Delta_H^{it}H = T(e^{2\pi t})H \subset K, \ t > 0$$

 $K \subset H$ is a half-sided modular inclusion, i.e. $\Delta_H^{-it} K \subset K$, t > 0.

(real subspace analog of) Wiesbrock-Araki-Zsido theorem

Let $K \subset H$ be a half-sided modular inclusion of standard subspaces. Then K = T(1)H as above

translation generator
$$= \frac{1}{2\pi}(\log \Delta_H - \log \Delta_K)$$

Therefore Δ_H^{-it} and Δ_K^{-is} generate a representation of the "ax + b" group.

Symmetries \leftrightarrow Standard subspaces in certain relative positions

The Möbius group

 $\mathrm{SL}(2,\mathbb{R})=2\times 2$ real matrices with determinant one acts on

$$\bar{\mathbb{R}} \equiv \mathbb{R} \cup \{\infty\}$$
: $g \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts as

$$g: x \mapsto gx \equiv \frac{ax+b}{cx+d}$$

Kernel = $\{\pm 1\}$. Möb $\equiv \mathrm{SL}(2,\mathbb{R})/\{1,-1\}$. We identify $\bar{\mathbb{R}} \sim S^1 \equiv \{z \in \mathbb{C} : |z| = 1\}$

$$C: x \in \mathbb{R} \mapsto -\frac{x-i}{x+i} \in S^1$$
,

 $\mathrm{SL}(2,\mathbb{R})\sim SU(1,1)$ by C.

Three one-parameter subgroups of **G**: rotation R, dilation δ , translation τ

$$R(\theta)z = e^{i\theta}z$$
 on S^1 ; $\delta(s)x = e^sx$ on \mathbb{R} ; $\tau(t)x = x + t$ on \mathbb{R} .

The set of all intervals of S^1 will be denoted by \mathcal{I} . Note that Möb acts transitively on \mathcal{I} . If $I \in \mathcal{I}$, we denote by I' the interior of the complement of I in S^1 , which is an interval.

Given any interval I, we now define two one-parameter subgroups of ${\bf G}$, the dilation δ_I and the translation group τ_I associated with I. Let I_1 be the upper semi-circle, i.e. the interval $\{e^{i\theta}, \theta \in (0,\pi)\}$, that corresponds to the positive real line \mathbb{R}_+ in the real line picture. We set $\delta_{I_1} \equiv \delta$, and $\tau_{I_1} \equiv \tau$. Then, if I is any interval, we chose $g \in {\bf G}$ such that $I = gI_1$ and set

$$\delta_I \equiv g \delta_{I_1} g^{-1}, \qquad \tau_I \equiv g \tau_{I_1} g^{-1}.$$

 δ_I is well defined; while τ_I is defined only up to a rescaling. If I is an open interval or half-line of $\mathbb R$ we write τ_I or δ_I to denote the translation or dilation group associated with C(I) thus, for example, $\tau_{(0,\infty)} = \tau_{I_1} = \tau$.

Nets of standard subspaces

A local Möbius covariant net H of standard subspaces on S^1 is a map

$$I \in \mathcal{I} \to H(I) \subset \mathcal{H}$$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

- ▶ **A.** *Isotony*. $I_1 \subset I_2 \implies H(I_1) \subset H(I_2)$
- ▶ **B.** Locality. $I_1 \cap I_2 = \emptyset \implies H(I_1) \subset H(I_2)'$
- ▶ **C.** *Möbius covariance*. \exists unitary rep. U of the Möbius group $M\ddot{o}b = PSL(2,\mathbb{R})$ on \mathcal{H} s.t.

$$U(g)H(I) = H(gI), g \in M\ddot{o}b, I \in \mathcal{I}.$$

- ▶ **D.** Positivity of the energy. Generator L_0 of rotation subgroup of U is positive.
- ▶ **E.** *Irreducibility*. $\overline{lin.span}\{H(I), I \in \mathcal{I}\} = \mathcal{H}$

Some consequences

- ▶ Reeh-Schlieder theorem: Each H(I) is a standard subspace. proof: $\xi \perp H(I) \Rightarrow \xi \perp T(s)H(I_0) = H(I_0 + s)$, if $\bar{I}_0 \subset I$, by analytic ext on $\Im z > 0$
- ▶ Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of $(H(I), \Omega)$, are

$$U(\delta_I(2\pi t)) = \Delta_I^{it}, \ t \in \mathbb{R},$$
 dilations $U(r_I) = J_I$ reflection

proof: Use Borchers theorem

► Haag duality: H(I)' = H(I')proof: Use the geometric meaning of J_I

Converse construction (Brunetti, Guido, L.)

Given a positive energy unitary representation U of (proper) Möb on $\mathcal H$ we set

$$H(I) \equiv \{ \xi \in \mathcal{H} : S_I \xi = \xi \}, \qquad S_I \equiv J_I \Delta_I^{1/2}$$

where Δ_I is by definition given by $\Delta_I^{-it} = U(\delta_I(2\pi t))$ with Λ_I one-parameter group of "dilations" associated with I.

Then *H* is a local Möb-covariant net of standard subspaces Therefore:

Local net os standard subspaces

Unitary, positive energy representation of $PSL(2,\mathbb{R})$.

Möbius covariant nets

A local Möbius covariant net A on S^1 is a map

$$I \in \mathcal{I} \to \mathcal{A}(I) \subset \mathcal{B}(\mathcal{H})$$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

- ▶ **A.** *Isotony.* $I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$
- ▶ **B.** Locality. $I_1 \cap I_2 = \emptyset \implies [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$
- ▶ **C.** *Möbius covariance*. \exists unitary rep. U of the Möbius group Möb on \mathcal{H} such that

$$U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), \quad g \in \mathsf{M\"ob}, \ I \in \mathcal{I}.$$

- ▶ **D.** Positivity of the energy. Generator L_0 of rotation subgroup of U (conformal Hamiltonian) is positive.
- ▶ **E.** Existence of the vacuum. $\exists !\ U$ -invariant vector $\Omega \in \mathcal{H}$ (vacuum vector), and Ω is cyclic for $\bigvee_{I \in \mathcal{T}} \mathcal{A}(I)$.

Consequences

 $H(I) \equiv A(I)_{sa}\Omega$ is a standard subspace, therefore:

- ▶ *Irreducibility*: $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = \mathcal{B}(H)$.
- ▶ Reeh-Schlieder theorem: Ω is cyclic and separating for each $\mathcal{A}(I)$.
- ▶ Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of $(\mathcal{A}(I), \Omega)$, are

$$U(\delta_I(2\pi t)) = \Delta_I^{it}, \ t \in \mathbb{R},$$
 dilations $U(r_I) = J_I$ reflection

(Frölich-Gabbiani, Guido-L.)

- ▶ Haag duality: A(I)' = A(I')
- ▶ Factoriality: A(I) is III₁-factor (in Connes classification)
- ▶ *Additivity*: $I \subset \cup_i I_i \implies \mathcal{A}(I) \subset \vee_i \mathcal{A}(I_i)$ (Fredenhagen, Jorss).

Split property

 ${\cal A}$ satisfies the *split* property if the von Neumann algebra

$$\mathcal{A}(I_1) \vee \mathcal{A}(I_2) \simeq \mathcal{A}(I_1) \otimes \mathcal{A}(I_2)$$

(natural isomorphism) if $\bar{\mathit{I}}_{1} \cap \bar{\mathit{I}}_{2} = \varnothing$.

$$\operatorname{Tr}(e^{-tL_0}) < \infty, \ \forall t > 0 \implies \operatorname{split}.$$

A recent result by Morinelli, Tanimoto, Weiner shows that the spit property follows by conformal symmetries!

The spit property is general and will be assumed.

U(1) current net

The unitary, irreducible, positive energy representations U of Möb are classified by the lowest eigenvalue ℓ of the conformal Hamiltonian L_0 , the generator of the rotation group, $\ell=1,2,\ldots$ Let $I\mapsto H_\ell(I)$ the net associated with the ℓ representation

$$A_{\ell}(I) \equiv A(H_{\ell}(I))$$

the net of von Neumann algebras on the Fock space. \mathcal{A}_1 is the U(1)-current net, $\mathcal{A}_{1+\ell}$ the net associated with the ℓ derivative of the U(1) current.

 H_1 can be realized as the completion of $C^{\infty}(S^1)$ modulo constants, with scalar product

$$(f,g) = \sum_{n=0}^{\infty} n\hat{f}(n)\hat{g}(-n)$$

f,g real. Real functions with support in I generate $H_1(I)$.

Representations

A representation π of \mathcal{A} on a Hilbert space \mathcal{H} is a map $I \in \mathcal{I} \mapsto \pi_I$, with π_I a normal representation of $\mathcal{A}(I)$ on $\mathcal{B}(\mathcal{H})$ such that

$$\pi_{\tilde{I}} \upharpoonright \mathcal{A}(I) = \pi_{I}, \quad I \subset \tilde{I}, \quad I, \tilde{I} \subset \mathcal{I}.$$

 π is Möbius *covariant* if there is a projective unitary representation U_π of Möb on $\mathcal H$ such that

$$\pi_{gI}(U(g)xU(g)^*) = U_{\pi}(g)\pi_{I}(x)U_{\pi}(g)^*$$

for all $I \in \mathcal{I}$, $x \in \mathcal{A}(I)$ and $g \in M\ddot{o}b$.

Version of DHR argument: given I and π rep. of \mathcal{A} , \exists an endomorphism $\rho \simeq \pi$ of \mathcal{A} localized in I; i.e. $\rho_{I'} = \operatorname{id} \upharpoonright_{\mathcal{A}(I')}$. Proof. $\mathcal{A}(I)$ is a type III factor, thus only one normal rep.

- Fix *I*: choose $\rho \simeq \pi$, $\pi_{I'} = \mathrm{id}$.
- By Haag duality $\rho_I(\mathcal{A}(I)) \subset \mathcal{A}(I)$.

Example. Let \mathcal{A} be the local conformal net on S^1 associated with the U(1)-current algebra. In the real line picture \mathcal{A} is given by

$$\mathcal{A}(I) \equiv \{W(f) : f \in C_{\mathbb{P}}^{\infty}(\mathbb{R}), \text{ supp} f \subset I\}''$$

where W is the representation of the Weyl commutation relations

$$W(f)W(g) = e^{-i\int fg'}W(f+g)$$

associated with the vacuum state ω

$$\omega(W(f)) \equiv e^{-||f||^2}, \quad ||f||^2 \equiv \int_0^\infty p|\tilde{f}(p)|^2 dp$$

where \tilde{f} is the Fourier transform of f.

Buchholz-Mack-Todorov sectors and exensions

There is a one parameter family $\{\alpha_q, q \in \mathbb{R}\}$ of irreducible sectors and all have index 1.

$$\alpha_q(W(f)) \equiv e^{2i\int Ff}W(f), \quad F \in C^{\infty}, \quad \int F = q.$$

The "crossed product" of \mathcal{A}_N by a single α_q , $N=\frac{1}{2}q^2$ is a net on S^1 , local iff N is an integer. \mathcal{A}_N is maximal iff N is a product of distinct primes.

Examples: \mathcal{A}_1 associated with level 1 su(2)-Kac-Moody algebra with c=1, \mathcal{A}_2 Bose subnet of free complex Fermi field net, \mathcal{A}_3 appears in the \mathbb{Z}_4 -parafermion current algebra analyzed by Zamolodchikov and Fateev, and in general \mathcal{A}_N is a coset model $SO(4N)_1/SO(2N)_2$.

2-dimensional CFT

 $M = \mathbb{R}^2$ Minkowski plane.

$$\begin{pmatrix} T_{00} & T_{10} \\ T_{01} & T_{11} \end{pmatrix}$$
 conserved and traceless stress-energy tensor.

As is well known, $T_L = \frac{1}{2}(T_{00} + T_{01})$ and $T_R = \frac{1}{2}(T_{00} - T_{01})$ are chiral fields,

$$T_L = T_L(t+x), \quad T_R = T_R(t-x).$$

Left and right movers.

 Ψ_k family of conformal fields on M: T_{ij} + relatively local fields $\mathcal{O} = I \times J$ double cone, I, J intervals of the chiral lines $t \pm x = 0$

$$\mathcal{A}(\mathcal{O}) = \{e^{i\Psi_k(f)}, \operatorname{supp} f \subset \mathcal{O}\}''$$

then by relative locality

$$\mathcal{A}(\mathcal{O})\supset\mathcal{A}_L(I)\otimes\mathcal{A}_R(J)$$

 $\mathcal{A}_L, \mathcal{A}_R$ chiral fields on $t \pm x = 0$ generated by T_L, T_R and other chiral fields

(completely) rational case: $A_L(I) \otimes A_R(J) \subset A(\mathcal{O})$ finite Jones index