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Basic objects

Our basic objects of study will be free minimal actions

G y X

of countably infinite amenable groups on the Cantor set, in
particular those which are uniquely ergodic.

Question
When is C (X ) o G classifiable?



Classifiability

By results of Elliott-Gong-Lin-Niu and Tikuisis-White-Winter, and
incorporating the Kirchberg-Phillips classification:

Theorem
The class of simple separable infinite-dimensional unital
C∗-algebras which satisfy the UCT and have finite nuclear
dimension is classified by the Elliott invariant.

Since crossed products by actions of amenable groups satisfy the
UCT by a theorem of Tu, the question of whether C (X ) o G is
classifiable thus boils down to the problem of whether it has finite
nuclear dimension.



Nuclear dimension

The nuclear dimension dimnuc(A) of a C∗-algebra A is the least
integer d ≥ 0 such that for all Ω b A and δ > 0 there exists an
(Ω, δ)-commuting diagram

A

ϕ
&&

id // A

F0 ⊕ · · · ⊕ Fd

ψ

99

such that the Fi are finite-dimensional C∗-algebras, ϕ is a c.p.c.
map, and ψ|Fi

is an order-zero c.p.c. map for each i . If no such d
exists, we define it to be ∞.



Nuclear dimension

Two possible methods for showing dimnuc(C (X ) o G ) <∞:

1. Develop an analogous notion of dimension for dynamics and
establish an inequality relating it to nuclear dimension.

2. Verify Z-stability, which is known to imply finite nuclear
dimension when the extreme tracial states form a nonempty
compact set.



Z-stability

Theorem (Hirshberg-Orovitz)

Let A be a simple separable unital nuclear C∗-algebra. Suppose
that for every n ∈ N, Ω b A, and ε > 0 there exist an order-zero
c.p.c. map ϕ : Mn → A and a v ∈ A such that

1. vv∗ = 1A − ϕ(1Mn),

2. v∗v ≤ ϕ(e11),

3. ‖[a, ϕ(b)]‖ < ε for all a ∈ Ω and norm-one b ∈ Mn.

Then A is Z-stable.



Strict comparison

Definition
Let G y X be an action on the Cantor set. Let A and B be clopen
subsets of X . We say that A is subequivalent to B if there are a
clopen partition {A1, . . . ,An} of A and s1, . . . , sn ∈ G such that
the sets s1A1, . . . , snAn are pairwise disjoint and contained in B.

Definition
An action G y X on the Cantor set is said to have strict
comparison if, for all clopen sets A,B ⊆ X , A is subequivalent to
B whenever µ(A) < µ(B) for all G -invariant Borel probability
measures µ on X .



Strict comparison

Proposition (Glasner-Weiss)

A minimal Z-action on the Cantor set has strict comparison.



Strict comparison

An action G y X on a compact space is strictly ergodic if its
minimal and uniquely ergodic.

Theorem
Let G y X be a strictly ergodic free action of a countably infinite
amenable group on the Cantor set. Suppose that the action has
strict comparison. Then C (X ) o G is Z-stable.



Castles

Let G y X be an action on a set.

A tower is a pair (S ,B) where B ⊆ X and S b G are such that
the sets sB for s ∈ S are pairwise disjoint.

The set B is the base of the tower, the set S its shape, and the
sets sB for s ∈ S its levels.

A castle is a finite collection {(Si ,Bi )}ni=1 of towers such that the
sets SiBi are pairwise disjoint.



Approximate invariance

Let G be a discrete group. Let F b G and δ > 0. We say that a
set A b G is (F , δ)-invariant if

|FA∆A|
|A|

< δ.

When e ∈ F this is the same as |FA| < (1 + δ)|A|. It implies that

|{s ∈ A : Fs ⊆ A}| < (1 + |F |δ)|A|.



Castles

Theorem (Ornstein-Weiss)

Let G y (X , µ) be a free p.m.p. action of a countably infinite
amenable group. Let F b G and δ, ε > 0. Then there exists a
measurable castle whose shapes are (F , δ)-invariant and whose
levels have union of measure at least 1− ε.



Castles

Proposition

Let G y X be a free minimal action of a countably infinite
amenable group on the Cantor set and let µ be a G -invariant Borel
probability measure on X . Let F b G and δ, ε > 0. Then there
exists a clopen castle whose shapes are (F , δ)-invariant and whose
levels have union of µ-measure at least 1− ε.



Jewett-Krieger theorem

A topological model for a p.m.p. action G y (X , µ) is an action
G y Y on a compact space and a G -invariant regular Borel
probability measure ν on Y such that the actions G y (X , µ) and
G y (Y , ν) are measure conjugate.

Theorem (Jewett, Krieger)

Every ergodic p.m.p. transformation has a strictly ergodic
topological model.



Jewett-Krieger theorem

Theorem
Let G y (X , µ) be a free p.m.p. action of a countable amenable
group and let H be a subgroup of G isomorphic to Z such that the
restriction H y (X , µ) is ergodic. Then there is a strictly ergodic
free topological model G y Y for G y (X , µ) such that the
restriction H y Y is strictly ergodic.

The proof uses tiling technology, to which we will shortly turn.



Classifiability

Theorem
Let G y X be a strictly ergodic free action of a countable
amenable group on the Cantor set. Suppose that there is a
subgroup H ⊆ G isomorphic to Z such that the restriction H y X
is strictly ergodic. Then the action G y X has strict comparison,
and hence C (X ) o G is Z-stable by a previous theorem.

Combining the previous two theorems:

Theorem
Let G be a nontorsion countably infinite amenable group. Then
there is a strictly ergodic free action G y X on the Cantor set
such that C (X ) o G is classifiable.



Tilings of amenable groups

Theorem (Ornstein-Weiss)

Let ε > 0. Let F b G and δ > 0. Then there exist (F , δ)-invariant
shapes S1, . . . ,Sn b G which ε-quasitile every sufficiently left
invariant set A b G .

This means there exist sets Ci b G (tile centres) such that the
tiles Sic for i = 1, . . . , n and c ∈ Ci

(i) are ε-disjoint and

(ii) proportionally cover all but ε of A.



Tilings of amenable groups

Theorem (Weiss)

Suppose that G is residually finite and amenable. Let F b G and
δ > 0. Then there is an (F , δ)-invariant set S b G and a
finite-index normal subgroup N ⊆ G such that

G =
⊔
t∈N

St.



Tilings of amenable groups

Theorem (Downarowicz-Huczek-Zhang)

Suppose that G is amenable. Let F b G and δ > 0. Then there is
a tiling of G by translates of finitely many (F , δ)-invariant shapes.

In other words, we can write

G =
n⊔

i=1

⊔
c∈Ci

Sic

where each Si is a finite (F , δ)-invariant set.



Tilings of amenable groups



Tilings of amenable groups

Definition
Let L ⊆ G and F b G . Let {Fn} be a Følner sequence for G .
Define the lower Banach density of L by

D(L) = lim sup
n→∞

inf
s∈G

|L ∩ Fns|
|Fn|

The upper Banach density is defined similarly.

Proposition

The above limit supremum is in fact a limit and it doesn’t depend
on the Følner sequence. Similarly for upper Banach density.



Tilings of amenable groups

Theorem (Rado)

Let B and A be sets, and let b 7→ Fb be an assignment to each
element of B a finite subset of A such that

|E | ≤
∣∣∣∣ ⋃
b∈E

Fb

∣∣∣∣
for every finite set E ⊆ B. Then there is an injection

ϕ : B → A

such that ϕ(b) ⊆ Fb for all b ∈ B.



Tilings of amenable groups



Castles

Theorem (Ornstein-Weiss)

Let G y (X , µ) be a free p.m.p. action of a countably infinite
amenable group. Let F b G and δ > 0. Let ε > 0. Then there
exists a measurable castle whose shapes are (F , δ)-invariant and
whose levels have union of measure at least 1− ε.



Castles

Theorem
Let G y (X , µ) be a free p.m.p. action of a countably infinite
amenable group. Let F b G and δ > 0. Let ε > 0. Then there
exists a measurable castle whose shapes are (F , δ)-invariant and
whose levels have conull union.

One can use this to establish the more general versions of the
Jewett-Krieger theorem.



Generic free minimal actions

Theorem
Let G be a countably infinite amenable group. Then a generic free
minimal action G y X admits a sequence of clopen castles which
partition X and have shapes which become more and more
invariant.



Generic free minimal actions

Proposition

Suppose that the action G y X admits a sequence of clopen
castles which partition X and have shapes which become more and
more invariant. Then C (X ) o G is Z-stable.

Theorem
Let G be a countably infinite amenable group. Then for a generic
free minimal action G y X the crossed product C (X ) o G is
Z-stable.

Actions as in the proposition have strict comparison. Does every
free minimal action on the Cantor set have strict comparison?


