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Classification of near-group categories

Let C C Endy(M) be a near-group category with a finite group G.
0% =l + mlp].
geG

Assume G is non-trivial and m # 0.

If d = d(p) = "V G

> is irrational, then G is abelian and m is a
multiple of |G|.
Moreover, the categorifications of R(G,m) are completely classified by
explicit polynomial equations.

A quadratic form on G appears in the polynomial equations:

(g,h) = a(g)a(h)a(g +h), a(-g)=alg),



Character formula

agop=p.
Se € (id, p?), Sy = ay(Se) € (ag, p?).
U(g) € (p, pag), U(g)Se = Se.

() = @D CS,5; @ B,

geG

U(g) = > xn(9)ShSi; + Ux(9),
heG

where K = (p, p?).
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Irrational case

(g9,h) := xn(g) is a non-degenerate (in fact, symmetric) bicharacter.

ar(U(9)) € (p, pag) = an(U(g)) = c(g, H)U(g).

(g, h)Se = c(g, W)U(g)Se = an(U(g))Se
= ap(U(9)S-n) = x-n(g)an(S—1n) = X—n(g)Se,

and x_n(g) = c(g, h) is a non-degenerate character. O

Ux(g) € B(K) is given by K> T — U(g)T

Definition of two other representations on board.



Irrational case (continued)

Let #(G) be the universal C*-algebra generated by three unitary
representations vy, v, v2 of G, and a unitary w of period 3 satisfying

vit1(g)vi(h) = (h, g)vi(h)vit1(9),

w vi(g)w = vit1(9),
where i € Z/3Z.

We have a representation of H(G) in K = (p, p?).



Irrational case (continued)

Lemma

33|G| irreducible representations of H(G), realized in /(G as
Ta,c(vo(9))f(h) = (g, h) f(h),
Ta,c(v1(9))f(h) = f(h +

9),
Ta,c(v2(9)) f(h) = a(h)a(h — g) f(h — g),

Tac(w) f(h) = ﬁ ijawmf(k),
where a : G — T and ¢ € T satisfy
a(g + h)(g, h) = a(g)a(h),

A alg) = vn.

geG




Quadratic categories with (G, 7, m)

Definition
Let G be a finite group, 7 € Aut(G) be an involution, and let m € N.
A quadratic category of type (G, 7, m) is a fusion category C with
Irr(C) = G U{g ® p}geq, satisfying

[91[h] = [gh], g,h € G,

[9le] = [pllg"],
[o]* = lid] @m y_[g][o].

geG

The even part of the Haagerup subfactor is a quadratic category of type
(Z?n _17 1)

Asaeda-Haagerup subfactor can be constructed from a quadratic category
of type (Z4,—1,2).



Obstructions

Let C C Endo(M) be a quadratic category of type (G, T, m).

Qg Oy, = Adzl Ug,h O Qgp,
poagr :Adanoagop.

We seek obstructions to making Uy, =1 and V, = 1.

A quadratic category of type “(G,7,0)" is Vecg, 7, .

Recall that the Es-term of the spectral sequence computing
H*(G x; Zs,T) is EY? = HP(Zy, H1(G, T)).

We use this analogy to define invariants of quadratic categories of type
(G, 7.m).



0,3

Jw € Z3(G,CX) satisfying ag(Uni)Ugnk = w(g, b, K)Ug hUgh ;-

3¢(g, h) € T satisfying

w(g, h, k) = w(g™, ", k7)E(h, k)E(gh, k)~ E(g, hk)E(g, h) ™"

In particular, [w] € H3(G,T)%*? = H(Zy, H3(G,T)) = Eg’?’.

poagroap =poAdUyr pr o aignyr = Ad(p(Ug,n)Vgn) © agn © p,
poagroapr =Ad(Vyay(Vy))oagoapop=Ad(Vyay(Vh)Ugn) o agh o p,
= 3¢(g, h) € T satistying Vyory (Va)Ug n = £(9, 1) p(Ug,n) V-

Definition

O3(C) := [w] € H3(G,T)".




1,2
E2

Assume ¢*3(C) = 0.

We may assume « is an action, £ € Z2(G, T) and
poag =AdV oa40p,

Vgag(vh) = E(gv h)Vgh

Lemma

In(g) € T satisfying

(g7, hT)E(g, h) = n(gh)n(g) " n(h)~".

In particular, the 2-cocycle ¢ € Z*(G,C*) gives a class in
HY(Zy, H*(G,C*)) = Ey*.

\

Using rigidity, we get Vj € (ayr—1 0 p, po a,-1), and n(g) € T satisfying

Vigry-1 = n(g)Vy.

Definition

Define ¢12(C) € H'(Zy, H*(G,T)) by the class given by &.




Condition for Cuntz algebra models

Assume further that ¢"2(C) = 0.
Then we can choose V; satisfying

poag =AdV,oa40np,
Voag(Va) = Vgh.

Thus 3W € U(M) satisfying V; = W lay (W), and
AdWopoayg =ago AdWop.

Replacing p with AdW o p, we get
po gt = aygop.
Summary: To obtain a Cuntz algebra model for C, we need ¢"3(C) = 0

and ¢12(C) = 0.
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Vanishing theorem

M-M idps

\/\//()//
/\/\\//

N - N o o

M- N

The Haagerup subfactor is 3%3.

Theorem (1)

When a quadratic category C of type (G, 7,1) comes from a 3¢ -subfactor,
then ¢(*3(C) € H3(G, T)?2 and ¢'2(C) € HY(Za, H*(G, T)) vanish.

| A\

Proof

log][5] = [£] = *3(C) = 0.
(k,pk) 2 T — Vy04(T) € (K, pr) gives a projective representation of G
with dim(k, pk) = |G| — 1 = ¢12(C) = 0. O




Let C be a spherical quadratic category with (G, T, m).
If G is an odd group and m is an odd number, then G is abelian and
gT =g ! forany g € G.

Let (m, V) be an irreducible representation of K(C).
Then the formal codegree f, for 7 is defined by

fr= Y Tr(r(X))m(X).

Xelrr(C)

Since fr commutes with 7(X) for every X € Irr(C), it is a scalar.

Theorem (Ostrik 2009)

If C is spherical, there exists a simple object in the Drinfeld center Z(C)
whose dimension is dimC/ fr.
In particular, dim C/ f is a cyclotomic integer.
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Odd ¢

Lemma

If G and m are odd, for any non-trivial irreducible representation m of G,
7w and 7" are inequivalent.

| A\

Proof.
Suppose that 7 is a non-trivial irreducible representation of G with m = 77,
Then 7 extends to an irreducible representation 7’ of K(C) whose formal
codegree is fr = 2|G|/dim~, and
dimC . m|G|dim 7 dim p
—— =dim7 + .
f7r’ 2

This is not an algebraic integer. [
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Generalized Haagerup categories

Definition

A generalized Haagerup category with a finite abelian group G is a
quadratic category C with (G, —1,1) satisfying ¢*3(C) = 0 and
c2(C) = 0.

Caution:

(1) There exist two quadratic categories of type (Zs3, —1,1) with
O3(C) #£ 0.

(2) To construct the Asaeda-Haagerup subfactors, we need a quadratic
category of type (Z4, —1,2) and ¢*3(C) = 0.
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Classification theorem

Theorem

Generalized Haagerup categories are completely classified by explicit
polynomial equations.

More precisely, there exists a one-to-one correspondence between the
equivalence classes of generalized Haagerup categories and the
H?(G,T) x Aut(G)-orbits of the gauge equivalence classes of the
solutions of the polynomial equations.

For a fixed solution, the stabilizer subgroup is isomorphic to the outer
automorphism group of the corresponding category.




Polynomial equations for odd G

Variables: A(g,h) € C and € T with ® = 1.

S An0) =1,
heG
5 0k.0
ZA(h_gak)A(h’_g)k)_dg,g/_ d )

heG
A(k, h) = A(h, k),
A(h k) = A(~k,h — k) = A(k — h, — )7,

> Al +y, DA(=x,1+ p)A(—y, 1+ q)
leG

5200
= Ap+ g+ a+y)Alg+y.ptaty) -
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Solutions for the polynomial equations

G # (sols/H*(G,T) x Aut(G)) | With Q-system for id ®p
Zo 1 1
Zs 2 1
Zy 2 1
Z2 X Z2 1 1
Zs, 2 1
Ze 4 2
L7 >2 1
Zg >1 >1
Z4 X ZQ >1 >1
ZQ X Zg X ZQ ? ?
Zg >2 2
Zg X Zg ? 0
VAR ? ?
Z11 > 2 2
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From generalized Haagerup to near-group

Theorem
Let C C Endy(M) be a quadratic category of type (G, —1,m) with an odd
abelian G and ¢"3(C) = [w].
Let
L M (%) MOPP — (M (%) MOpp) Na®aopp G

Then 1o (p ®id) o  generates a near-group category with group
Irr(D*(G)) and multiplicity m|G/|?.

From G = Z3 and m = 1, we get a near group categories for Z3 x Zs or
Zg with multiplicity 9.

19




Orbifold (de-equivariantization) of near-group categories |

Let C C End(M) be a near-group category with m = |G)|.
If H is Lagrangian, i.e. H = H* and a|g = 1, then de-equivariantization
of C by H is a quadratic category of type (G/H,—1,1).

There is a unique near-group category for Zs X Zs with m = 9.
It has two Lagragians, giving the Haagerup category and Grossman-Snyder
category.

There are two near-group categories for Zg.
They have Lagrangian Zs, giving C with non-trivial ¢%3(C).

There exist exactly 4 quadratic categories type (Zs,—1,1).
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Twisted orbifold (de-equivariantization) of near-group
categories

Theorem

Let C C End(M) be a near-group category with m = |G]|.
Assume G = K x H and H = 7%

Assume Jw € Z2(H,T) such that (hy,hs) = w(hy, ha)w(ha, h1) is
non-degenerate on H.

Then w-twisted de-equivariantization of C by H is a near-group category
with group K and multiplicity 2'|K|.

There are two solutions for K = Zs, H = Zo X Zo satisfying the above
conditions, and they produce 2 near-group categories of Z3 with
multiplicity 6.
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