An operator algebra approach to the classification of certain fusion categories III

Masaki Izumi

Graduate School of Science, Kyoto University

August 3, 2016 at Sendai

Classification of near-group categories

Let $\mathcal{C} \subset \operatorname{End}_0(M)$ be a near-group category with a finite group G.

$$[\rho^2] = \sum_{g \in G} [\alpha_g] + m[\rho].$$

Assume G is non-trivial and $m \neq 0$.

If $d=d(\rho)=\frac{m+\sqrt{m^2+4|G|}}{2}$ is irrational, then G is abelian and m is a multiple of |G|.

Moreover, the categorifications of R(G,m) are completely classified by explicit polynomial equations.

A quadratic form on G appears in the polynomial equations:

$$\begin{split} \langle g,h\rangle &= a(g)a(h)\overline{a(g+h)}, \quad a(-g) = a(g), \\ c^3 &= \frac{1}{\sqrt{|G|}}\sum_{g\in G}\overline{a(g)}. \end{split}$$

Character formula

$$\begin{aligned} &\alpha_g \circ \rho = \rho. \\ &S_e \in (\mathrm{id}, \rho^2), \ S_g = \alpha_g(S_e) \in (\alpha_g, \rho^2). \\ &U(g) \in (\rho, \rho \alpha_g), \ U(g) S_e = S_e. \end{aligned}$$

$$(\rho^2, \rho^2) = \bigoplus_{g \in G} \mathbb{C}S_g S_g^* \oplus B(\mathcal{K}),$$

$$U(g) = \sum_{h \in G} \chi_h(g) S_h S_h^* + U_{\mathcal{K}}(g),$$

where $\mathcal{K} = (\rho, \rho^2)$.

$$d = \frac{m + \sqrt{m^2 + 4|G|}}{2} \in \mathbb{R} \setminus \mathbb{Q} \Rightarrow$$
$$\bigoplus_{h \in G} \chi_h \cong \lambda, \quad U_{\mathcal{K}} \cong \frac{m}{|G|} \lambda.$$

Lemma

 $\langle g,h \rangle := \chi_h(g)$ is a non-degenerate (in fact, symmetric) bicharacter.

Proof.

 $\alpha_h(U(g)) \in (\rho, \rho\alpha_g) \Rightarrow \alpha_h(U(g)) = {}^\exists c(g, h) U(g).$

$$c(g,h)S_e = c(g,h)U(g)S_e = \alpha_h(U(g))S_e$$
$$= \alpha_h(U(g)S_{-h}) = \chi_{-h}(g)\alpha_h(S_{-h}) = \chi_{-h}(g)S_e$$

and $\chi_{-h}(g) = c(g, h)$ is a non-degenerate character.

 $U_{\mathcal{K}}(g) \in B(\mathcal{K})$ is given by $\mathcal{K} \ni T \mapsto U(g)T$.

Definition of two other representations on board.

Definition

Let $\mathcal{H}(G)$ be the universal C*-algebra generated by three unitary representations v_0 , v_1 , v_2 of G, and a unitary w of period 3 satisfying

$$v_{i+1}(g)v_i(h) = \langle h, g \rangle v_i(h)v_{i+1}(g),$$

$$w^*v_i(g)w = v_{i+1}(g),$$

where $i \in \mathbb{Z}/3\mathbb{Z}$.

We have a representation of $\mathcal{H}(G)$ in $\mathcal{K} = (\rho, \rho^2)$.

Irrational case (continued)

Lemma

 $\exists 3|G|$ irreducible representations of $\mathcal{H}(G)$, realized in $\ell^2(G)$ as

$$\pi_{a,c}(v_0(g))f(h) = \langle g,h\rangle f(h),$$

$$\pi_{a,c}(v_1(g))f(h) = f(h+g),$$

$$\pi_{a,c}(v_2(g))f(h) = a(h)\overline{a(h-g)}f(h-g),$$

$$\pi_{a,c}(w)f(h) = \frac{c}{\sqrt{n}}\sum_k a(h)\overline{\langle h,k\rangle}f(k),$$

where $a:G \rightarrow \mathbb{T}$ and $c \in \mathbb{T}$ satisfy

$$a(g+h)\langle g,h\rangle = a(g)a(h),$$
$$c^{3}\sum_{g\in G}a(g) = \sqrt{n}.$$

Quadratic categories with (G, τ, m)

Definition

Let G be a finite group, $\tau \in Aut(G)$ be an involution, and let $m \in \mathbb{N}$.

A quadratic category of type (G, τ, m) is a fusion category C with $Irr(C) = G \sqcup \{g \otimes \rho\}_{g \in G}$, satisfying

$$\begin{split} [g][h] &= [gh], \quad g,h \in G, \\ [g][\rho] &= [\rho][g^{\tau}], \\ [\rho]^2 &= [\mathrm{id}] \oplus m \sum_{g \in G} [g][\rho]. \end{split}$$

The even part of the Haagerup subfactor is a quadratic category of type $(\mathbb{Z}_3, -1, 1)$.

Asaeda-Haagerup subfactor can be constructed from a quadratic category of type $(\mathbb{Z}_4,-1,2).$

Obstructions

Let $\mathcal{C} \subset \operatorname{End}_0(M)$ be a quadratic category of type (G, τ, m) .

$$\begin{aligned} \alpha_g \circ \alpha_h &= \mathrm{Ad}^\exists \, U_{g,h} \circ \alpha_{gh}, \\ \rho \circ \alpha_{g^\tau} &= \mathrm{Ad}^\exists \, V_g \circ \alpha_g \circ \rho. \end{aligned}$$

We seek obstructions to making $U_{g,h} = 1$ and $V_g = 1$.

A quadratic category of type " $(G, \tau, 0)$ " is $\operatorname{Vec}_{G \rtimes_{\tau} \mathbb{Z}_2}^{\omega}$.

Recall that the E_2 -term of the spectral sequence computing $H^*(G \rtimes_{\tau} \mathbb{Z}_2, \mathbb{T})$ is $E_2^{p,q} = H^p(\mathbb{Z}_2, H^q(G, \mathbb{T})).$

We use this analogy to define invariants of quadratic categories of type (G, τ, m) .

$\exists \omega \in Z^3(G,\mathbb{C}^{\times}) \text{ satisfying } \alpha_g(U_{h,k})U_{g,hk} = \omega(g,h,k)U_{g,h}U_{gh,k}.$

Lemma

 $\exists \xi(g,h) \in \mathbb{T} \text{ satisfying }$

$$\omega(g,h,k) = \omega(g^{\tau},h^{\tau},k^{\tau})\xi(h,k)\xi(gh,k)^{-1}\xi(g,hk)\xi(g,h)^{-1}.$$

In particular, $[\omega] \in H^3(G, \mathbb{T})^{\mathbb{Z}_2} = H^0(\mathbb{Z}_2, H^3(G, \mathbb{T})) = E_2^{0,3}$.

$$\rho \circ \alpha_{g^{\tau}} \circ \alpha_{h^{\tau}} = \rho \circ \operatorname{Ad} U_{g^{\tau}, h^{\tau}} \circ \alpha_{(gh)^{\tau}} = \operatorname{Ad}(\rho(U_{g,h})V_{gh}) \circ \alpha_{gh} \circ \rho,$$

$$\begin{split} \rho \circ \alpha_{g^{\tau}} \circ \alpha_{h^{\tau}} &= \mathrm{Ad}(V_g \alpha_g(V_h)) \circ \alpha_g \circ \alpha_h \circ \rho = \mathrm{Ad}(V_g \alpha_g(V_h) U_{g,h}) \circ \alpha_{gh} \circ \rho, \\ \Rightarrow \exists \xi(g,h) \in \mathbb{T} \text{ satisfying } V_g \alpha_g(V_h) U_{g,h} = \xi(g,h) \rho(U_{g,h}) V_{gh}. \end{split}$$

Definition

 $\mathfrak{c}^{0,3}(\mathcal{C}) := [\omega] \in H^3(G, \mathbb{T})^{\tau}.$

Assume $\mathfrak{c}^{0,3}(\mathcal{C}) = 0$. We may assume α is an action, $\xi \in Z^2(G, \mathbb{T})$ and $\rho \circ \alpha_{g^{\tau}} = \operatorname{Ad} V_g \circ \alpha_g \circ \rho$, $V_g \alpha_g(V_h) = \xi(g, h) V_{gh}$.

Lemma

 $\exists \eta(g) \in \mathbb{T}$ satisfying

$$\xi(g^{\tau}, h^{\tau})\xi(g, h) = \eta(gh)\eta(g)^{-1}\eta(h)^{-1}.$$

In particular, the 2-cocycle $\xi \in Z^2(G, \mathbb{C}^{\times})$ gives a class in $H^1(\mathbb{Z}_2, H^2(G, \mathbb{C}^{\times})) = E_2^{1,2}$.

Using rigidity, we get $\overline{V_g} \in (\alpha_{g^{\tau-1}} \circ \rho, \rho \circ \alpha_{g^{-1}})$, and $\eta(g) \in \mathbb{T}$ satisfying $\overline{V_{(g^{\tau})^{-1}}} = \eta(g)V_g$.

Definition

Define $\mathfrak{c}^{1,2}(\mathcal{C}) \in H^1(\mathbb{Z}_2, H^2(G, \mathbb{T}))$ by the class given by ξ .

Condition for Cuntz algebra models

Assume further that $\mathfrak{c}^{1,2}(\mathcal{C}) = 0$. Then we can choose V_g satisfying

$$\begin{split} \rho \circ \alpha_{g^{\tau}} &= \mathrm{Ad}\, V_g \circ \alpha_g \circ \rho, \\ V_g \alpha_g(V_h) &= V_{gh}. \end{split}$$

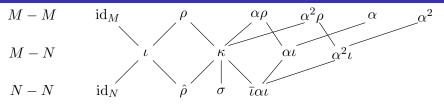
Thus
$$\exists W \in \mathcal{U}(M)$$
 satisfying $V_g = W^{-1}\alpha_g(W)$, and
 $\operatorname{Ad} W \circ \rho \circ \alpha_{g^{\tau}} = \alpha_g \circ \operatorname{Ad} W \circ \rho$.

Replacing ρ with $\operatorname{Ad} W \circ \rho$, we get

$$\rho \circ \alpha_{g^{\tau}} = \alpha_g \circ \rho.$$

Summary: To obtain a Cuntz algebra model for C, we need $\mathfrak{c}^{0,3}(C) = 0$ and $\mathfrak{c}^{1,2}(C) = 0$.

Vanishing theorem



The Haagerup subfactor is $3^{\mathbb{Z}_3}$.

Theorem (I)

When a quadratic category C of type $(G, \tau, 1)$ comes from a 3^G -subfactor, then $\mathfrak{c}^{0,3}(\mathcal{C}) \in H^3(G, \mathbb{T})^{\mathbb{Z}_2}$ and $\mathfrak{c}^{1,2}(\mathcal{C}) \in H^1(\mathbb{Z}_2, H^2(G, \mathbb{T}))$ vanish.

Proof.

$$\begin{split} & [\alpha_g][\kappa] = [\kappa] \Rightarrow \mathfrak{c}^{0,3}(\mathcal{C}) = 0. \\ & (\kappa, \rho \kappa) \ni T \mapsto V_g \alpha_g(T) \in (\kappa, \rho \kappa) \text{ gives a projective representation of } G \\ & \text{with } \dim(\kappa, \rho \kappa) = |G| - 1 \Rightarrow \mathfrak{c}^{1,2}(\mathcal{C}) = 0. \end{split}$$

Theorem (I)

Let C be a spherical quadratic category with (G, τ, m) . If G is an odd group and m is an odd number, then G is abelian and $g^{\tau} = g^{-1}$ for any $g \in G$.

Let (π, V_{π}) be an irreducible representation of $K(\mathcal{C})$. Then the formal codegree f_{π} for π is defined by

$$f_{\pi} = \sum_{X \in \operatorname{Irr}(\mathcal{C})} \operatorname{Tr}(\pi(X))\pi(\overline{X}).$$

Since f_{π} commutes with $\pi(X)$ for every $X \in Irr(\mathcal{C})$, it is a scalar.

Theorem (Ostrik 2009)

If C is spherical, there exists a simple object in the Drinfeld center Z(C) whose dimension is $\dim C/f_{\pi}$. In particular, $\dim C/f_{\pi}$ is a cyclotomic integer.

Lemma

If G and m are odd, for any non-trivial irreducible representation π of G, π and π^{τ} are inequivalent.

Proof.

Suppose that π is a non-trivial irreducible representation of G with $\pi \cong \pi^{\tau}$. Then π extends to an irreducible representation π' of $K(\mathcal{C})$ whose formal codegree is $f_{\pi'} = 2|G|/\dim \pi$, and

$$\frac{\dim \mathcal{C}}{f_{\pi'}} = \dim \pi + \frac{m|G|\dim \pi \dim \rho}{2}$$

This is not an algebraic integer.

Definition

A generalized Haagerup category with a finite abelian group G is a quadratic category C with (G, -1, 1) satisfying $\mathfrak{c}^{0,3}(C) = 0$ and $\mathfrak{c}^{1,2}(C) = 0$.

Caution:

(1) There exist two quadratic categories of type $(\mathbb{Z}_3,-1,1)$ with $\mathfrak{c}^{0,3}(\mathcal{C})\neq 0.$

(2) To construct the Asaeda-Haagerup subfactors, we need a quadratic category of type $(\mathbb{Z}_4, -1, 2)$ and $\mathfrak{c}^{0,3}(\mathcal{C}) = 0$.

Theorem

Generalized Haagerup categories are completely classified by explicit polynomial equations.

More precisely, there exists a one-to-one correspondence between the equivalence classes of generalized Haagerup categories and the $H^2(G, \mathbb{T}) \rtimes \operatorname{Aut}(G)$ -orbits of the gauge equivalence classes of the solutions of the polynomial equations.

For a fixed solution, the stabilizer subgroup is isomorphic to the outer automorphism group of the corresponding category.

Polynomial equations for odd G

Variables: $A(g,h) \in \mathbb{C}$ and $\eta \in \mathbb{T}$ with $\eta^3 = 1$.

$$\sum_{h \in G} A(h,0) = -\frac{\overline{\eta}}{d},$$

$$\sum_{h \in G} A(h-g,k) \overline{A(h-g',k)} = \delta_{g,g'} - \frac{\delta_{k,0}}{d},$$

$$A(k,h) = A(h,k),$$

$$A(h,k) = A(-k,h-k)\eta = A(k-h,-h)\overline{\eta},$$

$$\sum_{l \in G} A(x+y,l)A(-x,l+p)A(-y,l+q) = A(p+x,q+x+y)A(q+y,p+x+y) - \frac{\delta_{x,0}\delta_{y,0}}{d}.$$

Solutions for the polynomial equations

G	# (sols/ $H^2(G, \mathbb{T}) \times \operatorname{Aut}(G)$)	With Q-system for $\operatorname{id}\oplus ho$
\mathbb{Z}_2	1	1
\mathbb{Z}_3	2	1
\mathbb{Z}_4	2	1
$\mathbb{Z}_2 \times \mathbb{Z}_2$	1	1
\mathbb{Z}_5	2	1
\mathbb{Z}_6	4	2
\mathbb{Z}_7	≥ 2	1
\mathbb{Z}_8	≥ 1	≥ 1
$\mathbb{Z}_4 \times \mathbb{Z}_2$	≥ 1	≥ 1
$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$?	?
\mathbb{Z}_9	≥ 2	2
$\mathbb{Z}_3 imes \mathbb{Z}_3$?	0
\mathbb{Z}_{10}	?	?
\mathbb{Z}_{11}	≥ 2	2

Theorem

Let $C \subset \operatorname{End}_0(M)$ be a quadratic category of type (G, -1, m) with an odd abelian G and $\mathfrak{c}^{0,3}(\mathcal{C}) = [\omega]$. Let $\iota: M \otimes M^{\operatorname{opp}} \hookrightarrow (M \otimes M^{\operatorname{opp}}) \rtimes_{\alpha \otimes \alpha^{\operatorname{opp}}} G.$

Then $\iota \circ (\rho \otimes id) \circ \overline{\iota}$ generates a near-group category with group $\operatorname{Irr}(D^{\omega}(G))$ and multiplicity $m|G|^2$.

From $G = \mathbb{Z}_3$ and m = 1, we get a near group categories for $\mathbb{Z}_3 \times \mathbb{Z}_3$ or \mathbb{Z}_9 with multiplicity 9.

Theorem

Let $\mathcal{C} \subset \operatorname{End}(M)$ be a near-group category with m = |G|. If H is Lagrangian, i.e. $H = H^{\perp}$ and $a|_H = 1$, then de-equivariantization of \mathcal{C} by H is a quadratic category of type (G/H, -1, 1).

There is a unique near-group category for $\mathbb{Z}_3 \times \mathbb{Z}_3$ with m = 9. It has two Lagragians, giving the Haagerup category and Grossman-Snyder category.

There are two near-group categories for \mathbb{Z}_9 . They have Lagrangian \mathbb{Z}_3 , giving \mathcal{C} with non-trivial $\mathfrak{c}^{0,3}(\mathcal{C})$.

Corollary

There exist exactly 4 quadratic categories type $(\mathbb{Z}_3, -1, 1)$.

Twisted orbifold (de-equivariantization) of near-group categories

Theorem

Let $C \subset \operatorname{End}(M)$ be a near-group category with m = |G|. Assume $G = K \times H$ and $H = \mathbb{Z}_2^{2l}$. Assume $\exists \omega \in Z^2(H, \mathbb{T})$ such that $\langle h_1, h_2 \rangle = \omega(h_1, h_2)\overline{\omega(h_2, h_1)}$ is non-degenerate on H. Then ω -twisted de-equivariantization of C by H is a near-group category with group K and multiplicity $2^l |K|$.

There are two solutions for $K = \mathbb{Z}_3$, $H = \mathbb{Z}_2 \times \mathbb{Z}_2$ satisfying the above conditions, and they produce 2 near-group categories of \mathbb{Z}_3 with multiplicity 6.