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End0(M)

Let M be a type III factor.
End0(M) is a rigid tensor category with ρ⊗ σ = ρ ◦ σ, and
(ρ, σ) = {T ∈ M ; Tρ(x) = σ(x)T, ∀x ∈ M}.

Recall ∃Rρ ∈ (id, ρρ), ∃Rρ ∈ (id, ρρ) satisfying

Rρ
∗
ρ(Rρ) = R∗

ρρ(Rρ) = 1, R∗
ρRρ = Rρ

∗
Rρ = d(ρ).

If ρ is irreducible and ρ = ρ, we have Rρ = ϵRρ, ϵ ∈ {1,−1}.
We say that ρ is real (resp. pseudo-real) if ϵ = 1 (resp. ϵ = −1).
(In fact, ϵ=Frobenius-Schur indicator.)

If ρ is irreducible, (ρ, σµ) is a Hilbert space with
⟨T1, T2⟩ := T ∗

2 T1 ∈ (ρ, ρ) = C for T1, T2 ∈ (ρ, σµ).
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Near-group category

Definition (Siehler 2003)

Let G be a finite group.
A near-group category with G is a fusion category C with
Irr(C) = G ⊔ {ρ}.

The possible fusion rules are

[g][h] = [gh], g, h ∈ G,

[g][ρ] = [ρ][g] = [ρ],

[ρ]2 =
∑
g∈G

[g]⊕m[ρ], m = 0, 1, 2, . . . .

We denote by R(G,m) the corresponding based ring.
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Known classification results

Theorem (Tambara-Yamagami 1998)

R(G, 0) allows a categorification if and only if G is abelian.
When G is abelian, the categorifications of R(G, 0) are in one-to-one
correspondence with the data {(ϵ, ⟨·, ·⟩)}, where ϵ ∈ {1,−1} and
⟨·, ·⟩ : G×G → T is a non-degenerate symmetric bicharacter.

These categories are called Tambara-Yamagami categories.

Theorem (Ostrik, 2003)

R({e},m) allows a categorification if and only if m = 1.
When m = 1, there exists a unique categorification up to Galois conjugate.
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Known classification results (continued)

Theorem (Siehler 2003)

R(G, |G| − 1) allows a categorification if and only if G is a cyclic group
and q = |G|+ 1 is a prime power.

Theorem (Etingof-Gelaki-Ostrik 2004)

R(Zn, n− 1) allows a categorification if and only if q = n+ 1 is a prime
power.
Except for n = 2, 3, 7, there exists a unique categorification Rep(Fq ⋊F×

q ).
There are 3 categorifications for n = 2, and there are 2 for n = 3, 7.

The exceptions come from H3(Fq,C×)F
×
q .
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General theorem

Let C be a near-group category with a finite group G.

Let d = d(ρ) =
m+

√
m2+4|G|
2 .

We consider only C∗ fusion categories.

Theorem

Assume G is non-trivial and m ̸= 0.
If d is rational, then either of the following holds:

(i) m = |G| − 1 (already classified by Siehler and Etingof-Gelaki-Ostrik).

(ii) G is an extra-special 2-group of order 22a+1 and m = 2a.
(a 2-group is extra-special if [G,G] = Z(G) ∼= Z2, e.g. D8 and Q8.)
For each extra-special 2-group G of order 22a+1, there exist exactly 3
categorifications of R(G, 2a).

If d is irrational, then G is abelian and m is a multiple of |G|.
Moreover, the categorifications of R(G,m) are completely classified by
explicit polynomial equations.
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Polynomial equations for the categorifications of R(G, |G|)
⟨·, ·⟩ : G×G → T: non-degenerate symmetric bicharacter,
a : G → T, b : G → C, c ∈ T,

⟨g, h⟩ = a(g)a(h)a(g + h), a(−g) = a(g),

c3 =
1√
|G|

∑
g∈G

a(g),

b(0) =
−1

d
, b(g) =

ca(g)√
|G|

∑
h∈G

⟨g, h⟩b(h),

b(g) = a(g)b(−g),

|b(g)| = 1√
|G|

, g ∈ G \ {0},

∑
g∈G

b(g + h)b(g + k)b(g) = ⟨h, k⟩b(h)b(k)− c

d
√

|G|
.
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Polynomial equations for the categorification of R(G, |G|)
(continued)

Evans-Gannon determined the solutions for #G ≤ 13, and they always
exist except for G = Z2 × Z2 × Z2.

G # (solutions/Aut(G))

Z2 2

Z3 2

Z4 2

Z5 3

Z6 4

Z7 2

Z8 8

Z9 2

Z10 4

Z11 4

Z12 4

Z13 4
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Higher multiplicity case

G = Z2 ⇒ m ≤ 2 (Ostrik).

G = Z3 ⇒ m ≤ 6 (Larson),
For m = 6, there exist exactly two near-group categories (Liu-Snyder,
Evans-Pugh, M.-I.).

G = Z4 and Z2 ×Z2: There is no near-group categories for m = 8 (M.-I.).

9 / 1



Strategy for the proof

Step I: Show the group part has trivial H3(G,T) obstruction, and a
privileged lifting.

Step II: Construct a unitary representation of G and show a character
formula.

Step III: Rational abelian case:
Use group actions on factors and intermediate subfactors to reduce the
problem to cohomology computation.

Step IV: Rational non-commutative case:
Necessity of G = extra-special 2-groups: Use group action on factors and
intermediate subfactors.
Existence: Cuntz algebra endomorphisms.

Step III: Irrational case.
Quadratic form: Construct 3 unitary representations.
Existence: Cuntz algebra endomorphisms.
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Lifting

Assume C ⊂ End0(M) is a near-group category with G ̸= {e} and m ̸= 0.
Then Irr(C) = {[αg]}g∈G ⊔ {[ρ]}.

Since [αg][ρ] = [ρ], we may assume αg ◦ ρ = ρ.
(Ad∃ Ug ◦ αg = ρ, replace αg with AdUg ◦ αg).

We get αg ◦ αh = αgh.
(ρ = αg ◦ αh ◦ ρ and αg ◦ αh = Ad∃ Ug,h ◦ αgh

⇒ AdUg,h ◦ ρ = ρ ⇒ Ug,h ∈ T ⇒ αg ◦ αh = αgh.)

α has trivial H3-obstruction and a privileged lifting to an action.
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Cuntz algebra endomorphisms

Choose an isometry Se ∈ (id, ρ2).
Then S∗

eρ(Se) =
ϵ
d , where d = d(ρ) = (m+

√
m2 + 4|G|)/2.

Set Sg = αg(Se) ∈ (αg, ρ
2).

Choose an ONB {Ti}mi=1 of (ρ, ρ2).

{Sg}g∈G ∪ {Ti}mi=1 satisfies the Cuntz algebra O|G|+m-relation, that is,
having mutually orthogonal ranges with summation 1.

Moreover αg and ρ preserve the ∗-algebra generated by
{Sg}g∈G ∪ {Ti}mi=1.

Proof on board.

12 / 1



Character formula

Since [ραg] = [ρ], ∃U(g) ∈ (ρ, ραg).
Since U(g)Se ∈ (id, ραgρ) = (id, ρ2) = CSe, normalize U(g) by
U(g)Se = Se.

{U(g)}g∈G is a unitary representation of G in
(ρ, ραg) ⊂ (ρ2, ραgρ) = (ρ2, ρ2).

Since [ρ2] =
∑

g∈G[αg] +m[ρ],

(ρ2, ρ2) =
⊕
g∈G

CSgS
∗
g ⊕B(K),

where K = (ρ, ρ2), and we have decomposition

U(g) =
∑
h∈G

χh(g)ShS
∗
h + UK(g).

Compute the categorical trace of the both sides on board.
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Character formula (continued)

(1 +
m

|G|
d(ρ)) Tr(λg) =

∑
h∈G

χh(g) + d(ρ)Tr(UK(g)).

Lemma

d =
m+

√
m2+4|G|
2 ∈ R \Q ⇒ G is abelian, m is a multiple of |G|, and⊕

h∈G
χh

∼= λ,

UK ∼=
m

|G|
λ.

When d is rational (integer), s = 1 + m
|G|d(ρ) ∈ N.

d(ρ)2 = |G|+md(ρ) ⇒ (s− 1)2|G|2 = sm2 ⇒ t = m
s−1 ∈ N.
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Character formula (continued)

Lemma

d ∈ Q (in fact N) ⇒ ∃s, t ∈ N such that |G| = st2, m = (s− 1)t, d = st,

Tr(λg) =
1

s

∑
h∈G

χh(g) + tTr(UK(g)).

(i) t = 1 ⇒ χh = 1 and 1⊕ UK ∼= λ.

(ii) t > 1 ⇒ G is non-abelian, #Hom(G,T) = t2 and⊕
h∈G

χh ≡ s
⊕

χ∈Hom(G,T)

χ.

Let Ĝ† = Ĝ \Hom(G,T). Then t|dimπ for all π ∈ Ĝ†, and

UK ∼=
⊕
π∈Ĝ†

dimπ

t
π.
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Rational abelian case

Assume m = |G| − 1 ⇒ d(ρ) = |G|.

Since αg ◦ ρ = ρ, we have N = ρ(M) ⊂ MG ⊂ M with
[M : MG] = [MG : N ] = |G|.

Let κ : MG ↪→ M .
Then ∃µ : M → MG with ρ = κµ, d(κ) = d(µ) =

√
|G|.

Lemma

∃θ ∈ Aut(MG) such that ρ = κθκ.

Proof.

ρ = ρ ⇒ ρ = µ κ ⇒ µµ ≺ ρ2 ⇒ [µµ] =
∑

g∈G[αg] ⇒ Ad∃ Ug ◦αg ◦µ = µ.

αg ◦ ρ = ρ ⇒ Ug ∈ T ⇒ µ(MG) = MG.
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Rational abelian case (continued)

Assume G is abelian for simplicity.
Then [κκ] =

∑
χ∈Ĝ[βχ].

Let H = [βĜ] and Γ =< H ∪ [θ] >⊂ Out(MG).

Fusion rules of ρ ⇒
Γ = H ⊔H[θ]H, and Γ ↷ Γ/H is sharply 2-transitive ⇒
Γ = Fq ⋊ F×

q and H = F×
q .

Our categories are classified by H3(Fq,T)F
×
q ⊂ H3(Γ,T).
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Rational non-abelian case

In the previous case, we had

ρ(M) ⊂ ρ(M)⋊G = MG ⊂ M.

In the rational non-abelian case, we have

ρ(M) ⊂ ρ(M)⋊ [G,G] = MG ⊂ ρ(M)⋊G = M [G,G] = M.

More complicated argument using two intermediate subfators (and
induction reduction argument between [G,G] and G) are necessary.
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Irrational case

When d(ρ) is irrational, ⟨g, h⟩ = χh(g) is a non-degenerate symmetric
bicharacter.

Recall UK(g) ∈ B(K), where K = (ρ, ρ2), is given by K ∋ T 7→ U(g)T .

Three representations on board.

Definition

Let H(G) be the universal C∗-algebra generated by three unitary
representations v0, v1, v2 of G, and a unitary w of period 3 satisfying

vi+1(g)vi(h) = ⟨h, g⟩vi(h)vi+1(g),

w∗vi(g)w = vi+1(g),

where i ∈ Z/3Z.
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Irrational case (continued)

Lemma

∃3|G| irreducible representations of H(G), realized in B(ℓ2(G)) as

πa,c(v0(g))f(h) = ⟨g, h⟩f(h),

πa,c(v1(g))f(h) = f(h+ g),

πa,c(v2(g))f(h) = a(h)a(h− g)f(h− g),

πa,c(w)f(h) =
c√
n

∑
k

a(h)⟨h, k⟩f(k),

where a : G → T and c ∈ T satisfy

a(g + h)⟨g, h⟩ = a(g)a(h),

c3
∑
g∈G

a(g) =
√
n.
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