An operator algebra approach to the classification of certain fusion categories II

Masaki Izumi

Graduate School of Science, Kyoto University

August 2, 2016 at Sendai

$\operatorname{End}_0(M)$

Let M be a type III factor.

 $\begin{array}{l} \operatorname{End}_0(M) \text{ is a rigid tensor category with } \rho \otimes \sigma = \rho \circ \sigma \text{, and} \\ (\rho, \sigma) = \{T \in M; \ T\rho(x) = \sigma(x)T, \ \forall x \in M\}. \end{array}$

Recall $\exists R_{\rho} \in (\mathrm{id}, \overline{\rho}\rho)$, $\exists \overline{R_{\rho}} \in (\mathrm{id}, \rho\overline{\rho})$ satisfying

$$\overline{R_{\rho}}^*\rho(R_{\rho}) = R_{\rho}^*\overline{\rho}(\overline{R_{\rho}}) = 1, \quad R_{\rho}^*R_{\rho} = \overline{R_{\rho}}^*\overline{R_{\rho}} = d(\rho).$$

If ρ is irreducible and $\rho = \overline{\rho}$, we have $\overline{R_{\rho}} = \epsilon R_{\rho}$, $\epsilon \in \{1, -1\}$. We say that ρ is real (resp. pseudo-real) if $\epsilon = 1$ (resp. $\epsilon = -1$). (In fact, $\epsilon =$ Frobenius-Schur indicator.)

If ρ is irreducible, $(\rho, \sigma\mu)$ is a Hilbert space with $\langle T_1, T_2 \rangle := T_2^*T_1 \in (\rho, \rho) = \mathbb{C}$ for $T_1, T_2 \in (\rho, \sigma\mu)$.

Definition (Siehler 2003)

Let G be a finite group. A near-group category with G is a fusion category C with $Irr(C) = G \sqcup \{\rho\}.$

The possible fusion rules are

$$[g][h] = [gh], \quad g, h \in G,$$
$$[g][\rho] = [\rho][g] = [\rho],$$
$$[\rho]^2 = \sum_{g \in G} [g] \oplus m[\rho], \quad m = 0, 1, 2, \dots.$$

We denote by $R({\boldsymbol{G}},m)$ the corresponding based ring.

Theorem (Tambara-Yamagami 1998)

R(G,0) allows a categorification if and only if G is abelian. When G is abelian, the categorifications of R(G,0) are in one-to-one correspondence with the data $\{(\epsilon, \langle \cdot, \cdot \rangle)\}$, where $\epsilon \in \{1, -1\}$ and $\langle \cdot, \cdot \rangle : G \times G \to \mathbb{T}$ is a non-degenerate symmetric bicharacter.

These categories are called Tambara-Yamagami categories.

Theorem (Ostrik, 2003)

 $R(\{e\}, m)$ allows a categorification if and only if m = 1. When m = 1, there exists a unique categorification up to Galois conjugate.

Theorem (Siehler 2003)

R(G, |G| - 1) allows a categorification if and only if G is a cyclic group and q = |G| + 1 is a prime power.

Theorem (Etingof-Gelaki-Ostrik 2004)

 $R(\mathbb{Z}_n, n-1)$ allows a categorification if and only if q = n+1 is a prime power.

Except for n = 2, 3, 7, there exists a unique categorification $\operatorname{Rep}(\mathbb{F}_q \rtimes \mathbb{F}_q^{\times})$. There are 3 categorifications for n = 2, and there are 2 for n = 3, 7.

The exceptions come from $H^3(\mathbb{F}_q, \mathbb{C}^{\times})^{\mathbb{F}_q^{\times}}$.

General theorem

Let C be a near-group category with a finite group G. Let $d = d(\rho) = \frac{m + \sqrt{m^2 + 4|G|}}{2}$. We consider only C^{*} fusion categories.

Theorem

Assume G is non-trivial and $m \neq 0$.

If d is rational, then either of the following holds:

(i) m = |G| - 1 (already classified by Siehler and Etingof-Gelaki-Ostrik).

(ii) G is an extra-special 2-group of order 2^{2a+1} and m = 2^a.
(a 2-group is extra-special if [G,G] = Z(G) ≅ Z₂, e.g. D₈ and Q₈.) For each extra-special 2-group G of order 2^{2a+1}, there exist exactly 3 categorifications of R(G, 2^a).

If d is irrational, then G is abelian and m is a multiple of |G|. Moreover, the categorifications of R(G,m) are completely classified by explicit polynomial equations.

Polynomial equations for the categorifications of R(G, |G|)

 $\begin{array}{l} \langle\cdot,\cdot\rangle:G\times G\to\mathbb{T}: \text{ non-degenerate symmetric bicharacter,}\\ a:G\to\mathbb{T},\ b:G\to\mathbb{C},\ c\in\mathbb{T}, \end{array}$

$$\begin{split} \langle g,h\rangle &= a(g)a(h)\overline{a(g+h)}, \quad a(-g) = a(g), \\ c^3 &= \frac{1}{\sqrt{|G|}}\sum_{g\in G}\overline{a(g)}, \\ b(0) &= \frac{-1}{d}, \quad b(g) = \frac{\overline{ca(g)}}{\sqrt{|G|}}\sum_{h\in G} \langle g,h\rangle b(h), \\ \overline{b(g)} &= a(g)b(-g), \\ |b(g)| &= \frac{1}{\sqrt{|G|}}, \quad g \in G \setminus \{0\}, \\ \sum_{g\in G} b(g+h)b(g+k)\overline{b(g)} &= \overline{\langle h,k\rangle} b(h)b(k) - \frac{c}{d\sqrt{|G|}} \end{split}$$

Polynomial equations for the categorification of R(G, |G|) (continued)

Evans-Gannon determined the solutions for $\#G \leq 13$, and they always exist except for $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

G	# (solutions/Aut(G))
\mathbb{Z}_2	2
\mathbb{Z}_3	2
\mathbb{Z}_4	2
\mathbb{Z}_5	3
\mathbb{Z}_6	4
\mathbb{Z}_7	2
\mathbb{Z}_8	8
\mathbb{Z}_9	2
\mathbb{Z}_{10}	4
\mathbb{Z}_{11}	4
\mathbb{Z}_{12}	4
\mathbb{Z}_{13}	4

 $G = \mathbb{Z}_2 \Rightarrow m \leq 2$ (Ostrik).

 $G = \mathbb{Z}_3 \Rightarrow m \le 6$ (Larson),

For m = 6, there exist exactly two near-group categories (Liu-Snyder, Evans-Pugh, M.-I.).

 $G = \mathbb{Z}_4$ and $\mathbb{Z}_2 \times \mathbb{Z}_2$: There is no near-group categories for m = 8 (M.-I.).

Strategy for the proof

Step I: Show the group part has trivial $H^3(G,\mathbb{T})$ obstruction, and a privileged lifting.

Step II: Construct a unitary representation of G and show a character formula.

Step III: Rational abelian case:

Use group actions on factors and intermediate subfactors to reduce the problem to cohomology computation.

Step IV: Rational non-commutative case: Necessity of G = extra-special 2-groups: Use group action on factors and intermediate subfactors.

Existence: Cuntz algebra endomorphisms.

Step III: Irrational case. Quadratic form: Construct 3 unitary representations. Existence: Cuntz algebra endomorphisms. Assume $\mathcal{C} \subset \operatorname{End}_0(M)$ is a near-group category with $G \neq \{e\}$ and $m \neq 0$. Then $\operatorname{Irr}(\mathcal{C}) = \{[\alpha_g]\}_{g \in G} \sqcup \{[\rho]\}.$

Since $[\alpha_g][\rho] = [\rho]$, we may assume $\alpha_g \circ \rho = \rho$. (Ad^{$\exists U_g \circ \alpha_g = \rho$, replace α_g with Ad $U_g \circ \alpha_g$).}

We get
$$\alpha_g \circ \alpha_h = \alpha_{gh}$$
.
 $(\rho = \alpha_g \circ \alpha_h \circ \rho \text{ and } \alpha_g \circ \alpha_h = \operatorname{Ad}^{\exists} U_{g,h} \circ \alpha_{gh}$
 $\Rightarrow \operatorname{Ad} U_{g,h} \circ \rho = \rho \Rightarrow U_{g,h} \in \mathbb{T} \Rightarrow \alpha_g \circ \alpha_h = \alpha_{gh}.)$

 α has trivial $H^3\mbox{-obstruction}$ and a privileged lifting to an action.

Cuntz algebra endomorphisms

Choose an isometry $S_e \in (\mathrm{id}, \rho^2)$. Then $S_e^* \rho(S_e) = \frac{\epsilon}{d}$, where $d = d(\rho) = (m + \sqrt{m^2 + 4|G|})/2$.

Set $S_g = \alpha_g(S_e) \in (\alpha_g, \rho^2)$. Choose an ONB $\{T_i\}_{i=1}^m$ of (ρ, ρ^2) .

 $\{S_g\}_{g\in G} \cup \{T_i\}_{i=1}^m$ satisfies the Cuntz algebra $\mathcal{O}_{|G|+m}$ -relation, that is, having mutually orthogonal ranges with summation 1.

Moreover α_g and ρ preserve the *-algebra generated by $\{S_g\}_{g\in G} \cup \{T_i\}_{i=1}^m$.

Proof on board.

Character formula

Since $[\rho\alpha_g] = [\rho]$, $\exists U(g) \in (\rho, \rho\alpha_g)$. Since $U(g)S_e \in (\mathrm{id}, \rho\alpha_g\rho) = (\mathrm{id}, \rho^2) = \mathbb{C}S_e$, normalize U(g) by $U(g)S_e = S_e$.

$$\begin{split} \{U(g)\}_{g\in G} \text{ is a unitary representation of } G \text{ in } \\ (\rho, \rho\alpha_g) \subset (\rho^2, \rho\alpha_g\rho) = (\rho^2, \rho^2). \\ \text{Since } [\rho^2] = \sum_{g\in G} [\alpha_g] + m[\rho], \\ (\rho^2, \rho^2) = \bigoplus_{g\in G} \mathbb{C}S_g S_g^* \oplus B(\mathcal{K}), \end{split}$$

where $\mathcal{K}=(\rho,\rho^2)\text{,}$ and we have decomposition

$$U(g) = \sum_{h \in G} \chi_h(g) S_h S_h^* + U_{\mathcal{K}}(g).$$

Compute the categorical trace of the both sides on board.

Character formula (continued)

$$\left(1 + \frac{m}{|G|}d(\rho)\right)\operatorname{Tr}(\lambda_g) = \sum_{h \in G} \chi_h(g) + d(\rho)\operatorname{Tr}(U_{\mathcal{K}}(g)).$$

Lemma

 $d = \frac{m + \sqrt{m^2 + 4|G|}}{2} \in \mathbb{R} \setminus \mathbb{Q} \Rightarrow G \text{ is abelian, } m \text{ is a multiple of } |G|, \text{ and}$ $\bigoplus_{h \in G} \chi_h \cong \lambda,$ $U_{\mathcal{K}} \cong \frac{m}{|G|} \lambda.$

When d is rational (integer), $s = 1 + \frac{m}{|G|}d(\rho) \in \mathbb{N}$. $d(\rho)^2 = |G| + md(\rho) \Rightarrow (s-1)^2|G|^2 = sm^2 \Rightarrow t = \frac{m}{s-1} \in \mathbb{N}.$

Character formula (continued)

Lemma

 $d \in \mathbb{Q}$ (in fact \mathbb{N}) $\Rightarrow \exists s, t \in \mathbb{N}$ such that $|G| = st^2$, m = (s - 1)t, d = st,

$$\operatorname{Tr}(\lambda_g) = \frac{1}{s} \sum_{h \in G} \chi_h(g) + t \operatorname{Tr}(U_{\mathcal{K}}(g)).$$

(i)
$$t = 1 \Rightarrow \chi_h = 1$$
 and $1 \oplus U_{\mathcal{K}} \cong \lambda$.
(ii) $t > 1 \Rightarrow G$ is non-abelian, $\# \operatorname{Hom}(G, \mathbb{T}) = t^2$ and

$$\bigoplus_{h \in G} \chi_h \equiv s \bigoplus_{\chi \in \operatorname{Hom}(G,\mathbb{T})} \chi.$$

Let $\hat{G}^{\dagger} = \hat{G} \setminus \operatorname{Hom}(G, \mathbb{T})$. Then $t | \dim \pi$ for all $\pi \in \hat{G}^{\dagger}$, and

$$U_{\mathcal{K}} \cong \bigoplus_{\pi \in \hat{G}^{\dagger}} \frac{\dim \pi}{t} \pi$$

Rational abelian case

Assume $m = |G| - 1 \Rightarrow d(\rho) = |G|$.

Since $\alpha_g \circ \rho = \rho$, we have $N = \rho(M) \subset M^G \subset M$ with $[M:M^G] = [M^G:N] = |G|.$

Let $\kappa: M^G \hookrightarrow M$. Then $\exists \mu: M \to M^G$ with $\rho = \kappa \mu$, $d(\kappa) = d(\mu) = \sqrt{|G|}$.

Lemma

 $\exists \theta \in \operatorname{Aut}(M^G)$ such that $\rho = \kappa \theta \overline{\kappa}$.

Proof.

$$\begin{split} \rho &= \overline{\rho} \Rightarrow \rho = \overline{\mu} \ \overline{\kappa} \Rightarrow \overline{\mu} \mu \prec \rho^2 \Rightarrow [\overline{\mu} \mu] = \sum_{g \in G} [\alpha_g] \Rightarrow \operatorname{Ad}^{\exists} U_g \circ \alpha_g \circ \overline{\mu} = \overline{\mu}. \\ \alpha_g \circ \rho &= \rho \Rightarrow U_g \in \mathbb{T} \Rightarrow \overline{\mu} (M^G) = M^G. \end{split}$$

Assume G is abelian for simplicity. Then $[\overline{\kappa}\kappa] = \sum_{\chi \in \hat{G}} [\beta_{\chi}].$ Let $H = [\beta_{\hat{G}}]$ and $\Gamma = \langle H \cup [\theta] \rangle \subset \operatorname{Out}(M^G).$ Fusion rules of $\rho \Rightarrow$ $\Gamma = H \sqcup H[\theta]H$, and $\Gamma \curvearrowright \Gamma/H$ is sharply 2-transitive \Rightarrow $\Gamma = \mathbb{F}_q \rtimes \mathbb{F}_q^{\times}$ and $H = \mathbb{F}_q^{\times}.$

Our categories are classified by $H^3(\mathbb{F}_q, \mathbb{T})^{\mathbb{F}_q^{\times}} \subset H^3(\Gamma, \mathbb{T})$.

In the previous case, we had

$$\rho(M) \subset \rho(M) \rtimes G = M^G \subset M.$$

In the rational non-abelian case, we have

$$\rho(M) \subset \rho(M) \rtimes [G,G] = M^G \subset \rho(M) \rtimes G = M^{[G,G]} = M.$$

More complicated argument using two intermediate subfators (and induction reduction argument between [G, G] and G) are necessary.

Irrational case

When $d(\rho)$ is irrational, $\langle g,h\rangle = \chi_h(g)$ is a non-degenerate symmetric bicharacter.

Recall $U_{\mathcal{K}}(g) \in B(\mathcal{K})$, where $\mathcal{K} = (\rho, \rho^2)$, is given by $\mathcal{K} \ni T \mapsto U(g)T$.

Three representations on board.

Definition

Let $\mathcal{H}(G)$ be the universal C*-algebra generated by three unitary representations v_0 , v_1 , v_2 of G, and a unitary w of period 3 satisfying

$$v_{i+1}(g)v_i(h) = \langle h, g \rangle v_i(h)v_{i+1}(g),$$

$$w^*v_i(g)w = v_{i+1}(g),$$

where $i \in \mathbb{Z}/3\mathbb{Z}$.

Irrational case (continued)

Lemma

 $\exists 3|G|$ irreducible representations of $\mathcal{H}(G)$, realized in $B(\ell^2(G))$ as

$$\begin{aligned} \pi_{a,c}(v_0(g))f(h) &= \langle g,h\rangle f(h),\\ \pi_{a,c}(v_1(g))f(h) &= f(h+g),\\ \pi_{a,c}(v_2(g))f(h) &= a(h)\overline{a(h-g)}f(h-g),\\ \pi_{a,c}(w)f(h) &= \frac{c}{\sqrt{n}}\sum_k a(h)\overline{\langle h,k\rangle}f(k), \end{aligned}$$

where $a:G \rightarrow \mathbb{T}$ and $c \in \mathbb{T}$ satisfy

$$a(g+h)\langle g,h\rangle = a(g)a(h),$$

 $c^3 \sum_{g \in G} a(g) = \sqrt{n}.$