An operator algebra approach to the classification of certain fusion categories I

Masaki Izumi

Graduate School of Science, Kyoto University

August 1, 2016 at Sendai

Representations

For a finite group G, we denote by $\operatorname{Rep}(G)$ the category of finite dimensional representations of G over \mathbb{C} .

• A representation π of G is a group homomorphism $\pi : G \to GL(V_{\pi})$, where $GL(V_{\pi})$ is the set linear invertible transformations of a finite dimensional vector space V_{π} over \mathbb{C} .

 \bullet For two representations $(\pi,V_{\pi})\text{, }(\sigma,V_{\sigma})\text{, the morphism space is}$

 $\operatorname{Hom}_{G}(V_{\pi}, V_{\sigma}) = \{T \in \operatorname{Hom}(V_{\pi}, V_{\sigma}); \ T\pi(g) = \sigma(g)T, \ \forall g \in G\}.$

• The tensor product representation is given by

 $\pi\otimes\sigma:G\ni g\mapsto\pi(g)\otimes\sigma(g)\in GL(V_{\pi}\otimes V_{\sigma}).$

• The trivial representation $G \ni g \mapsto 1 \in \mathbb{C}$ satisfies

 $\pi\otimes 1\cong 1\otimes\pi\cong\pi.$

• The contragradient representation π^* of π is given by $V_{\pi^*} = V_{\pi}^*$, the dual space of V_{π} , and $\pi^*(g)\xi^* = \xi^* \circ \pi(g)^{-1}$, $\xi \in V_{\pi}^*$.

Let $\{e_i\}_{i=1}^n$ be a basis of V_{π} and let $\{e_i^*\}_{i=1}^n$ be the dual basis of V_{π}^* . Then $\sum_{i=1}^n e_i^* \otimes e_i$ is a *G*-invariant vector, and $\mathbf{1} \prec \pi^* \otimes \pi$.

• Every object is equivalent to a direct sum of simple objects. (Every representation is completely reducible.)

• There exist only finitely many equivalence classes of simple objects.

Tensor categories

A tensor category is a category C with a bifunctor $\otimes : C \times C \to C$ called the tensor product, an object I called the unit object, a natural isomorphism $a_{X,Y,Z} : (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$, natural isomorphisms $\lambda_X : I \otimes X \to X$ and $\rho_X : X \otimes I \to X$ satisfying (1) The pentagon identity

Fusion categories

A fusion category C (over \mathbb{C}) is a rigid, linear, semisimple tensor category with only finitely many isomorphism classes of simple objects, such that $\operatorname{End}_{\mathcal{C}}(I) := \operatorname{Hom}_{\mathcal{C}}(I, I) = \mathbb{C}$.

Here C being rigid means that every object X has its dual (conjugate) \overline{X} , that is, there exist morphisms $\epsilon_X : X \otimes \overline{X} \to I$, and $\eta_X : I \to \overline{X} \otimes X$ such that the following compositions give the identity morphisms 1_X and $1_{\overline{X}}$ respectively:

Example

 $\mathcal{C}=\operatorname{Rep}(G)$: the category of finite dimensional representations of a finite group G.

Example

 $\begin{array}{l} \mathcal{C} = \operatorname{Vec}_G: \text{ the category of } G\text{-graded finite dimensional vector spaces.} \\ \text{For } V = \bigoplus_{g \in G} V_g, \, W = \bigoplus_{g \in G} W_g \text{ in } \mathcal{C}, \\ & \operatorname{Hom}_{\mathcal{C}}(V, W) = \{T \in \operatorname{Hom}(V, W); \; TV_g \subset W_g\}. \\ & (V \otimes W)_g = \bigoplus_{kl=g} V_k \otimes W_l. \end{array}$

Goal

Fusion categories appear in many fields of mathematics and mathematical physics, e.g.

- Representation theory of (quantum) groups,
- Conformal field theory,
- Operator Algebras (Jones' theory of subfactors).

<u>Goal</u>: To classify near-group categories and more general quadratic categories by using operator algebras, more specifically, Cuntz algebra endomorphisms.

Advantage: Working on concrete categories. Detailed information about the fusion categories can be available, e.g. Drinfeld centers, 6j-symbols, outer automorphism groups...

Disadvantage: Brute force method.

A more natural (geometric?) method is desired in order to obtain an infinite series.

Grothendieck ring and PF-dimension

Let C be a fusion category.

 $Irr(\mathcal{C})$ =the set of equivalence classes of simple objects in \mathcal{C} .

The Grothendieck ring $K(\mathcal{C})$ of a fusion category \mathcal{C} is $K(\mathcal{C}) = \mathbb{Z} \operatorname{Irr}(\mathcal{C})$ with multiplication

$$[X] \cdot [Y] = \sum_{Z} N_{X,Y}^{Z}[Z],$$

where X, Y, Z are simple and $N_{X,Y}^Z = \dim \operatorname{Hom}_{\mathcal{C}}(Z, X \otimes Y)$.

By the Perron-Frobenius theorem, there exists a unique ring homomorphism $d_{\mathrm{PF}}: K(\mathcal{C}) \to \mathbb{R}$ with $d_{\mathrm{PF}}(X) \ge 1$ for simple X. $d_{PF}(X)$ is called the Perron-Frobenius dimension of X.

Example

For $\mathcal{C} = \operatorname{Rep}(G)$, $d_{PF}(\pi) = \dim V_{\pi}$.

Definition

Given a based ring R, a fusion category C with $R \cong K(C)$ is called a categorification of R.

Example

 Vec_G is a categorification of the group ring $\mathbb{Z}G$.

Problem

Given a based ring R, classify the categorifications C of R.

This is a non-trivial problem even for $\mathbb{Z}G$.

Categorification (continued)

Let G be a finite group, and assume $K(\mathcal{C}) \cong \mathbb{Z}G$. For each pair $g, h \in \operatorname{Irr}(\mathcal{C}) = G$, choose an isomorphism $f_{g,h} : g \otimes h \to gh$.

is not necessarily commutative, and it gives a number $\omega(g, h, k) \in \mathbb{C}^{\times}$. The pentagon identity implies $\omega \in Z^3(G, \mathbb{C}^{\times})$.

Theorem

The categorifications of $\mathbb{Z}G$ are completely classified by $[\omega] \in H^3(G, \mathbb{C}^{\times})$.

Definition (Siehler 2003)

Let G be a finite group. A near-group category with G is a fusion category C with $Irr(C) = G \sqcup \{\rho\}.$

The possible fusion rules are

$$[g][h] = [gh], \quad g, h \in G,$$
$$[g][\rho] = [\rho][g] = [\rho],$$
$$[\rho]^2 = \sum_{g \in G} [g] \oplus m[\rho], \quad m = 0, 1, 2, \dots.$$

We denote by R(G,m) the corresponding based ring.

Examples

Example

$$\begin{split} \mathfrak{S}_3 &= \text{the symmetric group of degree 3.} \\ \mathrm{Irr}(\mathfrak{S}_3) &= \{1, \varepsilon, \rho\}. \\ & \varepsilon \otimes \varepsilon \cong 1, \\ & \varepsilon \otimes \rho \cong \rho \otimes \varepsilon \cong \rho, \\ & \rho \otimes \rho \cong 1 \oplus \varepsilon \oplus \rho. \end{split}$$
 $\mathrm{Rep}(\mathfrak{S}_3) \text{ is a categorification of } R(\mathbb{Z}_2, 1). \end{split}$

 $\operatorname{Rep}(\mathfrak{A}_4)$ is a categorification of $R(\mathbb{Z}_3, 2)$. $\operatorname{Rep}(D_8)$ and $\operatorname{Rep}(Q_8)$ are categorifications of $R(\mathbb{Z}_2 \times \mathbb{Z}_2, 0)$.

Ising model is a categorification of $R(\mathbb{Z}_2, 0)$. Even part of WZW model with $SU(2)_3$ is a categorification of $R(\{e\}, 1)$.

Even part of the E_6 subfactors are categorifications of $R(\mathbb{Z}_2, 2)$.

Category End(M)

Let M be a type III factor.

The set of unital endomorphisms $\operatorname{End}(M)$ is a tensor category with

$$\rho \otimes \sigma = \rho \circ \sigma,$$

Hom_{End(M)}(ρ, σ) = { $T \in M$; $T\rho(x) = \sigma(x)T$ } =: (ρ, σ).

For $S \in (\rho_1, \rho_2)$ and $T \in (\sigma_1, \sigma_2)$, $S \otimes T \in (\rho_1 \circ \sigma_1, \rho_2 \circ \sigma_2)$ is given by $S \otimes T := S\rho_1(T) = \rho_2(T)S.$

$$\text{In particular, } \bigvee_{q=1}^{\rho} \bigvee_{\sigma_{2}}^{\sigma_{1}} = 1_{\rho} \otimes T = \rho(T) \text{, while } \bigcup_{q=1}^{q} \bigvee_{\rho_{2}}^{\rho_{1}} \bigvee_{\sigma}^{\sigma} = S \otimes 1_{\sigma} = S.$$

$$\begin{split} \operatorname{End}(M) \text{ is a } C^* \text{ category, that is, } (\rho,\sigma)^* &= (\sigma,\rho) \text{ and for } T \in (\rho,\sigma), \\ \|T^* \circ T\| &= \|T\|^2. \end{split}$$

G-kernels

Assume that $\mathcal{C} \subset \operatorname{End}(M)$ is a categorification of $\mathbb{Z}G$. We can choose $\alpha_g \in \operatorname{Aut}(M)$ such that $\{[\alpha_g]\}_{g \in G} = \operatorname{Irr}(\mathcal{C}) \cong G$ and

 $[\alpha_g][\alpha_h] = [\alpha_{gh}].$

Such a map $\alpha: G \to \operatorname{Aut}(M)$ is called a *G*-kernel.

 $\exists U_{g,h} \in \mathcal{U}(M) \text{ satisfying } \alpha_g \circ \alpha_h = \operatorname{Ad} U_{g,h} \circ \alpha_{gh}.$ Associativity $(\alpha_g \circ \alpha_h) \circ \alpha_k = \alpha_g \circ (\alpha_h \circ \alpha_k) \text{ implies}$

 $\operatorname{Ad}(U_{g,h}U_{gh,k}) \circ \alpha_{ghk} = \operatorname{Ad}(\alpha_g(U_{h,k})U_{g,hk}) \circ \alpha_{ghk},$

and there exists $\omega \in Z^3(G,\mathbb{T})$ satisfying

$$\alpha_g(U_{h,k})U_{g,hk} = \omega(g,h,k)U_{g,h}U_{gh,k}.$$

The cohomology class $[\omega]\in H^3(G,\mathbb{T})$ does not depend on the choice of $U_{g,h}.$

When $[\omega] = 0$, we may choose $U_{g,h}$ satisfying the 2-cocycle relation:

$$\alpha_g(U_{h,k})U_{g,hk} = U_{g,h}U_{gh,k}.$$

The pair $(\alpha, \{U_{g,h}\})$ is a cocycle action.

For a finite group, every cocycle action on a factor is known to be equivalent to an genuine action, i.e. $\exists V_g \in \mathcal{U}(M)$ satisfying

$$U_{g,h} = \alpha_g (V_h^{-1}) V_g^{-1} V_{gh},$$

and $\beta_g \circ \beta_h = \beta_{gh}$, where $\beta_g = \operatorname{Ad} V_g \circ \alpha_g$.

In the above $U_{g,h}'=\xi(g,h)U_{g,h}$ with $\xi\in Z^2(G,\mathbb{T})$ also works.

The liftings of a G-kernel to actions are parametrized by $H^2(G, \mathbb{T})$.

Group Actions

Let $\beta: G \to \operatorname{Aut}(M)$ be an action satisfying $\beta_g \notin \operatorname{Inn}(M)$ for $g \neq e$. Assume that an inner perturbation $\operatorname{Ad} W_g \circ \beta_g$ is an action too. Then

$$\operatorname{Ad}(W_g\beta_g(W_h))\circ\beta_{gh}=\operatorname{Ad}W_{gh}\circ\beta_{gh},$$

and $\exists \xi \in Z^2(G,\mathbb{T})$ satisfying $W_g\beta_g(W_h) = \xi(g,h)W_{gh}.$

When $[\xi] = 0$ in $H^2(G, \mathbb{T})$, we may choose $\{W_g\}$ to form a β -cocycle, $W_g\beta_g(W_h) = W_{gh}$, which is known to be a coboundary, that is, $\exists S \in \mathcal{U}(M)$ satisfying $W_g = S\alpha_g(S^{-1})$. Thus $\operatorname{Ad} W_g \circ \beta_g = \operatorname{Ad} S \circ \beta_g \circ \operatorname{Ad} S^{-1}$.

Summary:

- A G-kernel α can be lifted to an action if and only if $[\omega] \in H^3(G,\mathbb{T})$ is trivial.
- When $[\omega] = 0$, the inner conjugacy classes of the liftings of α to actions are parametrized by $H^2(G, \mathbb{T})$.

$\operatorname{End}_0(M)$

For $\rho \in \operatorname{End}(M)$, set

$$d(\rho) = [M : \rho(M)]_0^{1/2},$$

and call it the (statistical) dimension of ρ .

Let

$$\operatorname{End}_0(M) = \{ \rho \in \operatorname{End}(M); \ d(\rho) < \infty \}.$$

 $\operatorname{End}_0(M)$ is a rigid C^* tensor category, i.e., each object ρ has its conjugate object $\overline{\rho}$ with $R_{\rho} \in (\operatorname{id}, \overline{\rho}\rho)$, $\overline{R_{\rho}} \in (\operatorname{id}, \overline{\rho}\rho)$ satisfying

$$\overline{R_{\rho}}^{*}\rho(R_{\rho}) = R_{\rho}^{*}\overline{\rho}(\overline{R_{\rho}}) = 1,$$
$$R_{\rho}^{*}R_{\rho} = \overline{R_{\rho}}^{*}\overline{R_{\rho}} = d(\rho).$$

Theorem

Let M be the hyperfinite type III_1 factor. Every C^* fusion category is uniquely embedded into $End_0(M)$.

Definition

A monoidal functor from a strict tensor category \mathcal{C} to another strict tensor category \mathcal{D} is a pair (F, L) of a functor $F : \mathcal{C} \to \mathcal{D}$ and natural isomorphisms $L_{\rho,\sigma}$, $\rho, \sigma \in \mathcal{C}$, with

$$L_{\rho,\sigma} \in \operatorname{Hom}_{\mathcal{D}}(F(\rho) \otimes F(\sigma), F(\rho \otimes \sigma))$$

$$L_{\rho\otimes\sigma,\tau}\circ(L_{\rho,\sigma}\otimes I_{F(\tau)})=L_{\rho,\sigma\otimes\tau}\circ(I_{F(\rho)}\otimes L_{\sigma,\tau}).$$

We may and do assume $F(\mathbf{1}_{\mathcal{C}}) = \mathbf{1}_{\mathcal{D}}$ and $L_{\mathbf{1}_{\mathcal{C}},\rho} = L_{\rho,\mathbf{1}_{\mathbb{C}}} = I_{F(\rho)}$. When \mathcal{C} and \mathcal{D} are C^{*} categories, we further assume that $L_{\rho,\sigma}$ is a unitary.

Theorem

Let M and P be hyperfinite type III₁ factors, and let C and D be C^* fusion categories embedded in $\operatorname{End}_0(M)$ and $\operatorname{End}_0(P)$ respectively.

Let (F, L) be a monoidal functor from C to D that is an equivalence of the two C^* fusion categories C and D.

Then there exists a surjective isomorphism $\Phi: M \to P$ and unitaries $V_{\rho} \in P$ for each object $\rho \in C$ satisfying

$$F(\rho) = \operatorname{Ad} V_{\rho} \circ \Phi \circ \rho \circ \Phi^{-1},$$

$$F(X) = V_{\sigma} \Phi(X) V_{\rho}^{*}, \quad X \in (\rho, \sigma),$$

$$L_{\rho,\sigma} = V_{\rho \circ \sigma} \Phi \circ \rho \circ \Phi^{-1}(V_{\sigma}^{*}) V_{\rho}^{*} = V_{\rho \circ \sigma} V_{\rho}^{*} F(\rho)(V_{\sigma}^{*}).$$

To classify C^* fusion categories \mathcal{C} , we may always assume $\mathcal{C} \subset \operatorname{End}_0(M)$.