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Representations

For a finite group G, we denote by Rep(G) the category of finite
dimensional representations of GG over C.

e A representation 7 of G is a group homomorphism 7 : G — GL(V;),
where GL(V;) is the set linear invertible transformations of a finite
dimensional vector space V; over C.

e For two representations (m, V), (0, V), the morphism space is

Homg (Vy, Vi) = {T € Hom(V,V,); Tn(g) = o(g9)T, Vg € G}.

e The tensor product representation is given by

TRc:G3g—m(g)®o(g) € GL(V; ®V,).

e The trivial representation G 3 g — 1 € C satisfies

TRIZ1IRT =T



Representations (continued)

e The contragradient representation 7* of 7 is given by Vi« = V¥, the
dual space of Vj, and 7*(g)¢* = &*om(g)~t, €€ V*.

Let {e;}! | be a basis of V and let {e}}? , be the dual basis of V.
Then Y7 | ef ® e; is a G-invariant vector, and 1 < 7* @ 7.

e Every object is equivalent to a direct sum of simple objects.
(Every representation is completely reducible.)

e There exist only finitely many equivalence classes of simple objects.
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Tensor categories

A tensor category is a category C with

a bifunctor ® : C x C — C called the tensor product,

an object I called the unit object,

a natural isomorphism axyz : (X ®Y)®Z - X ® (Y ® Z),

natural isomorphisms Ax : I ® X — X and px : X ® I — X satisfying
(1) The pentagon identity

(WeX)RY)® Z
aw,x,y ®1 YWRX),Y,Z
We(XeY)eZz O WeX)e (Y eZ)
AW, (X®Y),Z AW, X, (Y®Z)

We(XQY)®Z) We(Xe Y eZ)
(2) The triangle identity (x 1) o Y2 Yx © (I @ Y)

lw®ax v,z
—_—

O
pPx®ly 1x®Ay
RY



Fusion categories

A fusion category C (over C) is a rigid, linear, semisimple tensor category
with only finitely many isomorphism classes of simple objects, such that
Ende (1) :== Home(Z,1) = C.

Here C being rigid means that every object X has its dual (conjugate) X,
that is, there exist morphisms ex : X @ X — I, and nx : I - X ® X
such that the following compositions give the identity morphisms 1x and
1+ respectively:

1x® — 1
XnXX®X®X€X®XX 4 _ x
. X

. |X
X

_ . 1®ex __

X oX0X X,
-




C = Rep(G): the category of finite dimensional representations of a finite
group G.

Example

C = Vecg: the category of G-graded finite dimensional vector spaces.

For V=PV, w=W,inc

geG geG
Home(V, W) = {T € Hom(V, W); TV, C W,}.

VeW),= VieW.
kl=g




Fusion categories appear in many fields of mathematics and mathematical
physics, e.g.

e Representation theory of (quantum) groups,

e Conformal field theory,

e Operator Algebras (Jones' theory of subfactors).

Goal: To classify near-group categories and more general quadratic
categories by using operator algebras, more specifically, Cuntz algebra
endomorphisms.

Advantage: Working on concrete categories.
Detailed information about the fusion categories can be available,
e.g. Drinfeld centers, 6j-symbols, outer automorphism groups...

Disadvantage: Brute force method.
A more natural (geometric?) method is desired in order to obtain an
infinite series.



Grothendieck ring and PF-dimension

Let C be a fusion category.

Irr(C)=the set of equivalence classes of simple objects in C.

The Grothendieck ring K (C) of a fusion category C is K(C) = ZIrr(C)
with multiplication

[X]-Y]=) N{yIZ],

where X, Y, Z are simple and NZ . = dim Hom¢(Z, X ® Y).

By the Perron-Frobenius theorem, there exists a unique ring
homomorphism dpr : K(C) — R with dpp(X) > 1 for simple X.
dpp(X) is called the Perron-Frobenius dimension of X.

For C = Rep(G), dpp(7) = dim V.




Categorification

Definition

Given a based ring R, a fusion category C with R = K(C) is called a
categorification of R.

Vecg is a categorification of the group ring ZG. \

Problem

Given a based ring R, classify the categorifications C of R.

This is a non-trivial problem even for ZG.



Categorification (continued)

Let G be a finite group, and assume K (C) = ZG.
For each pair g, h € Irr(C) = G, choose an isomorphism f, 1, : g ®h — gh.

(g@h) @ k—2"" 0@ (hok)
The diagram
fg,n®1k 19®fn,k
gh ® k g ® (hk)
foh,k ghk fg,nk

is not necessarily commutative, and it gives a number w(g, h, k) € C*.
The pentagon identity implies w € Z3(G,C*).

The categorifications of ZG are completely classified by [w] € H3(G,C*).
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Near-group categories

Definition (Siehler 2003)

Let G be a finite group.
A near-group category with G is a fusion category C with

Irr(C) = G U {p}.

The possible fusion rules are

[9][h] = [gh], g,h € G,

P> =Y lgl@mlpl, m=0,1,2,....
geG

We denote by R(G,m) the corresponding based ring.



Examples

Example

G3= the symmetric group of degree 3.
II‘T(Gg) = {17 g, p}
eE®e =1,

EQPEpPRe=p,
PRp=1dedp.
Rep(G3) is a categorification of R(Za, 1).

Rep(2l4) is a categorification of R(Z3,2).
Rep(Dg) and Rep(Qs) are categorifications of R(Za x Z2,0).

Ising model is a categorification of R(Zs,0).
Even part of WZW model with SU(2)3 is a categorification of R({e},1).

Even part of the Eg subfactors are categorifications of R(Z2,2).
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Category End(M)

Let M be a type Il factor.
The set of unital endomorphisms End(M) is a tensor category with

pRo=poo,
Homgyqoar) (0 0) ={T € M; Tp(x) = o(z)T'} =: (p,0).

For S € (p1,p2) and T € (01,02), SQT € (p1 0 01, p2 © 02) is given by
ST = Spl(T) = pQ(T)S.

P V’l P1 e
In particular, =1,®T = p(T), while| S =5®1, =S
l/0_2 ¢pQ

End(M) is a C* category, that is, (p,0)* = (0, p) and for T € (p,0),
IT* o Tl = |7
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Assume that C C End(M) is a categorification of ZG.
We can choose oy € Aut(M) such that {[ay|}geq = Irr(C) = G and

[aglom] = [agn].
Such a map a : G — Aut(M) is called a G-kernel.

U, € U(M) satisfying ag o o, = Ad Uy p, 0 aigp.
Associativity (ag 0 ap) o a = ag o (ap 0 o) implies

Ad(UgnUgh i) © agni, = Ad(ag(Un,k)Ug, k) © ghk,
and there exists w € Z3(G,T) satisfying
g (Unp)Ugnie = w(g, by kK)Ug nUgh -

The cohomology class [w] € H3(G, T) does not depend on the choice of
Ug.h-
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G-kernels (continued)

When [w] = 0, we may choose U, , satisfying the 2-cocycle relation:

ag(Uni)Ugnk = Ug nUgh -

The pair (a, {Uy,n}) is a cocycle action.

For a finite group, every cocycle action on a factor is known to be
equivalent to an genuine action, i.e. 3V, € U(M) satisfying

Ugvh = ag(vh_l)‘/tq_l‘/rgha
and 3y o B, = Bgn, where 3, = AdV; o ay.

In the above U} , = &(g, h)Uy , with £ € Z*(G, T) also works.

The liftings of a G-kernel to actions are parametrized by H?(G,T).
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Let 8 : G — Aut(M) be an action satisfying 5, ¢ Inn(M) for g # e.
Assume that an inner perturbation Ad W, o 3, is an action too.
Then

Ad(WyBy(Wh)) o Bgh = Ad Wgy, 0 Byn,

and 3¢ € Z2(G, T) satisfying Wy8,(W3) = &(g, h)Wyp,.

When [¢] =0 in H?(G,T), we may choose {W,} to form a 3-cocycle,
WeBe(Wh) = Wy, which is known to be a coboundary, that is,

3S € U(M) satisfying W, = Sa,(S71).

Thus AdW, 08, = AdSoB,0AdS™ .

Summary:
@ A G-kernel a can be lifted to an action if and only if [w] € H3(G, T)
is trivial.
@ When [w] = 0, the inner conjugacy classes of the liftings of « to
actions are parametrized by H?(G,T).
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Endy(M)

For p € End(M), set
d(p) = [M : p(M)]y,

and call it the (statistical) dimension of p.

Let
Endog(M) = {p € End(M); d(p) < co}.

Endg(M) is a rigid C* tensor category, i.e., each object p has its
conjugate object p with R, € (id, pp), R, € (id, pp) satisfying

R, p(Ry) = Ryp(R,) = 1,

RiR, = 7, R, = d(p).
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Popa’s uniqueness theorem

Let M be the hyperfinite type Ill; factor.
Every C* fusion category is uniquely embedded into Endy(M).

Definition
A monoidal functor from a strict tensor category C to another strict tensor
category D is a pair (F, L) of a functor F': C — D and natural
isomorphisms L, ,, p,o € C, with

Lys € Homp(F(p) ® F(0), F(p®0))

Lp®o‘,7’ O (Lp,o‘ ® IF(T)) = Lp,a@r O (IF(p) ® LU,T)'

We may and do assume F'(1¢) = 1p and L1, , = Ly1. = Ip ).
When C and D are C* categories, we further assume that L, , is a unitary.
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Popa’s uniqueness theorem (continued)

Theorem

Let M and P be hyperfinite type Ill; factors, and let C and D be C*
fusion categories embedded in Endo(M) and Endo(P) respectively.

Let (F, L) be a monoidal functor from C to D that is an equivalence of the
two C* fusion categories C and D.

Then there exists a surjective isomorphism ® : M — P and unitaries
V, € P for each object p € C satisfying

F(p) =AdV,0D0pod !,

F(X) = VU(I)(X)V;)*v X € (P, 0)7

Lpo = Vooo® 0 po @ (VI)V5 = Voo VI F(p) (V).

g

To classify C* fusion categories C, we may always assume C C Endy(M).
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