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Representations

For a finite group G, we denote by Rep(G) the category of finite
dimensional representations of G over C.

• A representation π of G is a group homomorphism π : G → GL(Vπ),
where GL(Vπ) is the set linear invertible transformations of a finite
dimensional vector space Vπ over C.

• For two representations (π, Vπ), (σ, Vσ), the morphism space is

HomG(Vπ, Vσ) = {T ∈ Hom(Vπ, Vσ); Tπ(g) = σ(g)T, ∀g ∈ G}.

• The tensor product representation is given by

π ⊗ σ : G ∋ g 7→ π(g)⊗ σ(g) ∈ GL(Vπ ⊗ Vσ).

• The trivial representation G ∋ g 7→ 1 ∈ C satisfies

π ⊗ 1 ∼= 1⊗ π ∼= π.
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Representations (continued)

• The contragradient representation π∗ of π is given by Vπ∗ = V ∗
π , the

dual space of Vπ, and π∗(g)ξ∗ = ξ∗ ◦ π(g)−1, ξ ∈ V ∗
π .

Let {ei}ni=1 be a basis of Vπ and let {e∗i }ni=1 be the dual basis of V ∗
π .

Then
∑n

i=1 e
∗
i ⊗ ei is a G-invariant vector, and 1 ≺ π∗ ⊗ π.

• Every object is equivalent to a direct sum of simple objects.
(Every representation is completely reducible.)

• There exist only finitely many equivalence classes of simple objects.
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Tensor categories

A tensor category is a category C with
a bifunctor ⊗ : C × C → C called the tensor product,
an object I called the unit object,
a natural isomorphism aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z),
natural isomorphisms λX : I ⊗X → X and ρX : X ⊗ I → X satisfying
(1) The pentagon identity

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

⟲

aW,X,Y ⊗1Z

ww

a(W⊗X),Y,Z

''

aW,(X⊗Y ),Z

��

aW,X,(Y ⊗Z)



1W⊗aX,Y,Z //

(2) The triangle identity (X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

⟲

aX,I,Y //

ρX⊗1Y $$ 1X⊗λYzz
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Fusion categories

A fusion category C (over C) is a rigid, linear, semisimple tensor category
with only finitely many isomorphism classes of simple objects, such that
EndC(I) := HomC(I, I) = C.

Here C being rigid means that every object X has its dual (conjugate) X,
that is, there exist morphisms ϵX : X ⊗X → I, and ηX : I → X ⊗X
such that the following compositions give the identity morphisms 1X and
1X respectively:

X X ⊗X ⊗X X
1X⊗ηX // ϵX⊗1X //

1X

JJ ,
ϵX

ηXX

��
X

zz
X

��

= X

��

X X ⊗X ⊗X X
ηX⊗1X // 1⊗ϵX //

1X

II ,
ϵX

ηX X

��
X
$$

X

��

= X

��
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Examples

Example

C = Rep(G): the category of finite dimensional representations of a finite
group G.

Example

C = VecG: the category of G-graded finite dimensional vector spaces.

For V =
⊕
g∈G

Vg, W =
⊕
g∈G

Wg in C,

HomC(V,W ) = {T ∈ Hom(V,W ); TVg ⊂ Wg}.

(V ⊗W )g =
⊕
kl=g

Vk ⊗Wl.
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Goal

Fusion categories appear in many fields of mathematics and mathematical
physics, e.g.
• Representation theory of (quantum) groups,
• Conformal field theory,
• Operator Algebras (Jones’ theory of subfactors).

Goal: To classify near-group categories and more general quadratic
categories by using operator algebras, more specifically, Cuntz algebra
endomorphisms.

Advantage: Working on concrete categories.
Detailed information about the fusion categories can be available,
e.g. Drinfeld centers, 6j-symbols, outer automorphism groups...

Disadvantage: Brute force method.
A more natural (geometric?) method is desired in order to obtain an
infinite series.
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Grothendieck ring and PF-dimension

Let C be a fusion category.
Irr(C)=the set of equivalence classes of simple objects in C.
The Grothendieck ring K(C) of a fusion category C is K(C) = Z Irr(C)
with multiplication

[X] · [Y ] =
∑
Z

NZ
X,Y [Z],

where X,Y, Z are simple and NZ
X,Y = dimHomC(Z,X ⊗ Y ).

By the Perron-Frobenius theorem, there exists a unique ring
homomorphism dPF : K(C) → R with dPF(X) ≥ 1 for simple X.
dPF (X) is called the Perron-Frobenius dimension of X.

Example

For C = Rep(G), dPF (π) = dimVπ.
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Categorification

Definition

Given a based ring R, a fusion category C with R ∼= K(C) is called a
categorification of R.

Example

VecG is a categorification of the group ring ZG.

Problem

Given a based ring R, classify the categorifications C of R.

This is a non-trivial problem even for ZG.
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Categorification (continued)

Let G be a finite group, and assume K(C) ∼= ZG.
For each pair g, h ∈ Irr(C) = G, choose an isomorphism fg,h : g⊗ h → gh.

The diagram
(g ⊗ h)⊗ k g ⊗ (h⊗ k)

gh⊗ k g ⊗ (hk)

ghk

ag,h,k //

fg,h⊗1k

��

1g⊗fh,k

��

fgh,k '' fg,hkww

is not necessarily commutative, and it gives a number ω(g, h, k) ∈ C×.
The pentagon identity implies ω ∈ Z3(G,C×).

Theorem

The categorifications of ZG are completely classified by [ω] ∈ H3(G,C×).
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Near-group categories

Definition (Siehler 2003)

Let G be a finite group.
A near-group category with G is a fusion category C with
Irr(C) = G ⊔ {ρ}.

The possible fusion rules are

[g][h] = [gh], g, h ∈ G,

[g][ρ] = [ρ][g] = [ρ],

[ρ]2 =
∑
g∈G

[g]⊕m[ρ], m = 0, 1, 2, . . . .

We denote by R(G,m) the corresponding based ring.
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Examples

Example

S3= the symmetric group of degree 3.
Irr(S3) = {1, ε, ρ}.

ε⊗ ε ∼= 1,

ε⊗ ρ ∼= ρ⊗ ε ∼= ρ,

ρ⊗ ρ ∼= 1⊕ ε⊕ ρ.

Rep(S3) is a categorification of R(Z2, 1).

Rep(A4) is a categorification of R(Z3, 2).
Rep(D8) and Rep(Q8) are categorifications of R(Z2 × Z2, 0).

Ising model is a categorification of R(Z2, 0).
Even part of WZW model with SU(2)3 is a categorification of R({e}, 1).

Even part of the E6 subfactors are categorifications of R(Z2, 2).
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Category End(M)

Let M be a type III factor.
The set of unital endomorphisms End(M) is a tensor category with

ρ⊗ σ = ρ ◦ σ,

HomEnd(M)(ρ, σ) = {T ∈ M ; Tρ(x) = σ(x)T} =: (ρ, σ).

For S ∈ (ρ1, ρ2) and T ∈ (σ1, σ2), S ⊗ T ∈ (ρ1 ◦ σ1, ρ2 ◦ σ2) is given by

S ⊗ T := Sρ1(T ) = ρ2(T )S.

In particular, T

ρ

��

σ1

��

σ2��

= 1ρ ⊗ T = ρ(T ), while S

ρ1
��

ρ2��

σ

��

= S ⊗ 1σ = S.

End(M) is a C∗ category, that is, (ρ, σ)∗ = (σ, ρ) and for T ∈ (ρ, σ),

∥T ∗ ◦ T∥ = ∥T∥2.
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G-kernels

Assume that C ⊂ End(M) is a categorification of ZG.
We can choose αg ∈ Aut(M) such that {[αg]}g∈G = Irr(C) ∼= G and

[αg][αh] = [αgh].

Such a map α : G → Aut(M) is called a G-kernel.

∃Ug,h ∈ U(M) satisfying αg ◦ αh = AdUg,h ◦ αgh.
Associativity (αg ◦ αh) ◦ αk = αg ◦ (αh ◦ αk) implies

Ad(Ug,hUgh,k) ◦ αghk = Ad(αg(Uh,k)Ug,hk) ◦ αghk,

and there exists ω ∈ Z3(G,T) satisfying

αg(Uh,k)Ug,hk = ω(g, h, k)Ug,hUgh,k.

The cohomology class [ω] ∈ H3(G,T) does not depend on the choice of
Ug,h.
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G-kernels (continued)

When [ω] = 0, we may choose Ug,h satisfying the 2-cocycle relation:

αg(Uh,k)Ug,hk = Ug,hUgh,k.

The pair (α, {Ug,h}) is a cocycle action.

For a finite group, every cocycle action on a factor is known to be
equivalent to an genuine action, i.e. ∃Vg ∈ U(M) satisfying

Ug,h = αg(V
−1
h )V −1

g Vgh,

and βg ◦ βh = βgh, where βg = AdVg ◦ αg.

In the above U ′
g,h = ξ(g, h)Ug,h with ξ ∈ Z2(G,T) also works.

The liftings of a G-kernel to actions are parametrized by H2(G,T).
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Group Actions

Let β : G → Aut(M) be an action satisfying βg /∈ Inn(M) for g ̸= e.
Assume that an inner perturbation AdWg ◦ βg is an action too.
Then

Ad(Wgβg(Wh)) ◦ βgh = AdWgh ◦ βgh,

and ∃ξ ∈ Z2(G,T) satisfying Wgβg(Wh) = ξ(g, h)Wgh.

When [ξ] = 0 in H2(G,T), we may choose {Wg} to form a β-cocycle,
Wgβg(Wh) = Wgh, which is known to be a coboundary, that is,
∃S ∈ U(M) satisfying Wg = Sαg(S

−1).
Thus AdWg ◦ βg = AdS ◦ βg ◦AdS−1.

Summary:

A G-kernel α can be lifted to an action if and only if [ω] ∈ H3(G,T)
is trivial.

When [ω] = 0, the inner conjugacy classes of the liftings of α to
actions are parametrized by H2(G,T).
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End0(M)

For ρ ∈ End(M), set

d(ρ) = [M : ρ(M)]
1/2
0 ,

and call it the (statistical) dimension of ρ.

Let
End0(M) = {ρ ∈ End(M); d(ρ) < ∞}.

End0(M) is a rigid C∗ tensor category, i.e., each object ρ has its
conjugate object ρ with Rρ ∈ (id, ρρ), Rρ ∈ (id, ρρ) satisfying

Rρ
∗
ρ(Rρ) = R∗

ρρ(Rρ) = 1,

R∗
ρRρ = Rρ

∗
Rρ = d(ρ).
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Popa’s uniqueness theorem

Theorem

Let M be the hyperfinite type III1 factor.
Every C∗ fusion category is uniquely embedded into End0(M).

Definition

A monoidal functor from a strict tensor category C to another strict tensor
category D is a pair (F,L) of a functor F : C → D and natural
isomorphisms Lρ,σ, ρ, σ ∈ C, with

Lρ,σ ∈ HomD(F (ρ)⊗ F (σ), F (ρ⊗ σ))

Lρ⊗σ,τ ◦ (Lρ,σ ⊗ IF (τ)) = Lρ,σ⊗τ ◦ (IF (ρ) ⊗ Lσ,τ ).

We may and do assume F (1C) = 1D and L1C ,ρ = Lρ,1C = IF (ρ).
When C and D are C∗ categories, we further assume that Lρ,σ is a unitary.
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Popa’s uniqueness theorem (continued)

Theorem

Let M and P be hyperfinite type III1 factors, and let C and D be C∗

fusion categories embedded in End0(M) and End0(P ) respectively.

Let (F,L) be a monoidal functor from C to D that is an equivalence of the
two C∗ fusion categories C and D.
Then there exists a surjective isomorphism Φ : M → P and unitaries
Vρ ∈ P for each object ρ ∈ C satisfying

F (ρ) = AdVρ ◦ Φ ◦ ρ ◦ Φ−1,

F (X) = VσΦ(X)V ∗
ρ , X ∈ (ρ, σ),

Lρ,σ = Vρ◦σΦ ◦ ρ ◦ Φ−1(V ∗
σ )V

∗
ρ = Vρ◦σV

∗
ρ F (ρ)(V ∗

σ ).

To classify C∗ fusion categories C, we may always assume C ⊂ End0(M).
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