Cocycle superrigidity for translations actions

of product groups

Adrian loana

University of California, San Diego

Operator Algebras and Mathematical Physics
Tohoku University, Sendai, Japan
August 9th, 2016



Orbit equivalence

Let ' ~ (X, i) be an action of a countable group I' on a probability space
(X, i) which is assumed

e measure preserving: (g - A) = u(A), forall g €l and A C X,

o free: {x | g-x = x} has measure 0, for all g # id, and

o ergodic: any l-invariant set A C X has measure 0 or 1.
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Let ' ~ (X, i) be an action of a countable group I' on a probability space
(X, p) which is assumed

e measure preserving: (g - A) = u(A), forall g €l and A C X,
o free: {x | g-x = x} has measure 0, for all g # id, and
o ergodic: any l-invariant set A C X has measure 0 or 1.

Its orbit equivalence relation is defined as:
ROAX)={(x,y) eXxX|T-x=T-y}

Question: To extent does R(I" ~ X) remember the group and action it
was constructed from?

Definition

Two actions ' ~ (X, 1) and A ~ (Y, v) are orbit equivalent if there is an
isomorphism « : X — Y satisfying [ -x=T-y & A-a(x) =A-ay),
almost everywhere. (that is, the equivalence relations are isomorphic.)
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Examples of free ergodic measure preserving actions

e Bernoulli actions I ~ (Xo, 110)", given by g+ (xn)h = (xg-1)h-
@ the usual actions SL,(Z) ~ T" and SL,(Z) ~ SL,(R)/SL,(Z).

@ an action ' ~ (X, i) is compact if [ U(L?(X)) is compact.

Fact. Any ergodic compact action is isomorphic to a left translation
action ' ~ G/K, where G is a compact group which contains I
densely and K < G is a closed subgroup.

@ the irrational rotation Z ~* T, by an angle « ¢ 27Q.

@ the actionsT ~ SO(n+1) and I ~ S”,
where I < SO(n+ 1) is a countable dense subgroup.

© the left translation action I ~ G,
where [ is residually finite and G = I|<_m /T, is a profinite completion.

@ the left-right translation action T x A ~ G: (g, h) - x = gxh™ 1,
where G is a compact group containing ', A densely.
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Remark. If the action is free and ergodic, then L°°(X) x I is a ll; factor
and L*°(X) is a Cartan subalgebra (maximal abelian and regular).

Singer (1955) ' ~ (X, 1) and A ~ (Y, v) are orbit equivalent iff there is
a x-isomorphism 0 : L>(X) x T — L®(Y) x A with §(L>*(X)) = L>=(Y).

— the classification of crossed product algebras L°°(X) x I can be
divided into two problems:
@ Prove that the Cartan subalgebra L°°(X) is unique.
[a lot of progress by Popa’s deformation/rigidity theory]

Theorem. If I =T, is a free group (or a product of free groups),
then L>°(X) x I has a unique Cartan up to unitary conjugacy for
e Ozawa-Popa (2007): compact actions I ~ (X, p).
o Popa-Vaes (2011): arbitrary actions I ~ (X, ).
@ Classify all actions that are orbit equivalent to ' ~ (X, u).
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The amenable/nonamenable dichotomy

Definition
A group I is amenable if it admits a sequence {F,} of finite subsets such

FoAF,
that ’g":‘__—|"‘ — 0, for all g € I'. Examples: abelian and solvable groups.
n

Remark: any group containing Fy is not amenable.
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A group I is amenable if it admits a sequence {F,} of finite subsets such
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that m — 0, for all g € I'. Examples: abelian and solvable groups.

|Fal
Remark: any group containing Fy is not amenable.

Dye (1959), Ornstein-Weiss (1980), Connes-Feldman-Weiss (1981):
If I and A are infinite amenable, then any free ergodic actions
'~ (X,u) and A ~ (Y, v) are orbit equivalent.
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The amenable/nonamenable dichotomy

Definition

A group I is amenable if it admits a sequence {F,} of finite subsets such
FaAF,

that m — 0, for all g € I'. Examples: abelian and solvable groups.

|Fal
Remark: any group containing F» is not amenable.

Dye (1959), Ornstein-Weiss (1980), Connes-Feldman-Weiss (1981):
If I and A are infinite amenable, then any free ergodic actions
'~ (X,u) and A ~ (Y, v) are orbit equivalent.

Epstein (2007): If I is not amenable, then there exist uncountably many
non-orbit equivalent free ergodic actions I' ~ (X, p).

e Gaboriau-Popa (2003): same if ' is a free group.

e | (2006): same if ' contains [F, as a subgroup.

e Gaboriau-Lyons (2007): any non-amenable group I' contains F, as
a “measurable subgroup”.
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Definition

Two actions I ~ (X, u) and A ~ (Y,v) are conjugate if there are
isomorphisms o : X — Y and § : T — A with a(g - x) = §(g) - a(x).
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Two actions I ~ (X, u) and A ~ (Y,v) are conjugate if there are
isomorphisms o : X — Y and § : T — A with a(g - x) = §(g) - a(x).
o Conjugacy = orbit equivalence.

@ Rigidity: when the converse holds.

Zimmer (1980) OE rigidity for actions of higher rank groups & lattices
@ If a: X — Y is an orbit equivalence of free actions  ~ X, A ~ Y,
then w : T x X — A given by a(g - x) = w(g, x) - a(x) is a cocycle:
w(gh, x) = w(g, hx)w(h,x), forall g,h €T and a.e. x € X.

@ If w is cohomologous to a homomorphism § : ' — A (viewed as a
constant cocycle) then ' ~ X, A ~ Y are “virtually” conjugate.

Two cocycles wy, ws : T x X — A are cohomologous if there exists a

measurable map ¢ : X — A such that wi(g, x) = ¢(g - x)wa(g, x)p(x) L.
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Orbit equivalence and cocycle superrigidity

The following actions ' ~ (X, i) are orbit equivalent superrigid: any
action that is orbit equivalent to ' ~ (X, 1) must be conjugate to it.
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Orbit equivalence and cocycle superrigidity

The following actions ' ~ (X, i) are orbit equivalent superrigid: any
action that is orbit equivalent to ' ~ (X, 1) must be conjugate to it.

e Furman (1998): most actions of higher rank lattices, including
SL,(Z) ~ T", for n > 3.

e Popa (2004-2006): Bernoulli actions of property (T) and products
of non-amenable groups.

e Kida (2006): all actions of most mapping class groups.
o | (2008): profinite actions of property (T) groups.

Theorem (Popa, 2005-2006)

Let T be a property (T) group (e.g. T = SLy(Z),n > 3) or a product
group ' =11 x ', with 'y infinite and Ty non-amenable.
Let T ~ (X, ) a Bernoulli action and A any Uy, group (e.g. countable).

Then any cocycle w : I x X — A is cohomologous to a homomorphism.
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Cocycle superrigidity for compact actions, |

Theorem (I, 2008)

Let G be a profinite group and I be a dense property (T) subgroup.

Let A be a countable group and w : I x G — A a cocycle for the left
translation action T ~ G.
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Theorem (I, 2008)

Let G be a profinite group and I be a dense property (T) subgroup.

Let A be a countable group and w : I x G — A a cocycle for the left
translation action T ~ G.

Then there exists an open subgroup Gy < G such that the restriction of w
to (' N Gy) x Gy is cohomologous to a homomorphism 6 : T N Gy — A.

v
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Let A be a countable group and w : I x G — A a cocycle for the left
translation action T ~ G.
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e applies to SL,(Z) ~ SLn(Zp), for any n > 3 and prime p.
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Theorem (I, 2008)

Let G be a profinite group and I be a dense property (T) subgroup.

Let A be a countable group and w : I x G — A a cocycle for the left
translation action T ~ G.

Then there exists an open subgroup Gy < G such that the restriction of w
to (' N Gy) x Gy is cohomologous to a homomorphism 6 : T N Gy — A.

v

e applies to SL,(Z) ~ SLn(Zp), for any n > 3 and prime p.
e Furman (2009): extended this result to general compact groups G.

@ Question: are compact actions of product groups cocycle superrigid?
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Cocycle superrigid actions

For the following actions I' ~ (X, 1), any cocycle w : I x X — A with
A countable is cohomologous to a homomorphism:

o Popa-Vaes (2008): the usual action SL,(Z) ~ T", for n > 5.
e Peterson-Sinclair (2009): Bernoulli actions of L2-rigid groups.

@ Tucker-Drob (2014): Bernoulli actions of inner amenable
non-amenable groups.

I (2014): SLA(Z[}]) ~ SLa(R)/SL,(Z), for n >3 and p prime.

Drimbe (2015): any co-induced action I ~ (Xo, 110)"/?,
where I has property (T) and A is an infinite index subgroup.
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Let G be a profinite group and ', \ be finitely generated dense subgroups.
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38 /66




Cocycle superrigidity for compact actions, Il

Question: are compact actions of product groups cocycle superrigid?

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and ', \ be finitely generated dense subgroups.
Consider the left-right translation action T x A ~ G.
Let A be a countable group and w : (I x N) x G — A be a cocycle.

Assume that the left translation action I ~ G is strongly ergodic.

39 /66



Cocycle superrigidity for compact actions, Il

Question: are compact actions of product groups cocycle superrigid?

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and ', \ be finitely generated dense subgroups.
Consider the left-right translation action T x A ~ G.
Let A be a countable group and w : (I x N) x G — A be a cocycle.

Assume that the left translation action I ~ G is strongly ergodic.

Then there is Gy < G open subgroup such that the restriction of w to
(F'N Go) x (AN Gy) x Gg is cohomologous to a homomorphism
0: (rﬁGo) X (/\ﬂGo) — A.

40 /66



Cocycle superrigidity for compact actions, Il

Question: are compact actions of product groups cocycle superrigid?

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and ', \ be finitely generated dense subgroups.
Consider the left-right translation action T x A ~ G.
Let A be a countable group and w : (I x N) x G — A be a cocycle.

Assume that the left translation action I ~ G is strongly ergodic.

Then there is Gy < G open subgroup such that the restriction of w to
(F'N Go) x (AN Gy) x Gg is cohomologous to a homomorphism
0: (rﬂGo) X (/\ﬂGo) — A.

Remark. Any compact action I' x A ~ X such that ', A act freely and
ergodically is isomorphic to a left-right translation action ' x A ~ G.
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Strong ergodicity, |

An action ' ~ (X, ) is called strongly ergodic if there are no non-trivial
asymptotically invariant measurable sets A, C X:

(g - AnDAy) = 0,Vg €T = u(An)(1 — pu(As)) — 0.
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An action ' ~ (X, ) is called strongly ergodic if there are no non-trivial
asymptotically invariant measurable sets A, C X:

(g - AnDAy) = 0,Vg €T = u(An)(1 — pu(As)) — 0.

Remark. If I ~ (X, ) is strongly ergodic, then I is not amenable.
Examples. (a) Bernoulli actions of non-amenable groups.
(b) Any p.m.p. action with spectral gap is strongly ergodic.
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Strong ergodicity, |

Definition

An action ' ~ (X, ) is called strongly ergodic if there are no non-trivial
asymptotically invariant measurable sets A, C X:

p(g - AnDA,) = 0,Vg el = u(An)(1—pu(A,)) — 0.

Remark. If I ~ (X, ) is strongly ergodic, then I is not amenable.
Examples. (a) Bernoulli actions of non-amenable groups.
(b) Any p.m.p. action with spectral gap is strongly ergodic.

o Selberg (1965) SL>(Z) ~ SL2(Zy) is strongly ergodic, for prime p.

e Bourgain-Varji (2010) I ~ T < SL(Z),) is strongly ergodic,
for any non-amenable subgroup I' < SL»(Z).
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Outline of the proof of the theorem

Let w: (I x A) x G — A be a cocycle for the left-right action I x A ~ G.
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Outline of the proof of the theorem

Let w: (I x A) x G — A be a cocycle for the left-right action I x A ~ G.
Goal: Prove that w is “virtually” cohomologous to a homomorphism.
For he€ A and t € G, define AL = {x € G | w(h,xt) = w(h,x)}.
o u(Al) — 1, as t —id, for every h e A.
® wis coh. to a homomorphism, then inf w(Ar) — 1, as t — id.
€
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hen
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Outline of the proof of the theorem

Let w: (I x A) x G — A be a cocycle for the left-right action I x A ~ G.
Goal: Prove that w is “virtually” cohomologous to a homomorphism.
For he€ A and t € G, define AL = {x € G | w(h,xt) = w(h,x)}.
o u(Al) — 1, as t —id, for every h e A.
® wis coh. to a homomorphism, then inf w(AL) — 1, as t — id.
€

Step 1. For g € T, we have sup u(g - ALAA}) — 0, as t — id.
hen

Step 2. (G-TD, 2015) Strong ergodicity implies
sup (AL (1 — pu(Af)) — 0, ast—id.
hel
Using finite generation of A, we get that flym/c\ w(AL) =1, as t — id.
€
Step 3 (I, 2007). The uniformity condition of Step 2 implies that the

restriction of w to A x G is "virtually” cohomologous to a homomorphism.
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Orbit equivalence superrigidity

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and ', \ be finitely generated dense subgroups.
Let A be a countable group and w : (I’ x N) x G — A a cocycle.
Assume that I ~ G is strongly ergodic.

Then there is Gy < G open subgroup such that the restriction of w to
(F'N Gp) x (AN Gg) x Go is cohomologous to a homomorphism.

52 /66



Orbit equivalence superrigidity

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and ', \ be finitely generated dense subgroups.
Let A be a countable group and w : (I’ x N) x G — A a cocycle.
Assume that I ~ G is strongly ergodic.

Then there is Gy < G open subgroup such that the restriction of w to
(F'N Gp) x (AN Gg) x Go is cohomologous to a homomorphism.

| N\

Corollary

Assume that A ~ (Y,v) is any action orbit equivalent toT x N~ G.
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Orbit equivalence superrigidity

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and ', \ be finitely generated dense subgroups.
Let A be a countable group and w : (I’ x N) x G — A a cocycle.
Assume that I ~ G is strongly ergodic.

Then there is Gy < G open subgroup such that the restriction of w to
(F'N Gp) x (AN Gg) x Go is cohomologous to a homomorphism.

| A\

Corollary
Assume that A ~ (Y,v) is any action orbit equivalent toT x N~ G.

Then the actions are virtually conjugate: there exist an open subgroup
Go < G, a finite index subgroup Ag < A, and a Ag-ergodic component
Yo C Y such that (I N Gy) x (AN Gy) ~ Gy is conjugate to Ag ~ Yp.

v
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Orbit equivalence superrigidity

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and I', \ be finitely generated dense subgroups.
Let A be a countable group and w : (I’ x N) x G — A a cocycle.
Assume that I ~ G is strongly ergodic.

Then there is Gy < G open subgroup such that the restriction of w to
(F'N Gp) x (AN Gg) x Go is cohomologous to a homomorphism.

| \

Corollary
Assume that A ~ (Y ,v) is any action orbit equivalent tol x A ~ G.

Then the actions are virtually conjugate: there exist an open subgroup
Go < G, a finite index subgroup Ag < A, and a Ag-ergodic component
Yo C Y such that (I N Gy) x (AN Gy) ~ Gy is conjugate to Ag ~ Yp.

v

e applies to PSLy(Z) x PSLy(Z) ~ PSLy(Zp), for any prime p.
@ more generally, applies to I x I ~ T, where [ < PSLy(Z) is a

non-amenable subgroup, and T is the closure of I in PSLy(Z,). .



W*-superrigidity

An action ' ~ (X, p) is called W*-superrigid if any action A ~ (Y, v)
such that L>°(X) x T = L>®(Y) x A is conjugate to [ ~ (X, p).
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W*-superrigidity

An action ' ~ (X, p) is called W*-superrigid if any action A ~ (Y, v)
such that L>°(X) x T = L>®(Y) x A is conjugate to [ ~ (X, p).

o Peterson (2009) existence of virtually W*-superrigid actions

o Popa-Vaes (2009) first concrete classes of W*-superrigid actions

e | (2010) Bernoulli actions of icc property (T) groups are
W*-superrigid
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W*-superrigidity

An action ' ~ (X, p) is called W*-superrigid if any action A ~ (Y, v)
such that L>°(X) x T = L>®(Y) x A is conjugate to [ ~ (X, p).

o Peterson (2009) existence of virtually W*-superrigid actions

o Popa-Vaes (2009) first concrete classes of W*-superrigid actions

e | (2010) Bernoulli actions of icc property (T) groups are
W*-superrigid

Corollary (Gaboriau-I-Tucker-Drob, 2016)

PSL>(Z) x PSLy(Z) ~ PSLy(Zp) is virtually W*-superrigid, for prime p.
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W*-superrigidity

An action ' ~ (X, p) is called W*-superrigid if any action A ~ (Y, v)
such that L>°(X) x T = L>®(Y) x A is conjugate to [ ~ (X, p).

o Peterson (2009) existence of virtually W*-superrigid actions

o Popa-Vaes (2009) first concrete classes of W*-superrigid actions

e | (2010) Bernoulli actions of icc property (T) groups are
W*-superrigid

Corollary (Gaboriau-I-Tucker-Drob, 2016)

PSL>(Z) x PSLy(Z) ~ PSLy(Zp) is virtually W*-superrigid, for prime p.

Ozawa-Popa (2007) L>°(PSL2(Zp)) »x (PSL2(Z) x PSLy(Z))
has a unique Cartan subalgebra, up to unitary conjugacy.
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Cocycle superrigidity for compact actions, Il

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a simply connected simple Lie group, and I, \ dense subgroups.
Assume that T ~ G is strongly ergodic, and (x) A\ contains an infinite
cyclic subgroup with compact closure. Let A be a countable group.
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Cocycle superrigidity for compact actions, Il

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a simply connected simple Lie group, and I, \ dense subgroups.
Assume that T ~ G is strongly ergodic, and (x) A\ contains an infinite
cyclic subgroup with compact closure. Let A be a countable group.

Then any cocycle w : (I' x N) x G — A is cohomologous to a
homomorphism.
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Cocycle superrigidity for compact actions, Il

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a simply connected simple Lie group, and I, \ dense subgroups.
Assume that T ~ G is strongly ergodic, and (x) A\ contains an infinite
cyclic subgroup with compact closure. Let A be a countable group.

Then any cocycle w : (I' x N) x G — A is cohomologous to a
homomorphism.

Remark. (x) holds for any dense subgroup A < SL,(R),
but fails for some dense subgroups A < SL,(R), if n > 3.
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Strong ergodicity, Il

Theorem

Let G be a connected simple Lie group. Let T < G be a countable dense
subgroup such that Ad(I") consists of matrices with algebraic entries.
Here, Ad: G — GL(g) denotes the adjoint representation of G.
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Strong ergodicity, Il

Theorem

Let G be a connected simple Lie group. Let T < G be a countable dense
subgroup such that Ad(I") consists of matrices with algebraic entries.
Here, Ad: G — GL(g) denotes the adjoint representation of G.

Then the left translation action I ~ G is strongly ergodic.
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Strong ergodicity, Il

Theorem

Let G be a connected simple Lie group. Let T < G be a countable dense
subgroup such that Ad(I") consists of matrices with algebraic entries.
Here, Ad: G — GL(g) denotes the adjoint representation of G.

Then the left translation action I ~ G is strongly ergodic.

e Bourgain-Gamburd (2006-2011)
if G = SU(d), for d > 2.

o Benoist-de Saxcé (2014)
if G is compact, e.g. G = SO(n), for n > 3.
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Strong ergodicity, Il

Theorem

Let G be a connected simple Lie group. Let T < G be a countable dense
subgroup such that Ad(T") consists of matrices with algebraic entries.
Here, Ad: G — GL(g) denotes the adjoint representation of G.

Then the left translation action I ~ G is strongly ergodic.

e Bourgain-Gamburd (2006-2011)
if G = SU(d), for d > 2.

o Benoist-de Saxcé (2014)
if G is compact, e.g. G = SO(n), for n > 3.

o Boutonnet-I-Salehi-Golsefidy (2015)
for general G, e.g. G = SL,(R), for n > 2.
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