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Orbit equivalence

Let Γ y (X , µ) be an action of a countable group Γ on a probability space
(X , µ) which is assumed

measure preserving: µ(g · A) = µ(A), for all g ∈ Γ and A ⊂ X ,

free: {x | g · x = x} has measure 0, for all g 6= id, and

ergodic: any Γ-invariant set A ⊂ X has measure 0 or 1.

Its orbit equivalence relation is defined as:

R(Γ y X ) = {(x , y) ∈ X × X | Γ · x = Γ · y}

Question: To extent does R(Γ y X ) remember the group and action it
was constructed from?

Definition

Two actions Γ y (X , µ) and ∆ y (Y , ν) are orbit equivalent if there is an
isomorphism α : X → Y satisfying Γ · x = Γ · y ⇔ ∆ · α(x) = ∆ · α(y),
almost everywhere. (that is, the equivalence relations are isomorphic.)
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Examples of free ergodic measure preserving actions

Bernoulli actions Γ y (X0, µ0)Γ, given by g · (xh)h = (xg−1h)h.

the usual actions SLn(Z) y Tn and SLn(Z) y SLn(R)/SLn(Z).

an action Γ y (X , µ) is compact if Γ
s.o.t. ⊂ U(L2(X )) is compact.

Fact. Any ergodic compact action is isomorphic to a left translation
action Γ y G/K , where G is a compact group which contains Γ
densely and K < G is a closed subgroup.

1 the irrational rotation Z yα T, by an angle α /∈ 2πQ.

2 the actions Γ y SO(n + 1) and Γ y Sn,
where Γ < SO(n + 1) is a countable dense subgroup.

3 the left translation action Γ y G ,
where Γ is residually finite and G = lim←− Γ/Γn is a profinite completion.

4 the left-right translation action Γ× Λ y G : (g , h) · x = gxh−1,
where G is a compact group containing Γ,Λ densely.
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Orbit equivalence and von Neumann algebras

Murray-von Neumann (1936) Γ y (X , µ) measure preserving action  
crossed product von Neumann algebra L∞(X ) o Γ

Remark. If the action is free and ergodic, then L∞(X ) o Γ is a II1 factor
and L∞(X ) is a Cartan subalgebra (maximal abelian and regular).

Singer (1955) Γ y (X , µ) and ∆ y (Y , ν) are orbit equivalent iff there is
a ∗-isomorphism θ : L∞(X ) o Γ→ L∞(Y ) o ∆ with θ(L∞(X )) = L∞(Y ).

=⇒ the classification of crossed product algebras L∞(X ) o Γ can be
divided into two problems:

1 Prove that the Cartan subalgebra L∞(X ) is unique.
[a lot of progress by Popa’s deformation/rigidity theory]

Theorem. If Γ = Fn is a free group (or a product of free groups),
then L∞(X ) o Γ has a unique Cartan up to unitary conjugacy for

Ozawa-Popa (2007): compact actions Γ y (X , µ).
Popa-Vaes (2011): arbitrary actions Γ y (X , µ).

2 Classify all actions that are orbit equivalent to Γ y (X , µ).
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The amenable/nonamenable dichotomy

Definition

A group Γ is amenable if it admits a sequence {Fn} of finite subsets such

that
|gFn∆Fn|
|Fn|

→ 0, for all g ∈ Γ. Examples: abelian and solvable groups.

Remark: any group containing F2 is not amenable.

Dye (1959), Ornstein-Weiss (1980), Connes-Feldman-Weiss (1981):
If Γ and Λ are infinite amenable, then any free ergodic actions
Γ y (X , µ) and ∆ y (Y , ν) are orbit equivalent.

Epstein (2007): If Γ is not amenable, then there exist uncountably many
non-orbit equivalent free ergodic actions Γ y (X , µ).

Gaboriau-Popa (2003): same if Γ is a free group.

I (2006): same if Γ contains F2 as a subgroup.

Gaboriau-Lyons (2007): any non-amenable group Γ contains F2 as
a “measurable subgroup”.
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Rigidity

Definition

Two actions Γ y (X , µ) and ∆ y (Y , ν) are conjugate if there are
isomorphisms α : X → Y and δ : Γ→ ∆ with α(g · x) = δ(g) · α(x).

Conjugacy ⇒ orbit equivalence.

Rigidity: when the converse holds.

Zimmer (1980) OE rigidity for actions of higher rank groups & lattices

1 If α : X → Y is an orbit equivalence of free actions Γ y X ,∆ y Y ,
then w : Γ× X → ∆ given by α(g · x) = w(g , x) · α(x) is a cocycle:

w(gh, x) = w(g , hx)w(h, x), for all g , h ∈ Γ and a.e. x ∈ X .

2 If w is cohomologous to a homomorphism δ : Γ→ ∆ (viewed as a
constant cocycle) then Γ y X ,∆ y Y are “virtually” conjugate.

Two cocycles w1,w2 : Γ× X → ∆ are cohomologous if there exists a
measurable map ϕ : X → ∆ such that w1(g , x) = ϕ(g · x)w2(g , x)ϕ(x)−1.
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Orbit equivalence and cocycle superrigidity

The following actions Γ y (X , µ) are orbit equivalent superrigid: any
action that is orbit equivalent to Γ y (X , µ) must be conjugate to it.

Furman (1998): most actions of higher rank lattices, including
SLn(Z) y Tn, for n > 3.

Popa (2004-2006): Bernoulli actions of property (T) and products
of non-amenable groups.

Kida (2006): all actions of most mapping class groups.

I (2008): profinite actions of property (T) groups.

Theorem (Popa, 2005-2006)

Let Γ be a property (T) group (e.g. Γ = SLn(Z), n ≥ 3) or a product
group Γ = Γ1 × Γ2, with Γ1 infinite and Γ2 non-amenable.
Let Γ y (X , µ) a Bernoulli action and ∆ any Ufin group (e.g. countable).
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Cocycle superrigidity for compact actions, I

Theorem (I, 2008)

Let G be a profinite group and Γ be a dense property (T) subgroup.
Let ∆ be a countable group and w : Γ× G → ∆ a cocycle for the left
translation action Γ y G .

Then there exists an open subgroup G0 < G such that the restriction of w
to (Γ ∩ G0)× G0 is cohomologous to a homomorphism δ : Γ ∩ G0 → ∆.

applies to SLn(Z) y SLn(Zp), for any n ≥ 3 and prime p.

Furman (2009): extended this result to general compact groups G .

Question: are compact actions of product groups cocycle superrigid?
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Cocycle superrigid actions

For the following actions Γ y (X , µ), any cocycle w : Γ× X → ∆ with
∆ countable is cohomologous to a homomorphism:

Popa-Vaes (2008): the usual action SLn(Z) y Tn, for n ≥ 5.

Peterson-Sinclair (2009): Bernoulli actions of L2-rigid groups.

Tucker-Drob (2014): Bernoulli actions of inner amenable
non-amenable groups.

I (2014): SLn(Z[ 1
p ]) y SLn(R)/SLn(Z), for n ≥ 3 and p prime.

Drimbe (2015): any co-induced action Γ y (X0, µ0)Γ/Λ,
where Γ has property (T) and Λ is an infinite index subgroup.
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Cocycle superrigidity for compact actions, II

Question: are compact actions of product groups cocycle superrigid?

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and Γ,Λ be finitely generated dense subgroups.
Consider the left-right translation action Γ× Λ y G .
Let ∆ be a countable group and w : (Γ× Λ)× G → ∆ be a cocycle.

Assume that the left translation action Γ y G is strongly ergodic.

Then there is G0 < G open subgroup such that the restriction of w to
(Γ ∩ G0)× (Λ ∩ G0)× G0 is cohomologous to a homomorphism
δ : (Γ ∩ G0)× (Λ ∩ G0)→ ∆.

Remark. Any compact action Γ× Λ y X such that Γ,Λ act freely and
ergodically is isomorphic to a left-right translation action Γ× Λ y G .
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Strong ergodicity, I

Definition

An action Γ y (X , µ) is called strongly ergodic if there are no non-trivial
asymptotically invariant measurable sets An ⊂ X :

µ(g · An∆An)→ 0,∀g ∈ Γ =⇒ µ(An)(1− µ(An))→ 0.

Remark. If Γ y (X , µ) is strongly ergodic, then Γ is not amenable.
Examples. (a) Bernoulli actions of non-amenable groups.
(b) Any p.m.p. action with spectral gap is strongly ergodic.

Examples

Selberg (1965) SL2(Z) y SL2(Zp) is strongly ergodic, for prime p.

Bourgain-Varjú (2010) Γ y Γ < SL2(Zp) is strongly ergodic,
for any non-amenable subgroup Γ < SL2(Z).
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Bourgain-Varjú (2010) Γ y Γ < SL2(Zp) is strongly ergodic,
for any non-amenable subgroup Γ < SL2(Z).

43 / 66



Strong ergodicity, I

Definition

An action Γ y (X , µ) is called strongly ergodic if there are no non-trivial
asymptotically invariant measurable sets An ⊂ X :

µ(g · An∆An)→ 0,∀g ∈ Γ =⇒ µ(An)(1− µ(An))→ 0.

Remark. If Γ y (X , µ) is strongly ergodic, then Γ is not amenable.
Examples. (a) Bernoulli actions of non-amenable groups.
(b) Any p.m.p. action with spectral gap is strongly ergodic.

Examples

Selberg (1965) SL2(Z) y SL2(Zp) is strongly ergodic, for prime p.
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Outline of the proof of the theorem

Let w : (Γ× Λ)×G → ∆ be a cocycle for the left-right action Γ× Λ y G .

Goal: Prove that w is “virtually” cohomologous to a homomorphism.

For h ∈ Λ and t ∈ G , define At
h = {x ∈ G | w(h, xt) = w(h, x)}.

µ(At
h)→ 1, as t → id, for every h ∈ Λ.

w is coh. to a homomorphism, then inf
h∈Λ

µ(At
h)→ 1, as t → id.

Step 1. For g ∈ Γ, we have sup
h∈Λ

µ(g · At
h∆At

h)→ 0, as t → id.

Step 2. (G-TD, 2015) Strong ergodicity implies

sup
h∈Λ

µ(At
h)(1− µ(At

h))→ 0, as t → id.

Using finite generation of Λ, we get that inf
h∈Λ

µ(At
h)→ 1, as t → id.

Step 3 (I, 2007). The uniformity condition of Step 2 implies that the
restriction of w to Λ×G is “virtually” cohomologous to a homomorphism.
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Orbit equivalence superrigidity

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and Γ,Λ be finitely generated dense subgroups.
Let ∆ be a countable group and w : (Γ× Λ)× G → ∆ a cocycle.
Assume that Γ y G is strongly ergodic.

Then there is G0 < G open subgroup such that the restriction of w to
(Γ ∩ G0)× (Λ ∩ G0)× G0 is cohomologous to a homomorphism.

Corollary

Assume that ∆ y (Y , ν) is any action orbit equivalent to Γ× Λ y G .

Then the actions are virtually conjugate: there exist an open subgroup
G0 < G , a finite index subgroup ∆0 < ∆, and a ∆0-ergodic component
Y0 ⊂ Y such that (Γ ∩ G0)× (Λ ∩ G0) y G0 is conjugate to ∆0 y Y0.

applies to PSL2(Z)× PSL2(Z) y PSL2(Zp), for any prime p.
more generally, applies to Γ× Γ y Γ, where Γ < PSL2(Z) is a
non-amenable subgroup, and Γ is the closure of Γ in PSL2(Zp).
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W∗-superrigidity

An action Γ y (X , µ) is called W∗-superrigid if any action ∆ y (Y , ν)
such that L∞(X ) o Γ ∼= L∞(Y ) o ∆ is conjugate to Γ y (X , µ).

Peterson (2009) existence of virtually W∗-superrigid actions

Popa-Vaes (2009) first concrete classes of W∗-superrigid actions

I (2010) Bernoulli actions of icc property (T) groups are
W∗-superrigid

Corollary (Gaboriau-I-Tucker-Drob, 2016)

PSL2(Z)× PSL2(Z) y PSL2(Zp) is virtually W∗-superrigid, for prime p.

Ozawa-Popa (2007) L∞(PSL2(Zp)) o (PSL2(Z)× PSL2(Z))
has a unique Cartan subalgebra, up to unitary conjugacy.
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Cocycle superrigidity for compact actions, III

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a simply connected simple Lie group, and Γ,Λ dense subgroups.
Assume that Γ y G is strongly ergodic, and (?) Λ contains an infinite
cyclic subgroup with compact closure. Let ∆ be a countable group.

Then any cocycle w : (Γ× Λ)× G → ∆ is cohomologous to a
homomorphism.

Remark. (?) holds for any dense subgroup Λ < SL2(R),
but fails for some dense subgroups Λ < SLn(R), if n ≥ 3.
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Strong ergodicity, II

Theorem

Let G be a connected simple Lie group. Let Γ < G be a countable dense
subgroup such that Ad(Γ) consists of matrices with algebraic entries.
Here, Ad : G → GL(g) denotes the adjoint representation of G .

Then the left translation action Γ y G is strongly ergodic.

Bourgain-Gamburd (2006-2011)
if G = SU(d), for d ≥ 2.

Benoist-de Saxcé (2014)
if G is compact, e.g. G = SO(n), for n ≥ 3.

Boutonnet-I-Salehi-Golsefidy (2015)
for general G , e.g. G = SLn(R), for n ≥ 2.
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