Cocycle superrigidity for translations actions of product groups

Adrian Ioana

University of California, San Diego

Operator Algebras and Mathematical Physics Tohoku University, Sendai, Japan August 9th, 2016

Let $\Gamma \curvearrowright (X, \mu)$ be an action of a countable group Γ on a probability space (X, μ) which is assumed

- measure preserving: $\mu(g \cdot A) = \mu(A)$, for all $g \in \Gamma$ and $A \subset X$,
- free: $\{x \mid g \cdot x = x\}$ has measure 0, for all $g \neq id$, and
- ergodic: any Γ -invariant set $A \subset X$ has measure 0 or 1.

Let $\Gamma \curvearrowright (X, \mu)$ be an action of a countable group Γ on a probability space (X, μ) which is assumed

- measure preserving: $\mu(g \cdot A) = \mu(A)$, for all $g \in \Gamma$ and $A \subset X$,
- free: $\{x \mid g \cdot x = x\}$ has measure 0, for all $g \neq id$, and
- **ergodic:** any Γ -invariant set $A \subset X$ has measure 0 or 1.

Its orbit equivalence relation is defined as:

$$\mathcal{R}(\Gamma \frown X) = \{(x, y) \in X \times X \mid \Gamma \cdot x = \Gamma \cdot y\}$$

Let $\Gamma \curvearrowright (X, \mu)$ be an action of a countable group Γ on a probability space (X, μ) which is assumed

- measure preserving: $\mu(g \cdot A) = \mu(A)$, for all $g \in \Gamma$ and $A \subset X$,
- free: $\{x \mid g \cdot x = x\}$ has measure 0, for all $g \neq id$, and
- **ergodic:** any Γ -invariant set $A \subset X$ has measure 0 or 1.

Its orbit equivalence relation is defined as:

$$\mathcal{R}(\Gamma \frown X) = \{(x, y) \in X \times X \mid \Gamma \cdot x = \Gamma \cdot y\}$$

Question: To extent does $\mathcal{R}(\Gamma \frown X)$ remember the group and action it was constructed from?

Let $\Gamma \curvearrowright (X, \mu)$ be an action of a countable group Γ on a probability space (X, μ) which is assumed

- measure preserving: $\mu(g \cdot A) = \mu(A)$, for all $g \in \Gamma$ and $A \subset X$,
- free: $\{x \mid g \cdot x = x\}$ has measure 0, for all $g \neq id$, and
- **ergodic:** any Γ -invariant set $A \subset X$ has measure 0 or 1.

Its orbit equivalence relation is defined as:

$$\mathcal{R}(\Gamma \frown X) = \{(x, y) \in X \times X \mid \Gamma \cdot x = \Gamma \cdot y\}$$

Question: To extent does $\mathcal{R}(\Gamma \frown X)$ remember the group and action it was constructed from?

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are orbit equivalent if there is an isomorphism $\alpha : X \to Y$ satisfying $\Gamma \cdot x = \Gamma \cdot y \Leftrightarrow \Delta \cdot \alpha(x) = \Delta \cdot \alpha(y)$, almost everywhere. (that is, the equivalence relations are isomorphic.)

• **Bernoulli** actions $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$, given by $g \cdot (x_h)_h = (x_{g^{-1}h})_h$.

• Bernoulli actions $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$, given by $g \cdot (x_h)_h = (x_{g^{-1}h})_h$.

• the usual actions $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$ and $SL_n(\mathbb{Z}) \curvearrowright SL_n(\mathbb{R})/SL_n(\mathbb{Z})$.

- Bernoulli actions $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$, given by $g \cdot (x_h)_h = (x_{g^{-1}h})_h$.
- the usual actions $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$ and $SL_n(\mathbb{Z}) \curvearrowright SL_n(\mathbb{R})/SL_n(\mathbb{Z})$.
- an action $\Gamma \curvearrowright (X, \mu)$ is **compact** if $\overline{\Gamma}^{s.o.t.} \subset \mathcal{U}(L^2(X))$ is compact.

- Bernoulli actions $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$, given by $g \cdot (x_h)_h = (x_{g^{-1}h})_h$.
- the usual actions $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$ and $SL_n(\mathbb{Z}) \curvearrowright SL_n(\mathbb{R})/SL_n(\mathbb{Z})$.
- an action $\Gamma \curvearrowright (X, \mu)$ is **compact** if $\overline{\Gamma}^{s.o.t.} \subset \mathcal{U}(L^2(X))$ is compact.

Fact. Any ergodic compact action is isomorphic to a **left translation** action $\Gamma \curvearrowright G/K$, where G is a compact group which contains Γ densely and K < G is a closed subgroup.

- Bernoulli actions $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$, given by $g \cdot (x_h)_h = (x_{g^{-1}h})_h$.
- the usual actions $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$ and $SL_n(\mathbb{Z}) \curvearrowright SL_n(\mathbb{R})/SL_n(\mathbb{Z})$.
- an action $\Gamma \curvearrowright (X, \mu)$ is **compact** if $\overline{\Gamma}^{s.o.t.} \subset \mathcal{U}(L^2(X))$ is compact.

Fact. Any ergodic compact action is isomorphic to a **left translation** action $\Gamma \curvearrowright G/K$, where G is a compact group which contains Γ densely and K < G is a closed subgroup.

- **1** the irrational rotation $\mathbb{Z} \curvearrowright^{\alpha} \mathbb{T}$, by an angle $\alpha \notin 2\pi \mathbb{Q}$.
- **②** the actions $\Gamma \frown SO(n+1)$ and $\Gamma \frown S^n$, where $\Gamma < SO(n+1)$ is a countable dense subgroup.

- Bernoulli actions $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$, given by $g \cdot (x_h)_h = (x_{g^{-1}h})_h$.
- the usual actions $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$ and $SL_n(\mathbb{Z}) \curvearrowright SL_n(\mathbb{R})/SL_n(\mathbb{Z})$.
- an action $\Gamma \curvearrowright (X, \mu)$ is **compact** if $\overline{\Gamma}^{s.o.t.} \subset \mathcal{U}(L^2(X))$ is compact.

Fact. Any ergodic compact action is isomorphic to a **left translation** action $\Gamma \curvearrowright G/K$, where G is a compact group which contains Γ densely and K < G is a closed subgroup.

- **1** the irrational rotation $\mathbb{Z} \curvearrowright^{\alpha} \mathbb{T}$, by an angle $\alpha \notin 2\pi \mathbb{Q}$.
- ② the actions $\Gamma \frown SO(n+1)$ and $\Gamma \frown S^n$, where $\Gamma < SO(n+1)$ is a countable dense subgroup.
- **3** the left translation action $\Gamma \curvearrowright G$, where Γ is residually finite and $G = \lim_{n \to \infty} \Gamma/\Gamma_n$ is a profinite completion.
- the left-right translation action $\Gamma \times \Lambda \curvearrowright G$: $(g, h) \cdot x = gxh^{-1}$, where G is a compact group containing Γ, Λ densely.

Murray-von Neumann (1936) $\Gamma \curvearrowright (X, \mu)$ measure preserving action \rightsquigarrow **crossed product** von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$

Murray-von Neumann (1936) $\Gamma \curvearrowright (X, \mu)$ measure preserving action \rightsquigarrow crossed product von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$

Remark. If the action is free and ergodic, then $L^{\infty}(X) \rtimes \Gamma$ is a II₁ factor and $L^{\infty}(X)$ is a **Cartan subalgebra** (maximal abelian and regular).

Murray-von Neumann (1936) $\Gamma \curvearrowright (X, \mu)$ measure preserving action \rightsquigarrow crossed product von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$

Remark. If the action is free and ergodic, then $L^{\infty}(X) \rtimes \Gamma$ is a II₁ factor and $L^{\infty}(X)$ is a **Cartan subalgebra** (maximal abelian and regular).

Singer (1955) $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are orbit equivalent iff there is a *-isomorphism $\theta : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Delta$ with $\theta(L^{\infty}(X)) = L^{\infty}(Y)$.

Murray-von Neumann (1936) $\Gamma \curvearrowright (X, \mu)$ measure preserving action \rightsquigarrow crossed product von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$

Remark. If the action is free and ergodic, then $L^{\infty}(X) \rtimes \Gamma$ is a II₁ factor and $L^{\infty}(X)$ is a **Cartan subalgebra** (maximal abelian and regular).

Singer (1955) $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are orbit equivalent iff there is a *-isomorphism $\theta : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Delta$ with $\theta(L^{\infty}(X)) = L^{\infty}(Y)$.

 \implies the classification of crossed product algebras $L^{\infty}(X) \rtimes \Gamma$ can be divided into two problems:

Prove that the Cartan subalgebra L[∞](X) is unique.
 [a lot of progress by Popa's deformation/rigidity theory]

Murray-von Neumann (1936) $\Gamma \curvearrowright (X, \mu)$ measure preserving action \rightsquigarrow crossed product von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$

Remark. If the action is free and ergodic, then $L^{\infty}(X) \rtimes \Gamma$ is a II₁ factor and $L^{\infty}(X)$ is a **Cartan subalgebra** (maximal abelian and regular).

Singer (1955) $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are orbit equivalent iff there is a *-isomorphism $\theta : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Delta$ with $\theta(L^{\infty}(X)) = L^{\infty}(Y)$.

 \implies the classification of crossed product algebras $L^{\infty}(X) \rtimes \Gamma$ can be divided into two problems:

Prove that the Cartan subalgebra L[∞](X) is unique.
 [a lot of progress by Popa's deformation/rigidity theory]
 Theorem. If Γ = F_n is a free group (or a product of free groups), then L[∞](X) ⋊ Γ has a unique Cartan up to unitary conjugacy for

- Ozawa-Popa (2007): compact actions $\Gamma \curvearrowright (X, \mu)$.
- Popa-Vaes (2011): arbitrary actions $\Gamma \curvearrowright (X, \mu)$.

Murray-von Neumann (1936) $\Gamma \curvearrowright (X, \mu)$ measure preserving action \rightsquigarrow crossed product von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$

Remark. If the action is free and ergodic, then $L^{\infty}(X) \rtimes \Gamma$ is a II₁ factor and $L^{\infty}(X)$ is a **Cartan subalgebra** (maximal abelian and regular).

Singer (1955) $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are orbit equivalent iff there is a *-isomorphism $\theta : L^{\infty}(X) \rtimes \Gamma \to L^{\infty}(Y) \rtimes \Delta$ with $\theta(L^{\infty}(X)) = L^{\infty}(Y)$.

 \implies the classification of crossed product algebras $L^{\infty}(X) \rtimes \Gamma$ can be divided into two problems:

Prove that the Cartan subalgebra L[∞](X) is unique.
 [a lot of progress by Popa's deformation/rigidity theory]
 Theorem. If Γ = F_n is a free group (or a product of free groups), then L[∞](X) ⋊ Γ has a unique Cartan up to unitary conjugacy for

- Ozawa-Popa (2007): compact actions $\Gamma \curvearrowright (X, \mu)$.
- Popa-Vaes (2011): arbitrary actions $\Gamma \curvearrowright (X, \mu)$.

2 Classify all actions that are orbit equivalent to $\Gamma \curvearrowright (X, \mu)$.

The amenable/nonamenable dichotomy

Definition

A group Γ is **amenable** if it admits a sequence $\{F_n\}$ of finite subsets such that $\frac{|gF_n\Delta F_n|}{|F_n|} \rightarrow 0$, for all $g \in \Gamma$. **Examples**: abelian and solvable groups. **Remark**: any group containing \mathbb{F}_2 is not amenable.

The amenable/nonamenable dichotomy

Definition

A group Γ is **amenable** if it admits a sequence $\{F_n\}$ of finite subsets such that $\frac{|gF_n\Delta F_n|}{|F_n|} \rightarrow 0$, for all $g \in \Gamma$. **Examples**: abelian and solvable groups. **Remark**: any group containing \mathbb{F}_2 is not amenable.

Dye (1959), Ornstein-Weiss (1980), Connes-Feldman-Weiss (1981): If Γ and Λ are infinite amenable, then any free ergodic actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are orbit equivalent.

The amenable/nonamenable dichotomy

Definition

A group Γ is **amenable** if it admits a sequence $\{F_n\}$ of finite subsets such that $\frac{|gF_n\Delta F_n|}{|F_n|} \rightarrow 0$, for all $g \in \Gamma$. **Examples**: abelian and solvable groups. **Remark**: any group containing \mathbb{F}_2 is not amenable.

Dye (1959), Ornstein-Weiss (1980), Connes-Feldman-Weiss (1981): If Γ and Λ are infinite amenable, then any free ergodic actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are orbit equivalent.

Epstein (2007): If Γ is not amenable, then there exist uncountably many non-orbit equivalent free ergodic actions $\Gamma \curvearrowright (X, \mu)$.

- Gaboriau-Popa (2003): same if Γ is a free group.
- I (2006): same if Γ contains \mathbb{F}_2 as a subgroup.
- Gaboriau-Lyons (2007): any non-amenable group Γ contains \mathbb{F}_2 as a "measurable subgroup".

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are **conjugate** if there are isomorphisms $\alpha : X \to Y$ and $\delta : \Gamma \to \Delta$ with $\alpha(g \cdot x) = \delta(g) \cdot \alpha(x)$.

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are **conjugate** if there are isomorphisms $\alpha : X \to Y$ and $\delta : \Gamma \to \Delta$ with $\alpha(g \cdot x) = \delta(g) \cdot \alpha(x)$.

- Conjugacy \Rightarrow orbit equivalence.
- *Rigidity*: when the converse holds.

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are **conjugate** if there are isomorphisms $\alpha : X \to Y$ and $\delta : \Gamma \to \Delta$ with $\alpha(g \cdot x) = \delta(g) \cdot \alpha(x)$.

- Conjugacy \Rightarrow orbit equivalence.
- *Rigidity*: when the converse holds.

Zimmer (1980) OE rigidity for actions of higher rank groups & lattices

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are **conjugate** if there are isomorphisms $\alpha : X \to Y$ and $\delta : \Gamma \to \Delta$ with $\alpha(g \cdot x) = \delta(g) \cdot \alpha(x)$.

- Conjugacy \Rightarrow orbit equivalence.
- *Rigidity*: when the converse holds.

Zimmer (1980) OE rigidity for actions of higher rank groups & lattices

If α : X → Y is an orbit equivalence of free actions Γ ∩ X, Δ ∩ Y, then w : Γ × X → Δ given by α(g · x) = w(g, x) · α(x) is a cocycle: w(gh, x) = w(g, hx)w(h, x), for all g, h ∈ Γ and a.e. x ∈ X.

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are **conjugate** if there are isomorphisms $\alpha : X \to Y$ and $\delta : \Gamma \to \Delta$ with $\alpha(g \cdot x) = \delta(g) \cdot \alpha(x)$.

- Conjugacy \Rightarrow orbit equivalence.
- *Rigidity*: when the converse holds.

Zimmer (1980) OE rigidity for actions of higher rank groups & lattices

- If α : X → Y is an orbit equivalence of free actions Γ ¬ X, Δ ¬ Y, then w : Γ × X → Δ given by α(g · x) = w(g, x) · α(x) is a cocycle: w(gh, x) = w(g, hx)w(h, x), for all g, h ∈ Γ and a.e. x ∈ X.
- If w is cohomologous to a homomorphism δ : Γ → Δ (viewed as a constant cocycle) then Γ ∩ X, Δ ∩ Y are "virtually" conjugate.

Definition

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are **conjugate** if there are isomorphisms $\alpha : X \to Y$ and $\delta : \Gamma \to \Delta$ with $\alpha(g \cdot x) = \delta(g) \cdot \alpha(x)$.

- Conjugacy \Rightarrow orbit equivalence.
- *Rigidity*: when the converse holds.

Zimmer (1980) OE rigidity for actions of higher rank groups & lattices

- If α : X → Y is an orbit equivalence of free actions Γ ∩ X, Δ ∩ Y, then w : Γ × X → Δ given by α(g · x) = w(g, x) · α(x) is a cocycle: w(gh, x) = w(g, hx)w(h, x), for all g, h ∈ Γ and a.e. x ∈ X.
- If w is cohomologous to a homomorphism δ : Γ → Δ (viewed as a constant cocycle) then Γ ∩ X, Δ ∩ Y are "virtually" conjugate.

Two cocycles $w_1, w_2 : \Gamma \times X \to \Delta$ are **cohomologous** if there exists a measurable map $\varphi : X \to \Delta$ such that $w_1(g, x) = \varphi(g \cdot x)w_2(g, x)\varphi(x)^{-1}$.

The following actions $\Gamma \curvearrowright (X, \mu)$ are orbit equivalent superrigid: any action that is orbit equivalent to $\Gamma \curvearrowright (X, \mu)$ must be conjugate to it.

The following actions $\Gamma \curvearrowright (X, \mu)$ are orbit equivalent superrigid: any action that is orbit equivalent to $\Gamma \curvearrowright (X, \mu)$ must be conjugate to it.

• Furman (1998): most actions of higher rank lattices, including $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$, for $n \ge 3$.

The following actions $\Gamma \curvearrowright (X, \mu)$ are orbit equivalent superrigid: any action that is orbit equivalent to $\Gamma \curvearrowright (X, \mu)$ must be conjugate to it.

- Furman (1998): most actions of higher rank lattices, including $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$, for $n \ge 3$.
- **Popa (2004-2006)**: Bernoulli actions of property (T) and products of non-amenable groups.
- Kida (2006): all actions of most mapping class groups.
- I (2008): profinite actions of property (T) groups.

The following actions $\Gamma \curvearrowright (X, \mu)$ are orbit equivalent superrigid: any action that is orbit equivalent to $\Gamma \curvearrowright (X, \mu)$ must be conjugate to it.

- Furman (1998): most actions of higher rank lattices, including $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$, for $n \ge 3$.
- **Popa (2004-2006)**: Bernoulli actions of property (T) and products of non-amenable groups.
- Kida (2006): all actions of most mapping class groups.
- I (2008): profinite actions of property (T) groups.

Theorem (Popa, 2005-2006)

Let Γ be a property (T) group (e.g. $\Gamma = SL_n(\mathbb{Z}), n \ge 3$) or a product group $\Gamma = \Gamma_1 \times \Gamma_2$, with Γ_1 infinite and Γ_2 non-amenable. Let $\Gamma \frown (X, \mu)$ a Bernoulli action and Δ any U_{fin} group (e.g. countable). Then any cocycle $w : \Gamma \times X \to \Delta$ is cohomologous to a homomorphism.

Let G be a profinite group and Γ be a dense property (T) subgroup. Let Δ be a countable group and $w : \Gamma \times G \rightarrow \Delta$ a cocycle for the left translation action $\Gamma \curvearrowright G$.

Let G be a profinite group and Γ be a dense property (T) subgroup. Let Δ be a countable group and $w : \Gamma \times G \rightarrow \Delta$ a cocycle for the left translation action $\Gamma \curvearrowright G$.

Then there exists an open subgroup $G_0 < G$ such that the restriction of w to $(\Gamma \cap G_0) \times G_0$ is cohomologous to a homomorphism $\delta : \Gamma \cap G_0 \to \Delta$.

Let G be a profinite group and Γ be a dense property (T) subgroup. Let Δ be a countable group and $w : \Gamma \times G \rightarrow \Delta$ a cocycle for the left translation action $\Gamma \curvearrowright G$.

Then there exists an open subgroup $G_0 < G$ such that the restriction of w to $(\Gamma \cap G_0) \times G_0$ is cohomologous to a homomorphism $\delta : \Gamma \cap G_0 \to \Delta$.

• applies to $SL_n(\mathbb{Z}) \curvearrowright SL_n(\mathbb{Z}_p)$, for any $n \ge 3$ and prime p.

Let G be a profinite group and Γ be a dense property (T) subgroup. Let Δ be a countable group and $w : \Gamma \times G \rightarrow \Delta$ a cocycle for the left translation action $\Gamma \curvearrowright G$.

Then there exists an open subgroup $G_0 < G$ such that the restriction of w to $(\Gamma \cap G_0) \times G_0$ is cohomologous to a homomorphism $\delta : \Gamma \cap G_0 \to \Delta$.

- applies to $SL_n(\mathbb{Z}) \curvearrowright SL_n(\mathbb{Z}_p)$, for any $n \ge 3$ and prime p.
- Furman (2009): extended this result to general compact groups G.

Let G be a profinite group and Γ be a dense property (T) subgroup. Let Δ be a countable group and $w : \Gamma \times G \rightarrow \Delta$ a cocycle for the left translation action $\Gamma \curvearrowright G$.

Then there exists an open subgroup $G_0 < G$ such that the restriction of w to $(\Gamma \cap G_0) \times G_0$ is cohomologous to a homomorphism $\delta : \Gamma \cap G_0 \to \Delta$.

- applies to $SL_n(\mathbb{Z}) \curvearrowright SL_n(\mathbb{Z}_p)$, for any $n \ge 3$ and prime p.
- Furman (2009): extended this result to general compact groups G.
- Question: are compact actions of product groups cocycle superrigid?

For the following actions $\Gamma \curvearrowright (X, \mu)$, any cocycle $w : \Gamma \times X \to \Delta$ with Δ countable is cohomologous to a homomorphism:

- **Popa-Vaes (2008)**: the usual action $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$, for $n \ge 5$.
- Peterson-Sinclair (2009): Bernoulli actions of L²-rigid groups.
- **Tucker-Drob (2014)**: Bernoulli actions of inner amenable non-amenable groups.
- I (2014): $SL_n(\mathbb{Z}[\frac{1}{p}]) \curvearrowright SL_n(\mathbb{R})/SL_n(\mathbb{Z})$, for $n \ge 3$ and p prime.
- Drimbe (2015): any co-induced action Γ → (X₀, μ₀)^{Γ/Λ}, where Γ has property (T) and Λ is an infinite index subgroup.

Cocycle superrigidity for compact actions, II

Question: are compact actions of product groups cocycle superrigid?

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and Γ , Λ be finitely generated dense subgroups. Consider the left-right translation action $\Gamma \times \Lambda \curvearrowright G$. Let Δ be a countable group and $w : (\Gamma \times \Lambda) \times G \rightarrow \Delta$ be a cocycle.

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and Γ , Λ be finitely generated dense subgroups. Consider the left-right translation action $\Gamma \times \Lambda \curvearrowright G$. Let Δ be a countable group and $w : (\Gamma \times \Lambda) \times G \to \Delta$ be a cocycle. Assume that the left translation action $\Gamma \curvearrowright G$ is strongly ergodic.

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and Γ , Λ be finitely generated dense subgroups. Consider the left-right translation action $\Gamma \times \Lambda \curvearrowright G$. Let Δ be a countable group and $w : (\Gamma \times \Lambda) \times G \rightarrow \Delta$ be a cocycle. Assume that the left translation action $\Gamma \curvearrowright G$ is strongly ergodic.

Then there is $G_0 < G$ open subgroup such that the restriction of w to $(\Gamma \cap G_0) \times (\Lambda \cap G_0) \times G_0$ is cohomologous to a homomorphism $\delta : (\Gamma \cap G_0) \times (\Lambda \cap G_0) \rightarrow \Delta$.

Theorem (Gaboriau-I-Tucker-Drob, 2016)

Let G be a profinite group and Γ , Λ be finitely generated dense subgroups. Consider the left-right translation action $\Gamma \times \Lambda \curvearrowright G$. Let Δ be a countable group and $w : (\Gamma \times \Lambda) \times G \rightarrow \Delta$ be a cocycle. Assume that the left translation action $\Gamma \curvearrowright G$ is strongly ergodic.

Then there is $G_0 < G$ open subgroup such that the restriction of w to $(\Gamma \cap G_0) \times (\Lambda \cap G_0) \times G_0$ is cohomologous to a homomorphism $\delta : (\Gamma \cap G_0) \times (\Lambda \cap G_0) \rightarrow \Delta$.

Remark. Any compact action $\Gamma \times \Lambda \curvearrowright X$ such that Γ, Λ act freely and ergodically is isomorphic to a **left-right translation** action $\Gamma \times \Lambda \curvearrowright G$.

Strong ergodicity, I

Definition

An action $\Gamma \curvearrowright (X, \mu)$ is called **strongly ergodic** if there are no non-trivial asymptotically invariant measurable sets $A_n \subset X$:

$$\mu(g \cdot A_n \Delta A_n) \to 0, \forall g \in \Gamma \implies \mu(A_n)(1-\mu(A_n)) \to 0.$$

Definition

An action $\Gamma \curvearrowright (X, \mu)$ is called **strongly ergodic** if there are no non-trivial asymptotically invariant measurable sets $A_n \subset X$:

$$\mu(g \cdot A_n \Delta A_n) \to 0, \forall g \in \Gamma \implies \mu(A_n)(1-\mu(A_n)) \to 0.$$

Remark. If $\Gamma \curvearrowright (X, \mu)$ is strongly ergodic, then Γ is not amenable. **Examples**. (a) Bernoulli actions of non-amenable groups. (b) Any p.m.p. action with **spectral gap** is strongly ergodic.

Definition

An action $\Gamma \curvearrowright (X, \mu)$ is called **strongly ergodic** if there are no non-trivial asymptotically invariant measurable sets $A_n \subset X$:

$$\mu(g \cdot A_n \Delta A_n) \to 0, \forall g \in \Gamma \implies \mu(A_n)(1-\mu(A_n)) \to 0.$$

Remark. If $\Gamma \curvearrowright (X, \mu)$ is strongly ergodic, then Γ is not amenable. **Examples**. (a) Bernoulli actions of non-amenable groups. (b) Any p.m.p. action with **spectral gap** is strongly ergodic.

Examples

- Selberg (1965) $SL_2(\mathbb{Z}) \curvearrowright SL_2(\mathbb{Z}_p)$ is strongly ergodic, for prime p.
- Bourgain-Varjú (2010) Γ ∩ Γ̄ < SL₂(ℤ_p) is strongly ergodic, for any non-amenable subgroup Γ < SL₂(ℤ).

Let $w : (\Gamma \times \Lambda) \times G \to \Delta$ be a cocycle for the left-right action $\Gamma \times \Lambda \curvearrowright G$.

Let $w : (\Gamma \times \Lambda) \times G \to \Delta$ be a cocycle for the left-right action $\Gamma \times \Lambda \curvearrowright G$. **Goal:** Prove that w is "virtually" cohomologous to a homomorphism.

Let $w : (\Gamma \times \Lambda) \times G \to \Delta$ be a cocycle for the left-right action $\Gamma \times \Lambda \curvearrowright G$. **Goal:** Prove that w is "virtually" cohomologous to a homomorphism.

For $h \in \Lambda$ and $t \in G$, define $A_h^t = \{x \in G \mid w(h, xt) = w(h, x)\}$.

•
$$\mu(A_h^t) \to 1$$
, as $t \to id$, for every $h \in \Lambda$.

• w is coh. to a homomorphism, then $\inf_{h\in\Lambda}\mu(A_h^t) o 1$, as $t o {\sf id}.$

Let $w : (\Gamma \times \Lambda) \times G \to \Delta$ be a cocycle for the left-right action $\Gamma \times \Lambda \curvearrowright G$. **Goal:** Prove that w is "virtually" cohomologous to a homomorphism.

For
$$h \in \Lambda$$
 and $t \in G$, define $A_h^t = \{x \in G \mid w(h, xt) = w(h, x)\}.$

•
$$\mu(A_h^t) \to 1$$
, as $t \to id$, for every $h \in \Lambda$.

• w is coh. to a homomorphism, then $\inf_{h\in\Lambda}\mu(A_h^t) o 1$, as $t o {\rm id}.$

Step 1. For
$$g \in \Gamma$$
, we have $\sup_{h \in \Lambda} \mu(g \cdot A_h^t \Delta A_h^t) \to 0$, as $t \to id$.

Let $w : (\Gamma \times \Lambda) \times G \to \Delta$ be a cocycle for the left-right action $\Gamma \times \Lambda \curvearrowright G$. **Goal:** Prove that w is "virtually" cohomologous to a homomorphism.

For
$$h \in \Lambda$$
 and $t \in G$, define $A_h^t = \{x \in G \mid w(h, xt) = w(h, x)\}$.

•
$$\mu(A_h^t) \to 1$$
, as $t \to id$, for every $h \in \Lambda$.

• w is coh. to a homomorphism, then $\inf_{h\in\Lambda}\mu(A_h^t) o 1$, as $t o {\sf id}.$

Step 1. For
$$g \in \Gamma$$
, we have $\sup_{h \in \Lambda} \mu(g \cdot A_h^t \Delta A_h^t) \to 0$, as $t \to id$.

Step 2. (G-TD, 2015) Strong ergodicity implies

$$\sup_{h\in\Lambda}\mu(A_h^t)(1-\mu(A_h^t))\to 0, \text{ as } t\to \mathsf{id}.$$

Let $w : (\Gamma \times \Lambda) \times G \to \Delta$ be a cocycle for the left-right action $\Gamma \times \Lambda \curvearrowright G$. **Goal:** Prove that w is "virtually" cohomologous to a homomorphism.

For
$$h \in \Lambda$$
 and $t \in G$, define $A_h^t = \{x \in G \mid w(h, xt) = w(h, x)\}.$

•
$$\mu(A_h^t) \to 1$$
, as $t \to id$, for every $h \in \Lambda$.

• w is coh. to a homomorphism, then $\inf_{h\in\Lambda}\mu(A_h^t) o 1$, as $t o {
m id}.$

Step 1. For
$$g \in \Gamma$$
, we have $\sup_{h \in \Lambda} \mu(g \cdot A_h^t \Delta A_h^t) \to 0$, as $t \to id$.

Step 2. (G-TD, 2015) Strong ergodicity implies

$$\sup_{h\in\Lambda}\mu(A_h^t)(1-\mu(A_h^t)) o 0, \ \ ext{as } t o ext{id}.$$

Using finite generation of Λ , we get that $\inf_{h\in\Lambda}\mu(A_h^t)\to 1$, as $t\to {\rm id}$.

Let $w : (\Gamma \times \Lambda) \times G \to \Delta$ be a cocycle for the left-right action $\Gamma \times \Lambda \curvearrowright G$. **Goal:** Prove that w is "virtually" cohomologous to a homomorphism.

For
$$h \in \Lambda$$
 and $t \in G$, define $A_h^t = \{x \in G \mid w(h, xt) = w(h, x)\}.$

•
$$\mu(A_h^t) \to 1$$
, as $t \to id$, for every $h \in \Lambda$.

• w is coh. to a homomorphism, then $\inf_{h\in\Lambda}\mu(A_h^t)\to 1$, as $t\to {\rm id}.$

Step 1. For
$$g \in \Gamma$$
, we have $\sup_{h \in \Lambda} \mu(g \cdot A_h^t \Delta A_h^t) \to 0$, as $t \to id$.

Step 2. (G-TD, 2015) Strong ergodicity implies

$$\sup_{h\in\Lambda}\mu(A_h^t)(1-\mu(A_h^t))\to 0, \text{ as } t\to {\rm id}.$$

Using finite generation of Λ , we get that $\inf_{h\in\Lambda}\mu(A_h^t)\to 1$, as $t\to {\rm id}.$

Step 3 (I, 2007). The uniformity condition of Step 2 implies that the restriction of w to $\Lambda \times G$ is "virtually" cohomologous to a homomorphism.

Let G be a profinite group and Γ , Λ be finitely generated dense subgroups. Let Δ be a countable group and $w : (\Gamma \times \Lambda) \times G \rightarrow \Delta$ a cocycle. Assume that $\Gamma \curvearrowright G$ is strongly ergodic.

Then there is $G_0 < G$ open subgroup such that the restriction of w to $(\Gamma \cap G_0) \times (\Lambda \cap G_0) \times G_0$ is cohomologous to a homomorphism.

Let G be a profinite group and Γ , Λ be finitely generated dense subgroups. Let Δ be a countable group and $w : (\Gamma \times \Lambda) \times G \rightarrow \Delta$ a cocycle. Assume that $\Gamma \curvearrowright G$ is strongly ergodic.

Then there is $G_0 < G$ open subgroup such that the restriction of w to $(\Gamma \cap G_0) \times (\Lambda \cap G_0) \times G_0$ is cohomologous to a homomorphism.

Corollary

Assume that $\Delta \curvearrowright (Y, \nu)$ is any action orbit equivalent to $\Gamma \times \Lambda \curvearrowright G$.

Let G be a profinite group and Γ , Λ be finitely generated dense subgroups. Let Δ be a countable group and $w : (\Gamma \times \Lambda) \times G \rightarrow \Delta$ a cocycle. Assume that $\Gamma \curvearrowright G$ is strongly ergodic.

Then there is $G_0 < G$ open subgroup such that the restriction of w to $(\Gamma \cap G_0) \times (\Lambda \cap G_0) \times G_0$ is cohomologous to a homomorphism.

Corollary

Assume that $\Delta \curvearrowright (Y, \nu)$ is any action orbit equivalent to $\Gamma \times \Lambda \curvearrowright G$.

Then the actions are **virtually conjugate**: there exist an open subgroup $G_0 < G$, a finite index subgroup $\Delta_0 < \Delta$, and a Δ_0 -ergodic component $Y_0 \subset Y$ such that $(\Gamma \cap G_0) \times (\Lambda \cap G_0) \curvearrowright G_0$ is conjugate to $\Delta_0 \curvearrowright Y_0$.

Let G be a profinite group and Γ , Λ be finitely generated dense subgroups. Let Δ be a countable group and $w : (\Gamma \times \Lambda) \times G \rightarrow \Delta$ a cocycle. Assume that $\Gamma \curvearrowright G$ is strongly ergodic.

Then there is $G_0 < G$ open subgroup such that the restriction of w to $(\Gamma \cap G_0) \times (\Lambda \cap G_0) \times G_0$ is cohomologous to a homomorphism.

Corollary

Assume that $\Delta \curvearrowright (Y, \nu)$ is any action orbit equivalent to $\Gamma \times \Lambda \curvearrowright G$.

Then the actions are **virtually conjugate**: there exist an open subgroup $G_0 < G$, a finite index subgroup $\Delta_0 < \Delta$, and a Δ_0 -ergodic component $Y_0 \subset Y$ such that $(\Gamma \cap G_0) \times (\Lambda \cap G_0) \curvearrowright G_0$ is conjugate to $\Delta_0 \curvearrowright Y_0$.

- applies to $\mathsf{PSL}_2(\mathbb{Z}) \times \mathsf{PSL}_2(\mathbb{Z}) \curvearrowright \mathsf{PSL}_2(\mathbb{Z}_p)$, for any prime p.
- more generally, applies to Γ × Γ ∩ Γ
 , where Γ < PSL₂(ℤ) is a non-amenable subgroup, and Γ
 is the closure of Γ in PSL₂(ℤ_p).

W*-superrigidity

An action $\Gamma \curvearrowright (X, \mu)$ is called W*-superrigid if any action $\Delta \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Delta$ is conjugate to $\Gamma \curvearrowright (X, \mu)$. An action $\Gamma \curvearrowright (X, \mu)$ is called W^{*}-superrigid if any action $\Delta \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Delta$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

- Peterson (2009) existence of virtually W*-superrigid actions
- Popa-Vaes (2009) first concrete classes of W*-superrigid actions
- I (2010) Bernoulli actions of icc property (T) groups are W*-superrigid

An action $\Gamma \curvearrowright (X, \mu)$ is called W^{*}-superrigid if any action $\Delta \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Delta$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

- Peterson (2009) existence of virtually W*-superrigid actions
- Popa-Vaes (2009) first concrete classes of W*-superrigid actions
- I (2010) Bernoulli actions of icc property (T) groups are W*-superrigid

Corollary (Gaboriau-I-Tucker-Drob, 2016)

 $PSL_2(\mathbb{Z}) \times PSL_2(\mathbb{Z}) \cap PSL_2(\mathbb{Z}_p)$ is virtually W^{*}-superrigid, for prime p.

An action $\Gamma \curvearrowright (X, \mu)$ is called W^{*}-superrigid if any action $\Delta \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Delta$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

- Peterson (2009) existence of virtually W*-superrigid actions
- Popa-Vaes (2009) first concrete classes of W*-superrigid actions
- I (2010) Bernoulli actions of icc property (T) groups are W*-superrigid

Corollary (Gaboriau-I-Tucker-Drob, 2016)

 $PSL_2(\mathbb{Z}) \times PSL_2(\mathbb{Z}) \cap PSL_2(\mathbb{Z}_p)$ is virtually W^{*}-superrigid, for prime p.

Ozawa-Popa (2007) $L^{\infty}(\mathsf{PSL}_2(\mathbb{Z}_p)) \rtimes (\mathsf{PSL}_2(\mathbb{Z}) \times \mathsf{PSL}_2(\mathbb{Z}))$ has a unique Cartan subalgebra, up to unitary conjugacy.

Let G be a simply connected simple Lie group, and Γ , Λ dense subgroups. Assume that $\Gamma \curvearrowright G$ is strongly ergodic, and (*) Λ contains an infinite cyclic subgroup with compact closure. Let Δ be a countable group.

Let G be a simply connected simple Lie group, and Γ, Λ dense subgroups. Assume that $\Gamma \curvearrowright G$ is strongly ergodic, and $(\star) \Lambda$ contains an infinite cyclic subgroup with compact closure. Let Δ be a countable group.

Then any cocycle $w:(\Gamma\times\Lambda)\times G\to\Delta$ is cohomologous to a homomorphism.

Let G be a simply connected simple Lie group, and Γ, Λ dense subgroups. Assume that $\Gamma \curvearrowright G$ is strongly ergodic, and $(\star) \Lambda$ contains an infinite cyclic subgroup with compact closure. Let Δ be a countable group.

Then any cocycle $w:(\Gamma\times\Lambda)\times G\to\Delta$ is cohomologous to a homomorphism.

Remark. (*) holds for any dense subgroup $\Lambda < SL_2(\mathbb{R})$, but fails for some dense subgroups $\Lambda < SL_n(\mathbb{R})$, if $n \ge 3$.

Let G be a connected simple Lie group. Let $\Gamma < G$ be a countable dense subgroup such that $Ad(\Gamma)$ consists of matrices with algebraic entries. Here, $Ad : G \rightarrow GL(\mathfrak{g})$ denotes the adjoint representation of G.

Let G be a connected simple Lie group. Let $\Gamma < G$ be a countable dense subgroup such that $Ad(\Gamma)$ consists of matrices with algebraic entries. Here, $Ad : G \rightarrow GL(\mathfrak{g})$ denotes the adjoint representation of G.

Then the left translation action $\Gamma \curvearrowright G$ is strongly ergodic.

Let G be a connected simple Lie group. Let $\Gamma < G$ be a countable dense subgroup such that $Ad(\Gamma)$ consists of matrices with algebraic entries. Here, $Ad : G \rightarrow GL(\mathfrak{g})$ denotes the adjoint representation of G.

Then the left translation action $\Gamma \curvearrowright G$ is strongly ergodic.

- Bourgain-Gamburd (2006-2011) if G = SU(d), for $d \ge 2$.
- Benoist-de Saxcé (2014) if G is compact, e.g. G = SO(n), for $n \ge 3$.

Let G be a connected simple Lie group. Let $\Gamma < G$ be a countable dense subgroup such that $Ad(\Gamma)$ consists of matrices with algebraic entries. Here, $Ad : G \rightarrow GL(\mathfrak{g})$ denotes the adjoint representation of G.

Then the left translation action $\Gamma \curvearrowright G$ is strongly ergodic.

- Bourgain-Gamburd (2006-2011) if G = SU(d), for $d \ge 2$.
- Benoist-de Saxcé (2014) if G is compact, e.g. G = SO(n), for $n \ge 3$.
- Boutonnet-I-Salehi-Golsefidy (2015) for general G, e.g. $G = SL_n(\mathbb{R})$, for $n \ge 2$.