Subfactors and the Brauer-Picard group

Pinhas Grossman

UNSW

Operator Algebras and Mathematical Physics Tohoku University August 5, 2016 A (II₁) subfactor is a unital inclusion $N \subseteq M$ of Type II₁ factors.

The Jones index is the Murray-von Neumann dimension $[M : N] = \dim_N L^2(M)$.

Jones' Index Theorem: $[M : N] \in \{4\cos^2 \frac{\pi}{k}\}_{k=3,4,5...} \cup [4,\infty].$

Let $N \subseteq M$ be a finite index subfactor.

 \mathcal{N} - category of *N*-*N* bimodules \otimes -generated by

 $_{N}M_{N}\cong _{N}M_{M}\otimes _{M}M_{N}$

 $\mathcal M$ - category of M-M bimodules $\otimes\text{-generated}$ by

 $_MM_N\otimes_N _NM_M$

 $\mathcal N$ and $\mathcal M$ are $\mathbb C$ -linear semisimple rigid monoidal categories.

The subfactor has **finite depth** if \mathcal{N} and \mathcal{M} have finitely many simple objects. In this case \mathcal{N} and \mathcal{M} are (unitary/C*) **fusion categories**.

Let $N \subseteq M$ be a finite index subfactor with associated tensor categories \mathcal{N} (consisting of *N*-*N* bimodules) and \mathcal{M} (consisting of *M*-*M* bimodules).

The category \mathcal{K} of N-M bimodules generated by ${}_{N}M_{M}$ and \mathcal{N} is a **bimodule category** over \mathcal{N} and \mathcal{M} , which is **invertible**:

$$(_{\mathcal{N}}\mathcal{K}_{\mathcal{M}})\boxtimes_{\mathcal{M}}(_{\mathcal{M}}\mathcal{K}^{op}{}_{\mathcal{N}})\cong _{\mathcal{N}}\mathcal{N}_{\mathcal{N}}$$

and

$$({}_{\mathcal{M}}\mathcal{K}^{op}{}_{\mathcal{N}})\boxtimes_{\mathcal{N}}({}_{\mathcal{N}}\mathcal{K}_{\mathcal{M}})\cong{}_{\mathcal{M}}\mathcal{M}_{\mathcal{M}}$$

An invertible bimodule category is called a **Morita equivalence** (Mueger)

Let $N \subseteq M$ be a finite depth subfactor, with associated fusion categories \mathcal{N} , \mathcal{M} , and Morita equivalence $_{\mathcal{N}}\mathcal{K}_{\mathcal{M}}$.

- The generating object $A = {}_{N}M_{N}$ in \mathcal{N} is an **algebra** (Frobenius algebra, division algebra, Longo's Q-system).
- The category ${}_{\mathcal{N}}\mathcal{K}$ is equivalent to the category mod-A of right A-modules in $\mathcal{N}.$
- Then *M* ≅ End(_N*K*) is the **dual category** of _N*K*, consisting of module endofunctors, and is equivalent to *A*-mod-*A*, the category of *A*-*A* bimodules in *N*.
- The generating object _MM_N ⊗_{N N}M_M is similarly an algebra in M (corresponding to the algebra A ⊗ A in A-mod-A.)

This point of view is developed by Mueger, Yamagami.

Give a finite depth subfactor $N \subset M$, we have two fusion categories \mathcal{N} and \mathcal{M} , with distinguished algebras, and a Morita equivalence between them.

Natural questions:

- What are all fusion categories in the Morita equivalence class of ${\cal N}$ and ${\cal M}?$
- What are all Morita equivalences between such categories?
- What are all Q-systems in these categories / all subfactors which realize these categories?

Definition (Etingof-Nikshych-Ostrik)

The Brauer-Picard groupoid of a fusion category $\ensuremath{\mathcal{C}}$ has:

- $\bullet\,$ Objects fusion categories which are Morita equivalent to ${\cal C}$
- (1-) Morphisms Morita equivalences
- There are also 2 and 3 morphisms but we will not be concerned with these.
- There are finitely many objects (up to tensor autoequivalence) and finitely many morphisms (up to equivalence of bimodule categories). (**Ocneanu rigidity**)
- E-N-O introduced this 3-groupoid to describe the graded extension theory of fusion categories using homotopy theory

Definition (Etingof-Nikshych-Ostrik)

The Brauer-Picard group of C is the group of Morita auto-equivalences of C (modulo equivalence of bimodule categories).

The group

$$\mathsf{Out}(\mathcal{C}) = \mathsf{Aut}(\mathcal{C}) / \mathsf{Inn}(\mathcal{C})$$

of outer tensor auto-equivalences of ${\mathcal C}$ is a subgroup of the Brauer-Picard group via

$$\alpha \mapsto {}_{\mathcal{C}}\mathcal{C}_{\alpha(\mathcal{C})}$$

While the Brauer-Picard group is an invariant of Morita equivalence, Aut(C) and Out(C) are **not**.

The Drinfeld center of $Z(\mathcal{C})$ a monoidal category \mathcal{C} is the category of half braidings of \mathcal{C} . An object in $Z(\mathcal{C})$ is an object X in \mathcal{C} , together with a collection of isomorphisms $X \otimes Y \to Y \otimes X$, natural in $Y \in \mathcal{C}$, satisfying the "hexagon" relation. The Drinfeld center is a *braided* monoidal category.

For a (spherical) fusion category, the Drinfeld center is a modular tensor category (Mueger).

The Drinfeld center is an invariant of Morita equivalence.

For a finite depth subfactor $N \subseteq M$, the Drinfeld center of \mathcal{N} and \mathcal{M} is one of the even parts of Ocneanu's asymptotic inclusion / Longo-Rehren inclusion.

Theorem (Etingof-Nikshych-Ostrik)

The Brauer-Picard group of a fusion category C is isomorphic to the group of braided tensor auto-equivalences of the Drinfeld center of C

Basic strategy to compute the Brauer-Picard group/groupoid of a fusion category \mathcal{C} :

- Look for algebras in $\mathcal C$
- Describe the module categories over these algebras
- Find the dual categories over these module categories
- Look for outer automorphisms
- Repeat, until groupoid is filled in

To "describe" module and bimodule categories, it is sometimes helpful to *decategorify* (throw away morphisms and consider isomorphism classes of objects, product is tensor, sum is direct sum, formal negatives)

- Fusion category \implies based ring (Grothendieck ring)
- $\bullet\,$ Module category \Longrightarrow based module over Grothendieck ring

 $\bullet\,$ Bimodule category \Longrightarrow based bimodule Grothendieck rings Improtant to note:

- For a given based module over the Grothendieck ring of a fusion category, there may be many or no corresponding module categories
- The based bimodule of the relative tensor product of two bimodule categories over fusion categories is not necessarily the same as the relative tensor product of the based bimodules. **But** there is a map in one direction, giving combinatorial obstructions.

Let G be a finite group acting by outer automorphisms on a II₁ factor M, and let $N = M^G \subseteq M$.

Then

$$\mathcal{N} \cong \operatorname{\mathsf{Rep}}_{\mathcal{G}}, \quad \mathsf{M} \cong \operatorname{\mathsf{Vec}}_{\mathcal{G}}$$

• Algebras in Vec_G are parametrized by pairs (H, ω) , where H is a subgroup and $\omega \in H^2(H, \mathbb{C}^*)$, modulo conjugacy.

•
$$\operatorname{Out}(\operatorname{Vec}_G) \cong H^2(G, \mathbb{C}^*) \rtimes \operatorname{Out}(G)$$

Ex: Let Let $C = \operatorname{Vec}_G$ for $G = \mathbb{Z}_3$.

- H^2 is trivial
- Vec_G has 2 module categories (subgroups {0} and G)
- $\operatorname{Rep}_G \cong \operatorname{Vec}_G$
- $\operatorname{Out}(G) = \mathbb{Z}_2$

Thus the Brauer-Picard group of $\mathcal C$ is $\mathbb Z_2\times\mathbb Z_2$

Ex: Let $G = A_4 \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_3$.

• 5 subgroups up to conjugacy ({e}, \mathbb{Z}_2 , \mathbb{Z}_3 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, G)

•
$$H^2(G, \mathbb{C}^*) = H^2(\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{C}^*) = \mathbb{Z}_2$$

- Vec_G has 7 module categories
- \bullet The algebras for $\mathbb{Z}_2\times\mathbb{Z}_2$ give Morita auto-equivalences
- The algebras for G and \mathbb{Z}_3 give Morita equivalences to Rep_G
- \bullet The algebra for \mathbb{Z}_2 gives a Morita equivalence to a third category $\mathcal D$

•
$$\operatorname{Out}(G) = \mathbb{Z}_2 \Longrightarrow \operatorname{Out}(\operatorname{Vec}_G) = \mathbb{Z}_2 \times \mathbb{Z}_2$$

This is enough to deduce that the Brauer-Picard groupoid has exactly three objects and the Brauer-Picard group has order 12.

In fact the group is D_6 (Nikshych-Riepel)

Haagerup subfactor

Unitary fusion category with simple objects

$$\{g\}_{g\in\mathbb{Z}_3}\cup\{gX\}_{g\in\mathbb{Z}_3}$$

and fusion rules

$$gX = Xg^{-1}, \ X^2 = 1 + \sum_{g \in \mathbb{Z}_3} gX$$

Q-systems for 1 + gX (permuted by *inner* automorphisms) Index: $\frac{5 + \sqrt{13}}{2}$ (smallest index above 4 for finite depth)

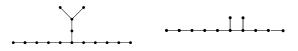
Brauer-Picard groupoid: (G-Snyder)

• 3 module categories
$$(1, 1 + gX, \sum_{g \in \mathbb{Z}_3} g)$$

- dual categories all distinct
- Brauer-Picard group trivial Pinhas Grossman

Asaeda-Haagerup subfactor

Principal graphs:



(These bipartite graphs give fusion rules of the bimodule object ${}_{N}M_{M}$ - even vertices correspond to simple objects in the fusion categories \mathcal{N} and \mathcal{M} , and odd vertices correspond to simple objects in the bimodule category ${}_{\mathcal{N}}\mathcal{K}_{\mathcal{M}}$).

Index:
$$\frac{5+\sqrt{17}}{2}$$

 $\mathsf{Out}(\mathcal{N})$ and $\mathsf{Out}(\mathcal{M})$ are trivial.

Brauer-Picard group is $\mathbb{Z}_2 \times \mathbb{Z}_2$ (G-Snyder) - proof uses combinatorics of modules and bimodules over based rings.

Theorem (G-Izumi-Snyder)

There is another fusion category in the Morita equivalence class of the Asaeda-Haagerup categories with simple objects

 $\{g\}_{g\in\mathbb{Z}_4}\cup\{gX\}_{g\in\mathbb{Z}_4}$

and fusion rules

$$gX = Xg^{-1}, \ X^2 = 1 + 2\sum_{g \in \mathbb{Z}_4} gX$$

and 2 different Q-systems for 1 + gX for each g.

- The 8 *Q*-systems for 1 + gX have 4 distinct orbits under inner automorphisms, but the automorphism group of the category acts transtively on these 8 *Q*-systems the Brauer-Picard group consists of outer automorphisms on this category
- Thre are 6 fusion categories in the Morita equivalence class

Some consequences of realizing Asaeda-Haagerup categories in Izumi's Cuntz algebra framework

- There are $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded extensions of the AH fusion categories by the Brauer-Picard group
- Modular data of Drinfeld center can be computed and seems to fit into a series (analogous to Evans-Gannon description for Haagerup subfactor)

Izumi-Haagerup subfactors

 C^\ast fusion category with simple objects

 $\{g\}_{g\in G} \cup \{gX\}_{g\in G}, \ G$ a finite Abelian group

and fusion rules

$$gX = Xg^{-1}, \ X^2 = 1 + \sum_{g \in G} gX,$$

and a Q-systems for 1 + X.

- For $G = \mathbb{Z}_3$, this is the Haagerup subfactor.
- For $G = \mathbb{Z}_4$ and $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, exist unique I-H subfactors (Izumi, Morrison-Penneys, Penneys-Peters)
- The Asaeda-Haagerup category above is an *orbifold* of even part of an I-H subfactor for G = Z₄ × Z₂
- Numerical evidence for existence for $G = \mathbb{Z}_{2n+1}$ up to n = 9 (Evans-Gannon)

What do Brauer-Picard groups look like for Izumi-Haagerup subfactors?

We have seen that the BP group for the Haagerup subfactor is trivial.

For $G = \mathbb{Z}_4$, the BP group is \mathbb{Z}_2 .

For $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, it is more interesting.

Unlike other known examples of I-H subfactors, the $\mathbb{Z}_2 \times \mathbb{Z}_2$ I-H subfactor is self-dual - the Q-system for 1 + X gives a (non-trivial) Morita autoequivalence.

But there are many others.

Equivariantization: Let G be a finite group acting by tensor automorphisms on a fusion category C. The equivariantization C^G is the tensor category of "fixed points" of G.

Here a "fixed point" means an orbit under the *G*-action which is linked by a collection of isomorphisms $g(X) \rightarrow X$ satisfying a coherence relation.

There is also a crossed product construction $\mathcal{C}\rtimes G$, and

$$\mathcal{C}^{\mathsf{G}} \stackrel{\mathsf{M.E.}}{\cong} \mathcal{C} \rtimes \mathcal{G}$$

Ex: For the trivial action of G on Vec,

$$\mathcal{C}^{\mathcal{G}} \cong \operatorname{\mathsf{Rep}}_{\mathcal{G}}$$
 and $\mathcal{C} \rtimes \mathcal{G} \cong \operatorname{\mathsf{Vec}}_{\mathcal{G}}$

For the I-H subfactor for $\mathbb{Z}_2 \times \mathbb{Z}_2$, there is a \mathbb{Z}_3 action which fixes X and cyclically permutes the non-trivial invertible objects. (Izumi)

The equivariantization of the I-H Q-system for 1 + X gives the "4442" subfactor.

Let $\mathcal C$ be the fusion category for the I-H subfactor for $\mathbb Z_2\times\mathbb Z_2.$ We have

$$\mathsf{Rep}_{\mathcal{A}_4} \subset \mathcal{C}^{\mathbb{Z}_3} \longleftrightarrow \mathcal{C} \rtimes \mathbb{Z}_3 \supset \mathsf{Vec}_{\mathcal{A}_4}$$

There are Morita autoequivalences of $\mathcal{C} \rtimes \mathbb{Z}_3$ given by algebras for $\mathbb{Z}_2 \times \mathbb{Z}_2$ (order 3) and 1 + X (order 2).

The algebra for \mathbb{Z}_2 gives a M.E. to a third category, and the algebras for 1 + gX, $g \neq 0$, gives a M.E. to a fourth category.

Theorem

The Brauer-Picard groupoid for $C^{\mathbb{Z}_3}$ has four objects and the BP group is S_3 .

From the BP groupoid for $\mathcal{C}^{\mathbb{Z}_3},$ we can deduce the BP groupoid of $\mathcal{C}.$

Theorem

Lett C be the fusion category associated to the I-H subfactor for $\mathbb{Z}_2 \times \mathbb{Z}_2$. There are 30 module categories over C, all of which give Morita autoequivalences. Since Out(C) has order 12, the Brauer-Picard has order 360.

The Drinfeld center of C has rank 40, and decomposes as a tensor product of a rank 4 and rank 10 modular tensor categories (G-Izumi). What are its braided autoequivalences?