
KK-theory and Conformal Field Theory (and also reconstruction)

Sendai, 12 August 2016

Terry Gannon (U Alberta)

joint work David Evans (Cardi↵ U)



Conformal field theory (CFT)

Recall: CFT is conformally invariant quantum field theory on
2-dimensional space-time

I Full CFT contains theory of holomorphic quantum fields (a
chiral CFT).

I Full CFT contains theory of anti-holomorphic quantum fields
(also a chiral CFT).

I Full CFT can be recovered by splicing together those two
chiral halves.

I Understanding how the full theory is recovered from the chiral
halves is theme of much of Fuchs–Runkel–Schweigert and
collaborators
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Chiral conformal field theory

The two main mathematical approaches to chiral CFT are:

Vertex operator algebras (VOAs): Wightman axioms.

Conformal nets of factors: Haag–Kastler axioms.

These should be more or less equivalent: see
Carpi–Kawahigashi–Longo–Weiner, arXiv:1503.01260.



Rational conformal field theory

All-important are representations of chiral CFT.
Simplest case: semi-simple representation theory.
These CFT are called rational.
Corresponding VOAs are called strongly-rational.
Corresponding conformal nets are called completely-rational.
Expect a bijection between unitary strongly-rational VOAs, and
completely-rational conformal nets.

Examples:

I one associated to even positive-definite lattices L: simple
modules in bijection with cosets L⇤/L

I one associated to a�ne sl(2) at each positive integer level k :
simple module for each highest-weight 0, 1, ..., k
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Modular tensor categories

The category of representations of strongly-rational VOAs and
completely-rational conformal nets are modular tensor categories
(MTC).
These are braided semi-simple tensor categories, with duals.
The braiding is nondegenerate=maximally nonsymmetric.

Get finite-dimensional representations of all surface mapping class
groups (e.g. SL2(Z)).
Infinitely many di↵erent VOAs and conformal nets will have the
same MTC.



Reconstruction

Conjecture. Every unitary modular tensor category is the category
of representations of a strongly-rational VOA and
completely-rational conformal net.

It is an analogue of Tannaka–Krein duality: groups can be
recovered from their category of representations

Circumstantial evidence only for this conjecture.

Simple fact: MTC(V1 ⌦ V2) =Deligne product of MTC(V1) and
MTC(V2)

However: Galois associate of MTC is MTC; no known analogue of
Galois associate of VOA.



Holomorphic VOA/holomorphic conformal net

A VOA or conformal net corresponding to trivial MTC is called
holomorphic.

E.g. a theory V(L) corresponding to self-dual even positive-definite
lattice L.

The ‘smallest’ holomorphic theories are:
central charge c = 8: V(E8);
central charge c = 16: V(E8 � E8) and V(D+

16);
central charge c = 24: at least 71 inequivalent ones, including

the Monstrous moonshine module



Quantum doubles

The easiest way to construct MTC, is as the quantum
double=Drinfeld double of a fusion category.
A fusion category is semisimple tensor category with duals, not
necessarily braided.

VOAs associated to quantum doubles should be precisely the VOAs
contained with finite index in a holomorphic VOA.

(finite index here means branching rules are finite)

By contrast, any rational VOA should be contained in a
holomorphic VOA, but with infinite index.



Sexy examples

Any finite-depth finite index subfactor defines two fusion
categories. They have same double.

Examples: Haagerup subfactor, Asaeda–Haagerup, extended
Haagerup, ...

The double of Haagerup subfactor seems to be contained with
finite index in V(E8) (Evans-G; G-Lam)

The double of extended Haagerup subfactor seems to be contained
with finite index in V(E8) (G-Morrison)



Doubles of finite groups

Easiest class of examples of fusion categories: Vect!(G ) where G
is finite group and ! 2 Z 3(G ;T) (! twists associativity)
Their doubles are denoted D!(G )
At least some of those doubles are realised by orbifolds VG of
holomorphic VOAs.

E.g. H3(Z
n

;T) ⇠= Z
n

.

I Lie group E8 has two elements of order 2, up to conjugation.
They both act as automorphisms on V(E8).

I One gives V(D8), corresponding to untwisted D1(Z2).
I The other gives V(A1 � E7), corresponded to twisted D!(Z2).

I E8 also has two elements of order 3.

I One gives V(A2 � E6), giving untwisted D1(Z3);
I One gives V(A8), giving twisted D!(Z3).
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Reconstruction for finite group doubles

Theorem (Evans-G) Each twisted double D!(G ) is the category of
representations for the orbifold AG of some holomorphic conformal
net A and some group of automorphisms G .

The same is expected to be true for VOAs. The ingredient missing
for VOAs is the theorem that finite group orbifolds of holomorphic
VOAs are rational. For conformal nets this was proved long ago by
Xu (not just for holomorphic conformal nets, but
completely-rational ones). For VOAs, what is known at present is
that, when G is solvable and V is strongly-rational, then VG is
strongly-rational.



Module categories

This theorem is a corollary of a deeper result of ours.

Recall that a full CFT is spliced together from the two chiral
halves. Each possible splicing corresponds to a module category.

This is a category which can be thought of as a module for a
MTC; it is a categorical formulation of a nimrep=nonnegative
integer matrix representation of the fusion ring.

Associated to a module category is a modular invariant partition
function Z =

P
�,µZ�,µ���µ which makes explicit the splicing.

The module category defines a finite-index extension of each chiral
CFT=VOA=conformal net, and an equivalence of the MTC’s of
those extensions.



Examples: Module categories for a�ne algebra MTC

I The module categories for the MTC of a�ne sl(2) at level k ,
fall into an A-D-E pattern.

I e.g. the D
even

module categories correspond to a
simple-current extension of both chiral CFTs;

I e.g. the D
odd

ones correspond to a nontrivial automorphism of
the underlying MTCs.

I e.g. the module categories for the MTC of a�ne sl(3) at level
k , are closely related to simple factors of Jacobians of Fermat
curves.
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Module categories for finite group doubles

Ostrik (2003) found an abstract nonsense parametrisation of all
module categories of D!(G ):

they correspond to pairs (H, ), where H  G ⇥ G and
 2 Z 2(H;T).
When ! 6= 1, there is a compatibility condition for H and !.

But it was very unclear what the corresponding modular invariant
Z is, and what the corresponding chiral extensions and
automorphism is.

Not just interesting to CFT: Implicit here are all possible finite
index extensions of holomorphic orbifolds.

Understanding more explicitly Ostrik’s classification, is the task we
(Evans–G) tried to address.



Twisted equivariant K -theory

Our starting point is a geometric interpretation of D!(G ):
K -theory.
In our context, not very complicated at all, very classical.

Think of the K -group as classifying vector bundles.
Vector bundles over a point are vector spaces, which are classified
by dimension, so K (pt) = Z.

When a finite group G acts on those spaces, we get the equivariant
K -group K

G

(pt), which we’ll also write in groupoid language as
K (pt//G ).
It can be identified with character ring R

G

.

We can twist it by a 3-cocycle ! 2 Z 3(G ;T), which we’ll write
!K

G

(pt) = K (pt//!G ). This will be the additive group of
projective characters of G .



Twisted K -theory for finite group doubles

The geometric interpretation of the Grothendieck ring=fusion ring
D!(G ) is not much more complicated:
the Grothendieck ring=fusion ring of MTC D!(G ) can be naturally
identified with the twisted equivariant K -group
!K

G

(G ) = K (G//!G ), where G acts on itself by conjugation.

We think of these as bundles over the 0-dimensional space G .
G -equivariance means that the irreducible bundles live over each
orbit (here, each conjugacy class), and carry an irrep of the
stabiliser (here, the centraliser). The twist ! makes these irreps
projective. Explicitly:

KG

0 (G ) = �
conj .classesK

0
C

G

(g)(1) = �conj .cl .R
C

G

(g)

This matches the simple objects of D1(G ) being pairs (g ,�).
In fact !K

G

(G ) forms a ring.



Twisted KK -theory for finite group doubles

Why should that help us understand Ostrik’s classification of
module categories?

I The corresponding modular invariant partition function Z is a
matrix, with rows and columns parametrised by simple objects
in the MTC D!(G ).

I In other words, Z is a linear endomorphism on its fusion ring.

I But that fusion ring is a K -group.

I So Z is an element in KK0(G//!G ,G//!G )

I Up to now, this is just an empty reformulation of what Z is.
Our hope was that maybe it is a special element in that
KK -group, that by making explicit this underlying structure,
we can see better how Z depends on (H, ).
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Correspondences

There is a simple way to describe elements in KK :
correspondences (Connes–Skandalis; Emerson–Meyer):

X
f

 � (Z ,E )
g

�! Y

(unfortunately i can’t get latex to work here so i’ll use
whiteboard....) Multiplication of correspondences is done using
pullback.
Let’s describe the idea with examples...



Correspondences for finite group doubles

Our work on finite group doubles begins with this observation:
to Ostrik’s pair (H, ), where H  G ⇥ G and  2 Z 2(H;T),
associate the correspondence

G//G
⇡
L

 � (H//H,�)
⇡
R

�! G//G

where for each g 2 G , �(g) 2 \C
G

(g) is built from  .

I The point is that the correspondence does not only describe
the matrix, but it defines a module category.

I We show each of these module categories is irreducible.

I We show these module categories are inequivalent except
when their pairs (H, ) are ‘conjugate’.

I Together with Ostrik’s classification, this gives a new very
explicit description of all module categories for D!(G ).
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Extensions of holomorphic orbifolds

Not only are the modular invariants Z easy to read o↵, but so are
the chiral extensions and isomorphisms of their MTC. Höhn and
Huang–Kirillov–Lepowsky explained how chiral extensions is
categorical, i.e. that it only depends on the category of
representations.

Theorem (Evans–G)

I The set of all extensions of a holomorphic orbifold AG

correspond to H = �
K

(1⇥ N) for any subgroup K  G ,
where N is normal in K , and any  2 Z 2(H;T) with
 (k , k ;H) = 1 and  (n, 1; 1, n0) =  (1, n0; n, 1).

I Branching rules are known.

I Corresponding MTC is some explicit twisted double of K/N.

The analogue for VOAs will be true once we know holomorphic
orbifolds are rational.



Extensions of holomorphic orbifolds

Not only are the modular invariants Z easy to read o↵, but so are
the chiral extensions and isomorphisms of their MTC. Höhn and
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Jones’ PhD thesis

Hidden in the proof of this theorem is a result from the PhD thesis
of Vaughan Jones. He determined the complete invariants for finite
group G actions (not necessarily outer) on the hyperfinite II1
factor.

I If subgroup N acts by inner automorphisms, then G/N has
outer action;

I it has 3-cocycle invariant;

I Jones determines that 3-cocycle.

I Jones’ 3-cocycles exhaust all 3-cocycles on G/N.
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Proof of reconstruction
Curiously, our pure extension type module categories have exactly
same combinatorial data as Jones did.
The MTC for our chiral extensions are twisted doubles of some
G/N, where twist is from original ! multiplied by Jones’ 3-cocycle.
We move through di↵erent 3-cocycles by varying the ‘discrete
torsion’  .

I We get a conformal net with category of representations
D!(G ), by first considering a su�ciently large extension G̃ (as
determined by Jones).

I Embed G̃ in some symmetric group S
n

.
I Take any holomorphic conformal net A; take n copies

A⌦ · · ·⌦A, then orbifold by permutation action of G̃ ;
I Result will be rational net, with MTC some D!̃(G̃ ) (in fact

D1(G̃ );
I thanks to our theorem and Jones’ result, some extension of

that orbifold will have MTC D!(G ).
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