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Temperley Lieb algebra

Let d ∈ C∗ and k ∈ N be fixed parameters. The Temperley-Lieb
algebra TLk(d) is the unital associative algebra generated by
elements 1, u1, . . . , uk−1 subject to the following relations

I uiuj = ujui when |i − j | ≥ 2

I uiui+1ui = ui
I u2i = dui
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Temperley Lieb algebra

I Generically, the Temperley Lieb algebra has dimension
Ck = (2k)!

k!(k+1)! (Catalan number)

I Consider circles with 2k points and non-crossing pair
partitions NC2(2k) on it. There are also Ck such elements,
and they can be seen as a basis of the Temperley Lieb algebra.

I C[NC2(2k)] = TLk(d).
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Temperley Lieb algebra

I For p, q ∈ NC2(2k), consider the scalar product
< p, q >= d loops(p,q).

I This is known to extend to a faithful scalar product on
C[NC2(2k)] = TLk(d) if d ∈ [2,∞)

I This scalar product comes from the Markov trace on the
Temperley Lieb algebra.
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Dual basis

I Consider a f.d. Hilbert space (E , 〈·, ·〉) and a linear basis
B = {x1, . . . , xn}.

I The dual basis associated to B is the unique linear basis
B̂ = {x̂1, . . . , x̂n} of E such that

〈xi , x̂j〉 = δij . (1 ≤ i , j ≤ n).

I For TLk(d) (with k ∈ N, d ∈ [2,∞)) and the Markov trace
Hilbert structure, we consider the canonical diagram basis
B = {Dp}p∈NC2(2k) and the corresponding dual basis

B̂ = {D̂p}p∈NC2(2k).
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Question & main result

I This work started out of a discussion with Vaughan Jones in
Kyoto this spring:

I Question: given p ∈ NC2(2k) and d generic, define fpq,d by
the equation

D̂p =
∑

fpq,dDq.

Are all fpq,d 6= 0?

I Theorem (main result)

Yes, for any d ∈ R− (−2, 2).
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Previous state of the art

I Ocneanu announced a closed formula for fpq,d if p or q is the
identity (coefficients of the Jones Wenzl projection, cf next
slides).

I Partial results/confirmations of Ocneanu by Reznikoff,
Morrison, Frenkel-Khovanov.
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A particular case of interest: the JW projection

I Let d ∈ [2,∞) and k ∈ N. Then there exists a unique
non-zero self-adjoint projection qk ∈ TLk(d), the Jones-Wenzl
projection, with the property that

uiqk = qkui = 0 (i = 1, . . . , k − 1).

I Since d−1/2ui is a projection for 1 ≤ i ≤ k − 1, we can
abstractly define qk via the formula

qk = 1−
∨

1≤i≤k−1
d−1/2ui .

I There are recursion relations for defining qk .
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Observations

1. The Jones Wenzl projection qk is a multiple of D̂p (for
p = id).

This was one of the main case of interest, and the
result was somehow previously verified in this special case.

2. The dual basis elements of Temperley Lieb algebra (and
similar elements – permutation algebra, partition algebra,
Brauer algebra) are well studied for the purpose of computing
Haar measures over (quantum) groups: Weingarten calculus.
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Quantum groups

I The algebra of polynomial functions on the free orthogonal
quantum group is the universal unital ∗-algebra

O+
d := ∗ − alg

(
(uij)1≤i ,j≤d | U = [uij ] unitary in Md(O+

d )&U = Ū
)
.

(1)

I It is an example of Woronowicz’s compact quantum group
(Wang)
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Quantum groups

I Coproduct: a unital ∗-homomorphism ∆ : O+
d → O+

d ⊗ O+
d

determined by

∆(uij) =
d∑

k=1

uik ⊗ ukj (1 ≤ i , j ≤ n),

I It satisfies co-associativity: (ι⊗∆)∆ = (∆⊗ ι)∆.

I There exists a unique Haar integral. That is, a faithful state
µ = µ : O+

d → C, left and right invariant

(µ⊗ ι)∆ = (ι⊗ µ)∆ = µ(·)1. (2)
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Quantum Weingarten

Theorem (Weingarten formula; Banica, C)

If l is odd,
µ(ui(1)j(1)ui(2)j(2) . . . ui(l)j(l)) = 0

otherwise,

µ(ui(1)j(1)ui(2)j(2) . . . ui(l)j(l)) =
∑

p,q∈NC2(l)
ker j≥p, ker i≥p

Wgd(p, q),



Dual coefficients with Weingarten

Theorem
Dual basis element D̂p associated to to a diagram Dp ∈ TLk(d) is
given by

D̂p =
∑

q∈NC2(2k)

Wgd(p, q)Dq,



Dual coefficients with Weingarten

Theorem
For d ∈ [2,∞), the kth Jones-Wenzl projection qk ∈ TLk(d) is
given by

qk =
∑

q∈NC2(2k)

Wgd(1, q)

Wgd(1, 1)
Dq,



Back to the initial problem

Therefore, the question of Jones can be reformulated as follows:

Question:
Show that Wgd(p, q) is never zero, for any p, q ∈ NC2(2k) and
d > 2.
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Classical decay estimates

This question admits a generic answer in the classical case.

In the Un and On case:

Theorem (C, Śniady)

Wg(p, q) ∼ Moeb(1, p ∨ q/2)d−k−|p∨q|/2.
In particular, it is non-zero for d large enough (generic). This
involves Speicher’s Möbius NC function.

Remarks:

1. For classical groups, it is difficult to go beyond the ‘generic’
case with the techniques developed by C, Śniady, Novak,
Matsumoto, etc...

2. Much less was known so far about the asymptotics of the free
orthogonal group Weingarten function.



Classical decay estimates

This question admits a generic answer in the classical case.
In the Un and On case:

Theorem (C, Śniady)
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Matsumoto, etc...

2. Much less was known so far about the asymptotics of the free
orthogonal group Weingarten function.



Classical decay estimates

This question admits a generic answer in the classical case.
In the Un and On case:

Theorem (C, Śniady)
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Wg(p, q) ∼ Moeb(1, p ∨ q/2)d−k−|p∨q|/2.
In particular, it is non-zero for d large enough (generic). This
involves Speicher’s Möbius NC function.
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Quantum decay estimates

I The results of Banica, Curran, Speicher provide estimates of
the form

Wgd(p, q) =

{
O(d−2k+|p∨q|), p 6= q

d−k + O(d−k−2), p = q
(d →∞).

I In Curran Speicher 2011, a sharper result in a few more cases
(including some explicit asymptotics for some p 6= q).

I Unfortunately these prior results are far from covering all
values. As a simple low rank example to illustrate this, we
have the following example.
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Quantum decay estimates

I Let k = 4, p = {1, 6}{2, 5}{3, 4}{7, 8}, and
q = {1, 2}{3, 8}{4, 7}{5, 6}.

I Then |p ∨ q| = 2, and the results of Banica, Curran, Speicher
predict Wgd(p, q) = O(d−6).

I But in fact the leading order turns out to be much smaller:
one actually has m0(p, q) = 1, L(p, q) = 8, and our main
results actually yields

Wgd(p, q) = d−8 + O(d−10).
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Solving the initial problem

For the solution, we use orthogonality relations on O+
d . For

example:

I
∑

i u
2
1i = 1 translates into d Wgd({(1, 2)}, {(1, 2)}) = 1.

I similarly

µ(
∑
i

u1iu2iu21u11) = 0

translates into

d Wgd({(14)(23)}, {(12)(34)})+Wgd({(14)(23)}, {(14)(23)}) = 0
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Solving the initial problem

I More generally, we have a whole bunch of orthogonality
relations appearing from replacing

∑
i ukiuli ,

∑
i uikuil by δkl .

I We consider them all. This gives many equations on Wg , or
the form

d Wg(∗ ∗ ∗) + xxx Wg(∗ ∗ ∗) = xxx Wg(∗ ∗ ∗),

where ∗ ∗ ∗ are NC pair partitions, and xxx are integers, and
the sum is finite.

I Quantum groups theory shows that it holds for all d integers
≥ 2. By rationality, it holds for all generic complex numbers.
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Classical case

The situation is the same for classical groups.

1. O(d): brauer diagrams

2. U(d): permutations

Theorem (Weingarten)

There are enough orthogonality relations to determine Wg in large
enough dimension in the classical setup.
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Classical case

I This is Weingarten’s original idea to compute polynomial
integrals over Haar measures on U(d),O(d) in large
dimension.

I ‘Weingarten calculus’ is a series of techniques to compute Wg
without orthogonality relations...

I ...however, at this point, we have no option but use
Weingarten’s original orthogonality idea in the quantum case
to obtain satisfactory (and indeed, optimal) estimates.
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Weingarten graph

We define an infinite directed graph G = (V ,E ).

I The vertex set is given by

V =
⊔
k∈N0

NC2(2k)× NC2(2k),

where by convention we define NC2(0)× NC2(0) = {(∅, ∅)}.
I ((p, q)(p′, q′)) is an edge if there exists an orthogonality

relation for which (p′, q′) appears in the decomposition of
(p, q).
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Weingarten graph

The following properties can be proved

I For any (p, q) there is a path to (∅, ∅).

I Therefore, there exists a shortest distance L(p, q), from (p, q)
to (∅, ∅).

I The diagram has a parity property.
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Weingarten sub-diagram

We define a subgraph H of G = (V ,E ) as follows:

I The vertex set remains unchanged.

I Some edges are removed as follows: for each vertex
(p, q) 6= (∅, ∅), we choose one orthogonality relation that
involves at least one (p′, q′) such that L(p′, q′) < L(p, q).

We fix once and for all such a Weingarten subgraph H ⊂ G .
H exists but is not uniquely defined.



Weingarten sub-diagram

We define a subgraph H of G = (V ,E ) as follows:

I The vertex set remains unchanged.

I Some edges are removed as follows: for each vertex
(p, q) 6= (∅, ∅), we choose one orthogonality relation that
involves at least one (p′, q′) such that L(p′, q′) < L(p, q).

We fix once and for all such a Weingarten subgraph H ⊂ G .
H exists but is not uniquely defined.



Weingarten sub-diagram

We define a subgraph H of G = (V ,E ) as follows:

I The vertex set remains unchanged.

I Some edges are removed as follows: for each vertex
(p, q) 6= (∅, ∅), we choose one orthogonality relation that
involves at least one (p′, q′) such that L(p′, q′) < L(p, q).

We fix once and for all such a Weingarten subgraph H ⊂ G .
H exists but is not uniquely defined.



Weingarten sub-diagram

We define a subgraph H of G = (V ,E ) as follows:

I The vertex set remains unchanged.

I Some edges are removed as follows: for each vertex
(p, q) 6= (∅, ∅), we choose one orthogonality relation that
involves at least one (p′, q′) such that L(p′, q′) < L(p, q).

We fix once and for all such a Weingarten subgraph H ⊂ G .

H exists but is not uniquely defined.



Weingarten sub-diagram

We define a subgraph H of G = (V ,E ) as follows:

I The vertex set remains unchanged.

I Some edges are removed as follows: for each vertex
(p, q) 6= (∅, ∅), we choose one orthogonality relation that
involves at least one (p′, q′) such that L(p′, q′) < L(p, q).

We fix once and for all such a Weingarten subgraph H ⊂ G .
H exists but is not uniquely defined.



Main result

Fix p, q ∈ NC2(2k). Let mr (p, q) be the number of paths of length
L(p, q) + 2r in H.

Theorem
Then the Weingarten function d 7→Wgd(p, q) admits the
following absolutely convergent Laurent series expansion

Wgd(p, q) = (−1)|p∨q|+k
∑
r≥0

mr (p, q)d−L(p,q)−2r

for
(
|d | > 2 cos

(
π

k+1

))
.
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Main result

In particular:

I mr (p, q) does not depend on the choice of H!

I The leading order term of Wgd(p, q) is given by

Wgd(p, q) ∼ m0(p, q)(−1)k+|p∨q|d−L(p,q) 6= 0 (|d | → ∞).
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Sign of coefficients

We rescale the sign of Wg as follows:

W̃gd(p, q) := (−1)k+|p∨q|Wgd(p, q).

The interest of this notation is that W̃gd(p, q) will always be
positive.
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Paths on the subgraph

I The orthogonality relation at (p, q) yields

W̃gd(p, q) = d−1
∑

(p1,q1)
W̃gd(p1, q1) (partial sum)

I We can rewrite

W̃gd(p, q) =
∑

(p′,q′)∈V−{∅,∅}

c(p′,q′),1W̃gd(p′, q′) + K1,

where K1 is 0 unless (p, q) was the element of NC2(2)2, and
all coefficients c(p′,q′),1 are zero unless ((p, q), (p′, q′)) is an
edge of H (in which case it is 1/d).
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Paths on the subgraph

I To each W̃gd(p′, q′) in the r.h.s we can apply the
orthogonality relation chosen when we defined H

I Iterating this s times gives

W̃gd(p, q) =
∑

(p′,q′)∈V−{∅,∅}

c(p′,q′),sW̃gd(p′, q′) + Ks

l.h.s: what we want to evaluate
r.h.s: a (stationary) sequence that we will need to evaluate the l.h.s
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Convergence as a power series

The important things to note are

1. c(p′,q′),s is of the form pd−s where p is a natural number (a
number of paths of length s).

2. Ks is a polynomial in d−1 with natural numbers as
coefficients. Viewing Ks as a sequence or polynomials, the
induced sequence of coefficients of degree l becomes steady as
soon as k > l .

Consequently, ∑
(p′,q′)∈V−{∅,∅}

c(p′,q′),sW̃gd(p′, q′) + Ks

converges as a power series in d−1.
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Convergence as a sequence

I Getting back to

W̃gd(p, q) =
∑

(p′,q′)∈V−{∅,∅}

c(p′,q′),sW̃gd(p′, q′) + Ks ,

the expression ∑
(p′,q′)∈V−{∅,∅}

c(p′,q′),sW̃gd(p′, q′)

viewed as a number after specializing d , is bounded above by
(k+1

d )s ,

because an orthogonality relation involves at most
k + 1 different terms.

I Therefore, ∑
(p′,q′)∈V−{∅,∅}

c(p′,q′),sW̃gd(p′, q′) + Ks

converges also as a sequence when d > k + 1.
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Radius of convergence

I In addition, W̃gd(p, q) is a rational fraction in d with poles
|d | 6 2 cos

(
π

k+1

)
[Crámer + a theorem by di Francesco]

I Therefore, for |d | > k + 1 the power series matches the
rational fraction.

I Thus, by analytic continuation, the actual radius of
convergence is (2 cos

(
π

k+1

)
)−1.

Remark: this large convergence radius (and the independence on
the choice of H) is not obvious at all from the combinatorics of the
proof....
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Summary

Theorem
The Weingarten function d 7→Wgd(p, q) admits the following
absolutely convergent Laurent series expansion

Wgd(p, q) = (−1)|p∨q|+k
∑
r≥0

mr (p, q)d−L(p,q)−2r

for
(
|d | > 2 cos

(
π

k+1

))
.

As a corollary:

Theorem
given p ∈ NC2(2k) and d generic, let fpq,d be defined by the
equation

D̂p =
∑

fpq,dDq.

Then fpq,d 6= 0 for any d ∈ R− (−2, 2).
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