Dual Temperley Lieb basis, Quantum Weingarten and a conjecture of Jones

Benoît Collins

Kyoto University

Sendai, August 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Joint work with Mike Brannan (TAMU) – (trailer... cf next Monday's arXiv)

Joint work with Mike Brannan (TAMU) – (trailer... cf next Monday's arXiv) Plan:

- 1. Temperley Lieb algebra and main result
- 2. Free orthogonal quantum group O_d^+ and Weingarten calculus.

3. Outline of proof and main result.

Let $d \in \mathbb{C}^*$ and $k \in \mathbb{N}$ be fixed parameters. The *Temperley-Lieb* algebra $TL_k(d)$ is the unital associative algebra generated by elements $1, u_1, \ldots, u_{k-1}$ subject to the following relations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $d \in \mathbb{C}^*$ and $k \in \mathbb{N}$ be fixed parameters. The *Temperley-Lieb* algebra $TL_k(d)$ is the unital associative algebra generated by elements $1, u_1, \ldots, u_{k-1}$ subject to the following relations

•
$$u_i u_j = u_j u_i$$
 when $|i - j| \ge 2$

$$u_i u_{i+1} u_i = u_i$$

•
$$u_i^2 = du_i$$

• Generically, the Temperley Lieb algebra has dimension $C_k = \frac{(2k)!}{k!(k+1)!}$ (Catalan number)

- Generically, the Temperley Lieb algebra has dimension $C_k = \frac{(2k)!}{k!(k+1)!}$ (Catalan number)
- Consider circles with 2k points and non-crossing pair partitions NC₂(2k) on it. There are also C_k such elements, and they can be seen as a basis of the Temperley Lieb algebra.

- Generically, the Temperley Lieb algebra has dimension $C_k = \frac{(2k)!}{k!(k+1)!}$ (Catalan number)
- Consider circles with 2k points and non-crossing pair partitions NC₂(2k) on it. There are also C_k such elements, and they can be seen as a basis of the Temperley Lieb algebra.

$$\blacktriangleright \mathbb{C}[NC_2(2k)] = TL_k(d).$$

For p, q ∈ NC2(2k), consider the scalar product
< p, q >= d^{loops(p,q)}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- For p, q ∈ NC2(2k), consider the scalar product
 < p, q >= d^{loops(p,q)}.
- ▶ This is known to extend to a faithful scalar product on $\mathbb{C}[NC_2(2k)] = TL_k(d)$ if $d \in [2, \infty)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- For p, q ∈ NC2(2k), consider the scalar product
 < p, q >= d^{loops(p,q)}.
- ▶ This is known to extend to a faithful scalar product on $\mathbb{C}[NC_2(2k)] = TL_k(d)$ if $d \in [2, \infty)$
- This scalar product comes from the Markov trace on the Temperley Lieb algebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual basis

• Consider a f.d. Hilbert space $(E, \langle \cdot, \cdot \rangle)$ and a linear basis $B = \{x_1, \ldots, x_n\}.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Dual basis

- Consider a f.d. Hilbert space $(E, \langle \cdot, \cdot \rangle)$ and a linear basis $B = \{x_1, \ldots, x_n\}.$
- The *dual basis* associated to *B* is the unique linear basis $\hat{B} = {\hat{x}_1, ..., \hat{x}_n}$ of *E* such that

$$\langle x_i, \hat{x}_j \rangle = \delta_{ij}.$$
 $(1 \le i, j \le n).$

Dual basis

- Consider a f.d. Hilbert space (E, ⟨·, ·⟩) and a linear basis B = {x₁,...,x_n}.
- The *dual basis* associated to *B* is the unique linear basis $\hat{B} = {\hat{x}_1, ..., \hat{x}_n}$ of *E* such that

$$\langle x_i, \hat{x}_j \rangle = \delta_{ij}.$$
 $(1 \le i, j \le n).$

 For *TL_k(d)* (with *k* ∈ N, *d* ∈ [2,∞)) and the Markov trace Hilbert structure, we consider the canonical diagram basis
 B = {*D_p*}_{*p*∈*NC*₂(2*k*)} and the corresponding dual basis
 B = {*D̂_p*}_{*p*∈*NC*₂(2*k*)}.

This work started out of a discussion with Vaughan Jones in Kyoto this spring:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- This work started out of a discussion with Vaughan Jones in Kyoto this spring:
- ▶ **Question**: given $p \in NC_2(2k)$ and *d* generic, define $f_{pq,d}$ by the equation

$$\hat{D}_{p}=\sum f_{pq,d}D_{q}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- This work started out of a discussion with Vaughan Jones in Kyoto this spring:
- ▶ **Question**: given $p \in NC_2(2k)$ and *d* generic, define $f_{pq,d}$ by the equation

$$\hat{D}_p = \sum f_{pq,d} D_q.$$

Are all $f_{pq,d} \neq 0$?

- This work started out of a discussion with Vaughan Jones in Kyoto this spring:
- ▶ **Question**: given $p \in NC_2(2k)$ and d generic, define $f_{pq,d}$ by the equation

$$\hat{D}_{p}=\sum f_{pq,d}D_{q}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Are all $f_{pq,d} \neq 0$?

► Theorem (main result)

Yes, for any $d \in \mathbb{R} - (-2, 2)$.

Previous state of the art

 Ocneanu announced a closed formula for f_{pq,d} if p or q is the identity (coefficients of the Jones Wenzl projection, cf next slides).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Previous state of the art

Ocneanu announced a closed formula for f_{pq,d} if p or q is the identity (coefficients of the Jones Wenzl projection, cf next slides).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Partial results/confirmations of Ocneanu by Reznikoff, Morrison, Frenkel-Khovanov. A particular case of interest: the JW projection

Let d ∈ [2,∞) and k ∈ N. Then there exists a unique non-zero self-adjoint projection q_k ∈ TL_k(d), the Jones-Wenzl projection, with the property that

$$u_i q_k = q_k u_i = 0$$
 $(i = 1, ..., k - 1).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A particular case of interest: the JW projection

Let d ∈ [2,∞) and k ∈ N. Then there exists a unique non-zero self-adjoint projection q_k ∈ TL_k(d), the Jones-Wenzl projection, with the property that

$$u_i q_k = q_k u_i = 0$$
 $(i = 1, ..., k - 1).$

Since d^{-1/2}u_i is a projection for 1 ≤ i ≤ k − 1, we can abstractly define q_k via the formula

$$q_k=1-\bigvee_{1\leq i\leq k-1}d^{-1/2}u_i.$$

A particular case of interest: the JW projection

Let d ∈ [2,∞) and k ∈ N. Then there exists a unique non-zero self-adjoint projection q_k ∈ TL_k(d), the Jones-Wenzl projection, with the property that

$$u_i q_k = q_k u_i = 0$$
 $(i = 1, ..., k - 1).$

Since d^{-1/2}u_i is a projection for 1 ≤ i ≤ k − 1, we can abstractly define q_k via the formula

$$q_k=1-\bigvee_{1\leq i\leq k-1}d^{-1/2}u_i.$$

There are recursion relations for defining q_k.

1. The Jones Wenzl projection q_k is a multiple of \hat{D}_p (for p = id).

1. The Jones Wenzl projection q_k is a multiple of \hat{D}_p (for p = id). This was one of the main case of interest, and the result was somehow previously verified in this special case.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. The Jones Wenzl projection q_k is a multiple of \hat{D}_p (for p = id). This was one of the main case of interest, and the result was somehow previously verified in this special case.
- The dual basis elements of Temperley Lieb algebra (and similar elements – permutation algebra, partition algebra, Brauer algebra) are well studied for the purpose of computing Haar measures over (quantum) groups:

- 1. The Jones Wenzl projection q_k is a multiple of \hat{D}_p (for p = id). This was one of the main case of interest, and the result was somehow previously verified in this special case.
- The dual basis elements of Temperley Lieb algebra (and similar elements – permutation algebra, partition algebra, Brauer algebra) are well studied for the purpose of computing Haar measures over (quantum) groups: Weingarten calculus.

The algebra of polynomial functions on the free orthogonal quantum group is the universal unital *-algebra

$$O_d^+ := * - \operatorname{alg}((u_{ij})_{1 \le i,j \le d} \mid U = [u_{ij}] \text{ unitary in } M_d(O_d^+) \& U = \bar{U}).$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The algebra of polynomial functions on the free orthogonal quantum group is the universal unital *-algebra

$$O_d^+ := * - \operatorname{alg}((u_{ij})_{1 \le i,j \le d} \mid U = [u_{ij}] \text{ unitary in } M_d(O_d^+) \& U = \bar{U}).$$
(1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 It is an example of Woronowicz's compact quantum group (Wang)

Quantum groups

• Coproduct: a unital *-homomorphism $\Delta: O_d^+ \to O_d^+ \otimes O_d^+$ determined by

$$\Delta(u_{ij}) = \sum_{k=1}^{d} u_{ik} \otimes u_{kj} \qquad (1 \le i, j \le n),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Quantum groups

 Coproduct: a unital *-homomorphism Δ : O⁺_d → O⁺_d ⊗ O⁺_d determined by

$$\Delta(u_{ij}) = \sum_{k=1}^{d} u_{ik} \otimes u_{kj} \qquad (1 \le i, j \le n),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It satisfies co-associativity: (ι ⊗ Δ)Δ = (Δ ⊗ ι)Δ.

Quantum groups

Coproduct: a unital *-homomorphism Δ : O⁺_d → O⁺_d ⊗ O⁺_d determined by

$$\Delta(u_{ij}) = \sum_{k=1}^{d} u_{ik} \otimes u_{kj} \qquad (1 \le i, j \le n),$$

- It satisfies *co-associativity*: $(\iota \otimes \Delta)\Delta = (\Delta \otimes \iota)\Delta$.
- ▶ There exists a unique *Haar integral*. That is, a faithful state $\mu = \mu : O_d^+ \to \mathbb{C}$, left and right invariant

$$(\mu \otimes \iota) \Delta = (\iota \otimes \mu) \Delta = \mu(\cdot) \mathbf{1}.$$
 (2)

Quantum Weingarten

Theorem (Weingarten formula; Banica, C) If I is odd,

$$\mu(u_{i(1)j(1)}u_{i(2)j(2)}\ldots u_{i(l)j(l)})=0$$

otherwise,

$$\mu(u_{i(1)j(1)}u_{i(2)j(2)}\dots u_{i(l)j(l)}) = \sum_{\substack{p,q \in NC_2(l) \\ \ker j \ge p, \ \ker i \ge p}} Wg_d(p,q),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dual coefficients with Weingarten

Theorem

Dual basis element \hat{D}_p associated to to a diagram $D_p \in TL_k(d)$ is given by

$$\hat{D}_p = \sum_{q \in NC_2(2k)} Wg_d(p,q) D_q,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dual coefficients with Weingarten

Theorem

For $d \in [2, \infty)$, the kth Jones-Wenzl projection $q_k \in TL_k(d)$ is given by

$$q_k = \sum_{q \in \mathcal{NC}_2(2k)} rac{\mathsf{Wg}_d(\mathbf{1},q)}{\mathsf{Wg}_d(\mathbf{1},\mathbf{1})} D_q,$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Back to the initial problem

Therefore, the question of Jones can be reformulated as follows:
Therefore, the question of Jones can be reformulated as follows: $\ensuremath{\mathbf{Question:}}$

Show that $Wg_d(p,q)$ is never zero, for any $p, q \in NC_2(2k)$ and $d \ge 2$.

This question admits a generic answer in the classical case.

This question admits a generic answer in the classical case. In the U_n and O_n case:

Theorem (C, Śniady)

 $\operatorname{Wg}(p,q) \sim \operatorname{Moeb}(1, p \vee q/2) d^{-k-|p \vee q|/2}.$

This question admits a generic answer in the classical case. In the U_n and O_n case:

Theorem (C, Śniady)

 $Wg(p,q) \sim Moeb(1, p \lor q/2)d^{-k-|p \lor q|/2}.$ In particular, it is non-zero for d large enough (generic).

This question admits a generic answer in the classical case. In the U_n and O_n case:

Theorem (C, Śniady)

 $Wg(p,q) \sim Moeb(1, p \vee q/2)d^{-k-|p \vee q|/2}$. In particular, it is non-zero for d large enough (generic). This involves Speicher's Möbius NC function.

This question admits a generic answer in the classical case. In the U_n and O_n case:

Theorem (C, Śniady)

 $Wg(p,q) \sim Moeb(1, p \vee q/2)d^{-k-|p \vee q|/2}$. In particular, it is non-zero for d large enough (generic). This involves Speicher's Möbius NC function.

Remarks:

 For classical groups, it is difficult to go beyond the 'generic' case with the techniques developed by C, Śniady, Novak, Matsumoto, etc...

This question admits a generic answer in the classical case. In the U_n and O_n case:

Theorem (C, Śniady)

 $Wg(p,q) \sim Moeb(1, p \vee q/2)d^{-k-|p \vee q|/2}$. In particular, it is non-zero for d large enough (generic). This involves Speicher's Möbius NC function.

Remarks:

- For classical groups, it is difficult to go beyond the 'generic' case with the techniques developed by C, Śniady, Novak, Matsumoto, etc...
- 2. Much less was known so far about the asymptotics of the free orthogonal group Weingarten function.

 The results of Banica, Curran, Speicher provide estimates of the form

$$\operatorname{Wg}_d(p,q) = egin{cases} O(d^{-2k+|pee q|}), & p
eq q \ d^{-k}+O(d^{-k-2}), & p=q \end{cases} \quad (d o\infty).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 The results of Banica, Curran, Speicher provide estimates of the form

$$\operatorname{Wg}_d(p,q) = egin{cases} O(d^{-2k+|p\vee q|}), & p
eq q \ d^{-k}+O(d^{-k-2}), & p=q \end{cases} \quad (d o\infty).$$

In Curran Speicher 2011, a sharper result in a few more cases (including some explicit asymptotics for some p ≠ q).

 The results of Banica, Curran, Speicher provide estimates of the form

$$\operatorname{Wg}_d(p,q) = egin{cases} O(d^{-2k+|p\vee q|}), & p
eq q \ d^{-k}+O(d^{-k-2}), & p=q \end{cases} \quad (d o\infty).$$

In Curran Speicher 2011, a sharper result in a few more cases (including some explicit asymptotics for some p ≠ q).

(日) (同) (三) (三) (三) (○) (○)

 Unfortunately these prior results are far from covering all values. As a simple low rank example to illustrate this, we have the following example.

• Let
$$k = 4$$
, $p = \{1, 6\}\{2, 5\}\{3, 4\}\{7, 8\}$, and $q = \{1, 2\}\{3, 8\}\{4, 7\}\{5, 6\}$.

<□ > < @ > < E > < E > E のQ @

- Let k = 4, $p = \{1, 6\}\{2, 5\}\{3, 4\}\{7, 8\}$, and $q = \{1, 2\}\{3, 8\}\{4, 7\}\{5, 6\}$.
- Then |p ∨ q| = 2, and the results of Banica, Curran, Speicher predict Wg_d(p, q) = O(d⁻⁶).

- Let k = 4, $p = \{1, 6\}\{2, 5\}\{3, 4\}\{7, 8\}$, and $q = \{1, 2\}\{3, 8\}\{4, 7\}\{5, 6\}$.
- Then |p ∨ q| = 2, and the results of Banica, Curran, Speicher predict Wg_d(p, q) = O(d⁻⁶).
- But in fact the leading order turns out to be much smaller: one actually has m₀(p, q) = 1, L(p, q) = 8, and our main results actually yields

$$Wg_d(p,q) = d^{-8} + O(d^{-10}).$$

(日) (同) (三) (三) (三) (○) (○)

For the solution, we use orthogonality relations on ${\cal O}_d^+.$ For example:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For the solution, we use orthogonality relations on O_d^+ . For example:

•
$$\sum_{i} u_{1i}^2 = 1$$
 translates into $d \operatorname{Wg}_d(\{(1,2)\},\{(1,2)\}) = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For the solution, we use orthogonality relations on O_d^+ . For example:

- $\sum_{i} u_{1i}^2 = 1$ translates into $d \operatorname{Wg}_d(\{(1,2)\},\{(1,2)\}) = 1$.
- similarly

$$\mu(\sum_{i} u_{1i}u_{2i}u_{21}u_{11}) = 0$$

translates into

 $d \operatorname{Wg}_d(\{(14)(23)\},\{(12)(34)\}) + Wg_d(\{(14)(23)\},\{(14)(23)\}) = 0$

More generally, we have a whole bunch of orthogonality relations appearing from replacing Σ_i u_{ki}u_{li}, Σ_i u_{ik}u_{il} by δ_{kl}.

- More generally, we have a whole bunch of orthogonality relations appearing from replacing Σ_i u_{ki}u_{li}, Σ_i u_{ik}u_{il} by δ_{kl}.
- ▶ We consider *them all*. This gives many equations on *Wg*, or the form

$$d \operatorname{Wg}(***) + xxx \operatorname{Wg}(***) = xxx \operatorname{Wg}(***),$$

where * * * are NC pair partitions, and xxx are integers, and the sum is finite.

- ► More generally, we have a whole bunch of orthogonality relations appearing from replacing ∑_i u_{ki}u_{li}, ∑_i u_{ik}u_{il} by δ_{kl}.
- ► We consider *them all*. This gives many equations on Wg, or the form

$$d \operatorname{Wg}(***) + xxx \operatorname{Wg}(***) = xxx \operatorname{Wg}(***),$$

where * * * are NC pair partitions, and xxx are integers, and the sum is finite.

► Quantum groups theory shows that it holds for all *d* integers ≥ 2. By rationality, it holds for all generic complex numbers.

The situation is the same for classical groups.

- 1. O(d): brauer diagrams
- 2. U(d): permutations

The situation is the same for classical groups.

- 1. O(d): brauer diagrams
- 2. U(d): permutations

Theorem (Weingarten)

There are enough orthogonality relations to determine Wg in large enough dimension in the classical setup.

Classical case

This is Weingarten's original idea to compute polynomial integrals over Haar measures on U(d), O(d) in large dimension.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classical case

- This is Weingarten's original idea to compute polynomial integrals over Haar measures on U(d), O(d) in large dimension.
- 'Weingarten calculus' is a series of techniques to compute Wg without orthogonality relations...

Classical case

- This is Weingarten's original idea to compute polynomial integrals over Haar measures on U(d), O(d) in large dimension.
- 'Weingarten calculus' is a series of techniques to compute Wg without orthogonality relations...
- ...however, at this point, we have no option but use Weingarten's original orthogonality idea in the quantum case to obtain satisfactory (and indeed, optimal) estimates.

We define an *infinite directed graph* G = (V, E).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We define an *infinite directed graph* G = (V, E).

The vertex set is given by

$$V = \bigsqcup_{k \in \mathbb{N}_0} NC_2(2k) \times NC_2(2k),$$

where by convention we define $NC_2(0) \times NC_2(0) = \{(\emptyset, \emptyset)\}$.

We define an *infinite directed graph* G = (V, E).

The vertex set is given by

$$V = \bigsqcup_{k \in \mathbb{N}_0} NC_2(2k) \times NC_2(2k),$$

where by convention we define $NC_2(0) \times NC_2(0) = \{(\emptyset, \emptyset)\}$.

▶ ((p,q)(p',q')) is an edge if there exists an orthogonality relation for which (p',q') appears in the decomposition of (p,q).

The following properties can be proved

The following properties can be proved

► For any (p, q) there is a path to (Ø, Ø).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The following properties can be proved

- For any (p, q) there is a path to (\emptyset, \emptyset) .
- ► Therefore, there exists a shortest distance L(p, q), from (p, q) to (Ø, Ø).

The following properties can be proved

- For any (p, q) there is a path to (\emptyset, \emptyset) .
- ► Therefore, there exists a shortest distance L(p, q), from (p, q) to (Ø, Ø).

• The diagram has a parity property.

We define a subgraph H of G = (V, E) as follows:

We define a subgraph H of G = (V, E) as follows:

(ロ)、(型)、(E)、(E)、 E) のQの

The vertex set remains unchanged.

We define a subgraph H of G = (V, E) as follows:

- The vertex set remains unchanged.
- Some edges are removed as follows: for each vertex (p, q) ≠ (Ø, Ø), we choose one orthogonality relation that involves at least one (p', q') such that L(p', q') < L(p, q).</p>

We define a subgraph H of G = (V, E) as follows:

- The vertex set remains unchanged.
- Some edges are removed as follows: for each vertex (p, q) ≠ (Ø, Ø), we choose one orthogonality relation that involves at least one (p', q') such that L(p', q') < L(p, q).</p>

We fix once and for all such a Weingarten subgraph $H \subset G$.

We define a subgraph H of G = (V, E) as follows:

- The vertex set remains unchanged.
- Some edges are removed as follows: for each vertex (p, q) ≠ (Ø, Ø), we choose one orthogonality relation that involves at least one (p', q') such that L(p', q') < L(p, q).</p>

We fix once and for all such a Weingarten subgraph $H \subset G$. H exists but is not uniquely defined.
Fix $p, q \in NC_2(2k)$. Let $m_r(p, q)$ be the number of paths of length L(p, q) + 2r in H.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fix $p, q \in NC_2(2k)$. Let $m_r(p, q)$ be the number of paths of length L(p, q) + 2r in H.

Theorem

Then the Weingarten function $d \mapsto Wg_d(p,q)$ admits the following absolutely convergent Laurent series expansion

$$Wg_d(p,q) = (-1)^{|p \vee q|+k} \sum_{r \ge 0} m_r(p,q) d^{-L(p,q)-2r}$$

for $\left(|d|>2\cos\left(\frac{\pi}{k+1}\right)\right)$.

In particular:

• $m_r(p,q)$ does not depend on the choice of H!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

In particular:

- $m_r(p,q)$ does not depend on the choice of H!
- The leading order term of $Wg_d(p,q)$ is given by

$$\operatorname{Wg}_d(p,q) \sim m_0(p,q)(-1)^{k+|pee q|} d^{-L(p,q)}
eq 0 \qquad (|d| o \infty).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sign of coefficients

We rescale the sign of Wg as follows:

$$\widetilde{Wg}_d(p,q) := (-1)^{k+|p\vee q|} Wg_d(p,q).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We rescale the sign of Wg as follows:

$$\widetilde{Wg}_d(p,q) := (-1)^{k+|p \vee q|} Wg_d(p,q).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The interest of this notation is that $Wg_d(p,q)$ will always be positive.

• The orthogonality relation at (p, q) yields $\widetilde{Wg}_d(p, q) = d^{-1} \sum_{(p_1, q_1)} \widetilde{Wg}_d(p_1, q_1)$ (partial sum)

- The orthogonality relation at (p, q) yields $\widetilde{Wg}_d(p, q) = d^{-1} \sum_{(p_1, q_1)} \widetilde{Wg}_d(p_1, q_1)$ (partial sum)
- We can rewrite

$$\widetilde{\mathit{Wg}}_d(p,q) = \sum_{(p',q') \in \mathit{V} - \{\emptyset,\emptyset\}} c_{(p',q'),1} \widetilde{\mathit{Wg}}_d(p',q') + \mathit{K}_1,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The orthogonality relation at (p, q) yields $\widetilde{Wg}_d(p, q) = d^{-1} \sum_{(p_1, q_1)} \widetilde{Wg}_d(p_1, q_1)$ (partial sum)
- We can rewrite

$$\widetilde{Wg}_d(p,q) = \sum_{(p',q') \in V - \{\emptyset,\emptyset\}} c_{(p',q'),1} \widetilde{Wg}_d(p',q') + K_1,$$

where K_1 is 0 unless (p, q) was the element of $NC_2(2)^2$, and all coefficients $c_{(p',q'),1}$ are zero unless ((p,q), (p',q')) is an edge of H (in which case it is 1/d).

► To each Wg_d(p', q') in the r.h.s we can apply the orthogonality relation chosen when we defined H

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► To each Wg_d(p', q') in the r.h.s we can apply the orthogonality relation chosen when we defined H
- Iterating this s times gives

$$\widetilde{Wg}_d(p,q) = \sum_{(p',q') \in V - \{\emptyset,\emptyset\}} c_{(p',q'),s} \widetilde{Wg}_d(p',q') + K_s$$

- ► To each Wg_d(p', q') in the r.h.s we can apply the orthogonality relation chosen when we defined H
- Iterating this s times gives

$$\widetilde{\mathit{Wg}}_d(p,q) = \sum_{(p',q') \in \mathit{V} - \{\emptyset,\emptyset\}} c_{(p',q'),s} \widetilde{\mathit{Wg}}_d(p',q') + \mathit{K}_s$$

l.h.s: what we want to evaluate

r.h.s: a (stationary) sequence that we will need to evaluate the l.h.s

Convergence as a power series

The important things to note are

1. $c_{(p',q'),s}$ is of the form pd^{-s} where p is a natural number (a number of paths of length s).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Convergence as a power series

The important things to note are

- 1. $c_{(p',q'),s}$ is of the form pd^{-s} where p is a natural number (a number of paths of length s).
- K_s is a polynomial in d⁻¹ with natural numbers as coefficients. Viewing K_s as a sequence or polynomials, the induced sequence of coefficients of degree *l* becomes steady as soon as k ≥ l.

Convergence as a power series

The important things to note are

- 1. $c_{(p',q'),s}$ is of the form pd^{-s} where p is a natural number (a number of paths of length s).
- K_s is a polynomial in d⁻¹ with natural numbers as coefficients. Viewing K_s as a sequence or polynomials, the induced sequence of coefficients of degree *l* becomes steady as soon as k ≥ l.

Consequently,

$$\sum_{(p',q')\in V-\{\emptyset,\emptyset\}}c_{(p',q'),s}\widetilde{Wg}_d(p',q')+K_s$$

converges as a power series in d^{-1} .

Convergence as a sequence

Getting back to

$$\widetilde{Wg}_d(p,q) = \sum_{(p',q') \in V - \{\emptyset,\emptyset\}} c_{(p',q'),s} \widetilde{Wg}_d(p',q') + K_s,$$

the expression

$$\sum_{(p',q')\in V-\{\emptyset,\emptyset\}}c_{(p',q'),s}\widetilde{Wg}_d(p',q')$$

viewed as a number after specializing d, is bounded above by $\left(\frac{k+1}{d}\right)^s$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Convergence as a sequence

Getting back to

$$\widetilde{Wg}_d(p,q) = \sum_{(p',q')\in V-\{\emptyset,\emptyset\}} c_{(p',q'),s} \widetilde{Wg}_d(p',q') + K_s,$$

the expression

$$\sum_{(p',q')\in V-\{\emptyset,\emptyset\}}c_{(p',q'),s}\widetilde{Wg}_d(p',q')$$

viewed as a number after specializing d, is bounded above by $\left(\frac{k+1}{d}\right)^s$, because an orthogonality relation involves at most k+1 different terms.

Convergence as a sequence

Getting back to

$$\widetilde{Wg}_d(p,q) = \sum_{(p',q')\in V-\{\emptyset,\emptyset\}} c_{(p',q'),s} \widetilde{Wg}_d(p',q') + \mathcal{K}_s,$$

the expression

$$\sum_{(p',q')\in V-\{\emptyset,\emptyset\}}c_{(p',q'),s}\widetilde{Wg}_d(p',q')$$

viewed as a number after specializing d, is bounded above by $(\frac{k+1}{d})^s$, because an orthogonality relation involves at most k+1 different terms.

► Therefore,

$$\sum_{(p',q')\in V-\{\emptyset,\emptyset\}}c_{(p',q'),s}\widetilde{Wg}_d(p',q')+\mathcal{K}_s$$

converges also as a sequence when d > k+1.

▶ In addition, $\widetilde{Wg}_d(p,q)$ is a rational fraction in d with poles $|d| \leq 2 \cos\left(\frac{\pi}{k+1}\right)$ [Crámer + a theorem by di Francesco]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ In addition, $\widetilde{Wg}_d(p,q)$ is a rational fraction in d with poles $|d| \leq 2 \cos(\frac{\pi}{k+1})$ [Crámer + a theorem by di Francesco]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Therefore, for |d| > k + 1 the power series matches the rational fraction.

▶ In addition, $\widetilde{Wg}_d(p,q)$ is a rational fraction in d with poles $|d| \leq 2 \cos(\frac{\pi}{k+1})$ [Crámer + a theorem by di Francesco]

- ► Therefore, for |d| > k + 1 the power series matches the rational fraction.
- ► Thus, by analytic continuation, the actual radius of convergence is (2 cos (^π/_{k+1}))⁻¹.

- ▶ In addition, $\widetilde{Wg}_d(p,q)$ is a rational fraction in d with poles $|d| \leq 2 \cos(\frac{\pi}{k+1})$ [Crámer + a theorem by di Francesco]
- ► Therefore, for |d| > k + 1 the power series matches the rational fraction.
- ► Thus, by analytic continuation, the actual radius of convergence is (2 cos (^π/_{k+1}))⁻¹.

Remark: this large convergence radius (and the independence on the choice of H) is not obvious at all from the combinatorics of the proof....

Summary

Theorem

The Weingarten function $d \mapsto Wg_d(p,q)$ admits the following absolutely convergent Laurent series expansion

$$Wg_d(p,q) = (-1)^{|p \vee q|+k} \sum_{r \ge 0} m_r(p,q) d^{-L(p,q)-2r}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for
$$\left(|d|>2\cos\left(\frac{\pi}{k+1}\right)\right)$$
.

Summary

Theorem

The Weingarten function $d \mapsto Wg_d(p,q)$ admits the following absolutely convergent Laurent series expansion

$$Wg_d(p,q) = (-1)^{|p \vee q|+k} \sum_{r \ge 0} m_r(p,q) d^{-L(p,q)-2r}$$

for
$$\left(|d| > 2\cos\left(\frac{\pi}{k+1}\right)\right)$$
.

As a corollary:

Theorem

given $p \in NC_2(2k)$ and d generic, let $f_{pq,d}$ be defined by the equation

$$\hat{D}_{p} = \sum f_{pq,d} D_{q}.$$

Then $f_{pq,d} \neq 0$ for any $d \in \mathbb{R} - (-2, 2)$.

Thank you!

Thank you!