数理科学 I 期末テスト

2004年7月26日

河東泰之(かわひがしやすゆき)

数理科学研究科棟 323 号室 (電話 5465-7078)

e-mail yasuyuki@ms.u-tokyo.ac.jp

http://www.ms.u-tokyo.ac.jp/~yasuyuki/

このテストは自筆ノート持ち込み可で行います.(本や,人のノートのコピーは不可です.)答案には途中の計算,説明などをきちんと書いてください.答案用紙は両面1枚です.それに収まるように書いてください.

- [1] 次のそれぞれの場合について, $\varphi(x,y)=0$ という条件の下で,f(x,y) の最大値,最小値を求めよ.(最大値または最小値がない場合はないと答えよ.)
 - (1) $f(x,y) = x^2 + y^2$, $\varphi(x,y) = x^2 3y^2 1$.
 - (2) f(x,y) = xy, $\varphi(x,y) = x^2 + 4y^2 1$.
 - [2] xy-平面から点 (0,1) を除いた領域から uv-平面への写像を次の式で定める.

$$u = \frac{x^2 + y^2 - 1}{x^2 + (y - 1)^2},$$

$$v = \frac{2x}{x^2 + (y - 1)^2},$$

このとき次の問に答えよ.

- (1)点 (u,v)=(-1,0) の近傍で上の写像は C^1 級の逆写像 $x=\varphi(u,v),\,y=\psi(u,v)$ を持つことを示せ.
 - (2) 点 (u,v)=(-1,0) において , 上の写像 φ,ψ に対し , 行列

$$\begin{pmatrix} \varphi_u(-1,0) & \varphi_v(-1,0) \\ \psi_u(-1,0) & \psi_v(-1,0) \end{pmatrix}$$

を求めよ.

[3] $x = t\cos\theta, \ y = t\sin\theta, \ z = \theta \ (0 < t < 1, 0 < \theta < 2\pi)$ とパラメータ表示される曲面の面積を求めよ.

[4]

$$P(x,y) = -\frac{x^2y + y^3 + 2xy}{(x^2 + y^2)^2},$$
$$Q(x,y) = \frac{x^3 + xy^2 + x^2 - y^2}{(x^2 + y^2)^2},$$

とする.また原点中心,半径 1 の左回りの円周を γ_1 とし,次に,4 点 (1,1),(-1,1),(-1,-1),(1,-1) をこの順に線分で結び,さらに線分で (1,1) までつないで得られる左回りの正方形を γ_2 とする.このとき次の問いに答えよ.

$$(1)$$
 $\int_{\gamma_1} P(x,y) dx + Q(x,y) dy$ を求めよ.

$$(2)$$
 $\int_{\gamma_2}^{\infty} P(x,y) \ dx + Q(x,y) \ dy$ を求めよ .