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Frustration-Free Quantum Spin Models
A quantum spin system is a collection of quantum systems
labeled by x in a finite set Λ (with a distance function), each
with a finite-dimensional Hilbert space of states Hx . For
concreteness, consider Λ ⊂ Zν .

HΛ =
⊗
x∈Λ

Hx .

The algebra of observables for the subsystem in X ⊂ Λ is

AX =
⊗
x∈X

B(Hx).

The Hamiltonian HΛ ∈ AΛ is defined in terms of an interaction
Φ: for any finite X ⊂ Zν , Φ(X ) = Φ(X )∗ ∈ AX , and

HΛ =
∑
X⊂Λ

Φ(X ).

Φ is called finite range if there is R ≥ 0, such that Φ(X ) = 0
if diamX > R .
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The model defined by a finite-range interaction Φ is
Frustration-Free (FF) if for all finite Λ ⊂ Zν

inf specHΛ =
∑
X⊂Λ

inf specΦ(X ).

Equivalently, there is a ground state of HΛ that is
simultaneously a ground state of all Φ(X ), for X ⊂ Λ.

Note that a frustration-free interaction may have infinite
volume ground states in which some of the terms Φ(X ) have
expectation strictly greater than their minimal eigenvalue. In
this situation we distinguish two types of ground states:
frustration-free and non-frustration-free ground states.

It is straightforward to extend the notion of frustration
freeness to infinite quantum spin systems on a countable set Γ
with C ∗-algebra of quasi-local observables given by

AΓ =
⋃

finite Λ⊂Γ

AΛ

‖·‖
.
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A few examples of frustration-free quantum
spin models
1. The first quantum spin model, introduced by Heisenberg
(1928), is frustration-free (FF): the ferromagnetic spin-1/2
Heisenberg model.
For each x ∈ Zν , Hx = C2 and

HΛ = −
∑
|x−y |=1

Sx · Sy .

The ground states are easily found to be the states of maximal
spin, which are common eigenvectors of all the terms
−Sx · Sy , with the minimal eigenvalue −1/4.
The ground state space is spanned by product states. The
continuous symmetry of simultaneous rotations of the spins is
broken; hence the there is no gap in the spectrum above the
ground state in infinite volume.
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2. The AKLT model (Affleck-Kennedy-Lieb-Tasaki, 1987-88).
Λ ⊂ Z, Hx = C3;

H[1,L] =
L−1∑
x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L−1∑
x=1

P
(2)
x ,x+1

In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).
Ground state is frustration free (Valence Bond Solid state
(VBS), aka Matrix Product State (MPS), aka Finitely
Correlated State (FCS))., and has String Order (den
Nijs-Rommelse 1989): ground states are linear combinations of

· · · 0100101100010000101 · · ·

This structure explains the nature of the edges states (Cfr.
Ogata’s lectures).
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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3. Toric Code model (Kitaev, 2003). Λ ⊂ Z2, Hx = C2.

a b
cd

tr
v u

H = −
∑

p hp −
∑

s hs

hp = σ3
aσ

3
bσ

3
cσ

3
d

hs = σ1
r σ

1
t σ

1
uσ

1
v

On a surface of genus g , the model has 4g frustration free
ground states. This model exhibits topological order and has
excitation spectrum described by anyons.
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Gapped ground state phases
The main motivation for the current research on FF models
stems from the surge of interest in gapped ground state
phases, including topologically ordered phases (Cfr. Ogata’s
lectures).
The term gapped refers to the existence of a positive lower
bound for the energy of excited states with respect to a
ground state, uniformly in the size of the system. This implies
a gap in the spectrum of the GNS Hamiltonian of the ground
state of the infinite system.
The term phase refers to regions in a interaction space where
the gap is positive (open). Phase transitions in interaction
space can occur when the gap vanishes (closes).
Topological Order and Discrete Symmetry Breaking are often
accompanied by a non-vanishing spectral gap.
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The Stability Question(s)
Question 1. Stability of the gapped ground states: Let Φ and
Ψ be short-range interactions.

HΛ(ε) =
∑
X⊂Λ

Φ(X ) + εΨ(X )

Let λ0(ε) and λ1(ε) denote the two smallest eigenvalues of
HΛ(ε), and assume there exists γ > 0 such that
λ1(0)− λ0(0) ≥ γ, for arbitrary large Λ. Assume λ0(0) is
simple. Does there exist ε0 > 0, such that for all |ε| < ε0,
λ1(ε)− λ0(ε) ≥ γ/2?
Answered positively for a number of special classes of Φ. Best
results to date are by Bravyi-Hastings-Michalakis 2010,
Bravyi-Hastings 2011, Michalakis-Zwolak (née Pytel) 2013,
N-Sims-Young 2016.
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Classification of Gapped Ground State Phases
Question 2. Invariants within a gapped phase.
If the gap does not close for a range of ε, what are the robust
features of the system? E.g., under what conditions
(i) is the structure of the set of ground states preserved, which
may include ‘edges states’ for infinite Λ with boundary (Cfr.
Ogata);
(ii) is the nature of the low-lying excited states, their
statistics, are preserved. Of particular interest: in the case of
anyons, is the topological S-matrix invariant?
(iii) are there quantities such as Hall conductance that are
“quantized”?

It turns out that a tool developed to address (i) (and (ii-iii)) is
also an essential ingredient in recent results for Question 1
(stability of the gap).
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Spectral Flow and Automorphic Equivalence
Let Φs , 0,≤ s ≤ 1, be a differentiable family of short-range
interactions, i.e., assume that for some a,M > 0, the
interactions Φs satisfy

sup
x ,y∈Z

ead(x ,y)
∑
X⊂Zd
x,y∈X

‖Φs(X )‖+ |X |‖∂sΦs(X )‖ ≤ M .

E.g,

Φs = Φ0 + sΨ

with both Φ0 and Ψ finite-range and uniformly bounded.
Let Λn ⊂ Zν , be a sequence of finite volumes, satisfying
suitable regularity conditions and suppose that the spectral
gap above the ground state (or a low-energy interval) of

HΛn(s) =
∑
X⊂Λn

Φs(X )

is uniformly bounded below by γ > 0.
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Let S(s) be the set of thermodynamic limits of ground states
of HΛn(s). E.g., if there is only one ground state, this set
contains the state obtained by taking the limit of the infinite
lattice: for each observable A,

ω(A) = lim
Λn→Zd

〈ψΛn | AψΛn〉
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Theorem (Bachmann, Michalakis, N, Sims, 2012)
Under the assumptions of above, there exist automorphisms
αs of the algebra of observables such that S(s) = S0 ◦ αs , for
s ∈ [0, 1].
The automorphisms αs can be constructed as the
thermodynamic limit of the s-dependent “time” evolution for
an interaction Ω(X , s), which decays almost exponentially.

Concretely, the action of the quasi-local automophisms αs on
observables is given by

αs(A) = lim
n→∞

V ∗n (s)AVn(s)

where Vn(s) ∈ AΛn is unitary solution of a Schrödinger
equation:

d

ds
Vn(s) = −iDn(s)Vn(s), Vn(0) = 1l,

with Dn(s) =
∑

X⊂Λn
Ω(X , s).
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The αs satisfy a Lieb-Robinson bound of the form

‖[αs(A),B]‖ ≤ ‖A‖‖B‖min(|X |, |Y |)(e ṽ s − 1)F (d(X ,Y )),

where A ∈ AX ,B ∈ AY , 0 < d(X ,Y ) is the distance between
X and Y . F (r) can be chosen of the form

F (r) = Ce
− 2

7
br

(log br)2 .

with b ∼ γ/v , where γ and v are bounds for the gap and the
Lieb-Robinson velocity of the interactions Φs , i.e., b ∼ aγM−1.

DΛ(s) =

∫ ∞
−∞

wγ(t)

∫ t

0

e iuHΛ(s)

[
d

ds
HΛ(s)

]
e−iuHΛ(s)du dt
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Proofs of a gap: Affleck-Kennedy-Lieb-Tasaki (1988),
Fannes-N-Werner (1992), N (1996), Kitaev (2006),
Bachmann-Hamza-N-Young (2014), Bravyi-Gosset (2015),
Gosset-Mozgunov (2015), Bishop-N-Young (2016).

Proofs of stability of the gap (Question 1):
‘classical’ results by Kennedy-Tasaki,
Datta-Fernandez-Fröhlich, Borgs-Kotecky-Uetlschi, Matsui,
and others(1980-90s),

More recently: Yarotsky (2004), Bravyi-Hastings-Michalakis
(2010), Michalakis-Zwolak (2013), Cirac-Michalakis-
PerezGarcia-Schuch (2013), Szehr-Wolf (2015), N-Sims-Young
(in prep)
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Structure of Ground State Spaces:
Topological vs Landau Order
Consider a quantum spin Hamiltonian on a finite set Λ,
HΛ ∈ AΛ, defined in terms of a finite range interaction Φ:

HΛ =
∑
X⊂Λ

Φ(X ).

In a ‘gapped phase’ (and with suitable boundary conditions),
we often expect the spectrum of HΛ to have the following
structure:

spec(HΛ) ⊂ [EΛ(0),EΛ(0) + δΛ] ∪ [EΛ(0) + δΛ + γΛ,∞)

for some δΛ ≥ 0 and γΛ > 0. The simplest situation is when
δΛ → 0 as Λ→ Zν , and γΛ ≥ γ > 0, for all Λ.
Let GΛ denote the spectral subspace associated with the
spectrum in [EΛ(0),EΛ(0) + δΛ].
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For concreteness, suppose Φ has a local symmetry described
by a finite group G : for every x ∈ Λ, there is a unitary
representation ux(g), g ∈ G , acting on Hx , such that

[Φ(X ),UX (g)] = 0,UX (g) =
⊗
x∈X

ux(g), for all g ∈ G .

If this symmetry is fully broken in the (infinite-volume) ground
states, we expect a decomposition of GΛ labeled by g ∈ G :

GΛ =
⊕
g∈G

GgΛ .

Example: the Z2-symmetry of the Ising model. In general,
direct sum is not necessarily orthogonal.
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Let PΛ denote the ⊥ projection onto GΛ and Pg
Λ the ⊥

projection onto GgΛ . For a suitable sequence of finite volumes
Λn we can obtain the symmetry broken ground states in the
thermodynamic limit:

ωg (A) = lim
n→∞

TrPg
Λn
A

TrPg
Λn

,

for any local observable A. Symmetry breaking means that
there is a local order parameter that distinguishes the states:

ωg (m) = mg .

If there is translation invariance it follows that any two states
giving different values to m must become orthogonal in the
infinite volume limit.
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In this situation, we expect that for all local observable
A ∈ AX , and unit vectors ψi

Λn
∈ GgiΛn

, i = 1, 2, we have

lim
n
〈ψ1

Λn
,Aψ2

Λn
〉 = 0, if g1 6= g2.

For different ψΛn ∈ G
g
Λn

, with the same g , we often have the
Local Topological Quantum Order (LTQO) property first
introduced by Bravyi, Hastings, and Michalakis. Generalized
to the situation with a symmetry G , asserts the following:
there is a q > 2(d + 1), and α ∈ (0, 1), such that for all
r ≤ (diamΛ)α, and all A ∈ ABx (r), such that [A,UΛ(g)] = 0,
g ∈ G ,

‖PBx (r+`)APBx (r+`) − ωΛ(A)PBx (r+`)‖ ≤ C‖A‖`−q,

with
ωΛ(A) = Tr(PΛA)/Tr(PΛ).
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If spontaneous symmetry breaking occurs, then for all
A ∈ ABx (r)

‖Pg
Bx (r+`)AP

h
Bx (r+`) − δg ,hω

g
Λ(A)Pg

Bx (r+`)‖ ≤ C‖A‖`−q.

with
ωg

Λ(A) = Tr(Pg
ΛA)/Tr(Pg

Λ ).

We call this LTQO with symmetry breaking.
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Stability under uniformly small perturbations
The Michalakis-Zwolak stability result (CMP, 2013) applies to
models with frustration-free finite-range interactions on
periodic boxes in Zν . We (N-Sims-Young) recently obtained a
generalization which includes situations with discrete symmetry
breaking and more general lattices and boundary conditions.
Let Bx(R) denote the ball of radius R centered at x ∈ Zν , and
Λ is a finite subset of Γ. Then,

HΛ(0) =
∑
x∈Λ

Bx (R)⊂Λ

Qx ,

where each term Qx ∈ ABx (R), satisfies 0 ≤ Qx ≤ M1l, and
[Qx ,UBx (R)(g)] = 0, for all g ∈ G .
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We consider perturbations of the following form:

HΛ(ε) = HΛ(0) + ε
∑
X⊂Λ

Φ(X ).

and we will assume that there exists a > 0 such that

‖Φ‖a = sup
x ,y∈Γ

ead(x ,y)
∑
X⊂Γ
x,y∈X

‖Φ(X )‖ <∞,

and
[Φ(X ),UX (g)] = 0,

for all g ∈ G , X ⊂ Zν .
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The assumptions on the unperturbed model are:
- It is Frustration Free: kerHΛ(0) 6= {0}; Let PΛ(ε) denote the
orthogonal projection onto kerHΛ(ε). Assume convergence

ω(A) = lim
n

1

dim kerHΛn

TrPΛn(0)A, A ∈ Aloc,

for a suitable sequence Λn ↗ Γ.
- Local Gap: there is γ > 0 such that the gap above the
ground state of HBx (r) ≥ γ for all x and r ;
- Local Topological Quantum Order (LTQO): there is a
q > 2(d + 1), and α ∈ (0, 1), for all r ≤ (diamΛn)α, and all
A ∈ ABx (r), [A,UBx (r)(g)] = 0, for all g ∈ G .

‖PBx (r+`)APBx (r+`) − ω(A)PBx (r+`)‖ ≤ C‖A‖`−q.
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Stability of the Spectral Gap
Let EΛ(ε) = inf spec(HΛ(ε)). The gap of HΛ(ε) is defined
taking into account that the perturbation may produce a
splitting up to an amount δΛ of the zero eigenvalue of HΛ(0),
which is in general degenerate:

γδ(HΛ(ε)) = sup{η > 0 | (δ, δ+η)∩spec(HΛ(ε)−EΛ(ε)1l) = ∅}

Theorem (Bravyi-Hastings (2011),
Michalakis-Zwolak (2013), N-Sims-Young (in prep))
Let HΛ(0) be a finite-range G-symmetric Hamiltonian
satisfying the assumptions of above and Φ an exponentially
decaying G-symmetric perturbation. Then, for any
0 < γ0 < γ(HΛ(0)) there is an ε0 > 0 such that for sufficiently
large Λ,

γδΛ
(HΛ(ε)) ≥ γ0, if |ε| ≤ ε0,

where δΛ ≤ C (diamΛ)−q, for some q > 0.
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Stability of the Ground State Phases
Next, consider the situation where in the unperturbed model
we have spontaneous breaking of the symmetry G in the
frustration-free ground states. Concretely, we will assume the
following:

The unperturbed model is defined on finite volume Λ as before:

HΛ(0) =
∑
x∈Λ

Bx (R)⊂Λ

Qx ,

where each term Qx ∈ ABx (R), satisfies 0 ≤ Qx ≤ M1l, and
[Qx ,UBx (R)(g)] = 0, for all g ∈ G .

We now assume that there are N = |G | pure infinite-volume
frustration-free ground states, ω1, . . . , ωN , and the symmetries,
g ∈ G , act transitively as permutations on this set.
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For sufficiently large m, there are N non-zero orthogonal
projections P1

bx (m), . . . ,P
N
bx (m), onto subspaces of kerHbx (m)

such that the following properties hold:
- It is Frustration Free: kerHΛ(0) 6= {0}; Let PΛ(ε) denote the
orthogonal projection onto kerHΛ(ε). Assume convergence

ω(A) = lim
n

1

dim kerHΛn

TrPΛn(0)A, A ∈ Aloc,

for a suitable sequence Λn ↗ Γ.
- Local Gap: there is γ > 0 such that the gap above the
ground state of HBx (r) ≥ γ for all x and r ;
- LTQO with symmetry breaking: there exist q > 2(d + 1),
and α ∈ (0, 1), such that for all r ≤ (diamΛn)α, and all
A ∈ ABx (r),∥∥∥P i

bx (r+`)AP
j
bx (r+`) − δijω

i(A)P i
bx (r+`)

∥∥∥ ≤ C‖A‖`−q. (1)
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It is natural to assume that

ω0 =
1

N

N∑
i=1

ωi (2)

is the unique G -invariant frustration-free ground state.
The perturbations are of the form

HΛ(ε) = HΛ(0) + ε
∑
X⊂Λ

Φ(X ).

such that [Φ(X ),UX (g)] = 0, for all g ∈ G , and ‖Φ‖a <∞
for some a > 0.
Let Sε denote the set of all thermodynamic limits of ground
states of HΛ(ε)
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Theorem (N-Sims-Young, in prep)
There exists ε0 > 0 such that if |ε| ≤ ε0, then the set Sε is an
N-dimensional simplex. Each of the extreme points (pure
states) satisfies LTQO and has a non-vanishing spectral gap in
the spectrum of its GNS Hamiltonian.

The main tool in the proof is the spectral flow, which is
constructed using Lieb-Robinson bounds for the dynamics and
related transformations (Hastings (2005), Bachmann et al
(2012)).
We also prove that the thermodynamic limit of the spectral
flow yields quasi-local automorphisms αε such that

Sε = {ω ◦ αε | ω ∈ S0}.

Therefore, the entire phase structure is preserved under the
perturbations.
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Outlook
I Frustration free (FF) models turned out to be an essential

tool to help us understand gapped ground state phases
and their classification.

I Progress in estimating the spectral gap above the ground
state has come from studying FF models.
Well-understood in one dimension. Next step: higher
dimensions (so far only special classes of examples in d
dimensions (Bishop-N-Young, JSP 2016).

I Stability results of ground states is based on FF models.
Next steps: 1) ‘stability’ of non-FF ground states of FF
models (in prep. and ongoing work Cha-Naaijkens-N); 2)
relax the FF condition.

I Progress in stability results of superselection sectors is
based on FF models with commuting terms: next step:
treat more physically realistic interactions.


