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or
TN r:=TUR)NR*={LER"; 7,(0)=0}.
In this paper, we concern ourselves to the assignment:
Jl: {Bounded sets} 3 2——J1(Q) ¢ {Analytic sets}.

Since the strength of the differentiability assumption will not be the
issue, we suppose the boundary 32 to be of class C=.

Our goal is to initiate a new line of investigation by posing the
following problems:

Problem A. How is J1(2)?
Describe JI(2) in terms of the geometrical invariants of Q.

Problem B. Does JI(2) determine 2?
Is the assignment J1: 2——J1(2) one to one?

Or more strongly, we ask, “Does a suitable subset of 71(2) determine
27" Here, a ‘suitable subset of JI/(2)" would mean ‘some connected
components of JI(f2)’, ‘a set of first zero points of 7,(C)’ or ‘the intersec-
tion of JI(£2) and some fixed submanifold in €™, ete. and such definitions
might require certain restrictions on £.

Since JI(£2) is invariant under parallel displacements of £, the in-
jectivity of Jl should be considered in the sense of ‘up to parallel dis-
placements’. A positive answer to the Problem B would enable us to
translate the properties of 2 into those of J1(2) in principle. Thus,

Problem C. Relate 2 with J)(2).
What can you tell about £ when JI(£2) has some special properties?

Let us begin with typical examples.

Example (1.1) (Example (2.3.9)). Let 2 be a unit ball in R*. Then,
we have

T(0)= (271')"/2%5%71’

where t:=((i+-- -+ for {=(, -+, L) €C", and J,(t) denotes the
v-th Bessel function. Let j,. (m=1,2,--.) be the enumeration of the
positive zeros of J,;;(t). Then,
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JUR) :mf:il {C ecy k};C,f:ji,} (disjoint union).

So J1(2)x=T1(2) N R* consists of countably many concentric hyperspheres.

Example (1.2). Let 2 be a cubic domain {x € R"; ;| <1, (1<j<n)}.
Then, 7o(0)=112502% for (=(¢, .- C)eC. Hence JUQ)=

S

{C eCn Ck:'mn}

k=1 me Z\ (0}

n

A clear distinction in these two example: the null variety JI(Q); for
a ball consists of infinitely many compact components, whereas the one
for a cubic domain is connected and noncompact. The former case will
be generalized to strictly convex domains in Fuclidean space and hyper-
bolic space.

As for the Problem B on the injectivity of JI, we must pose a
certain condition (connectedness, etc...) on £2. In fact, we have the
following example:

Example (1.3). Fix two positive numbers A and B such that A>5B.

Set K :=[%] (Gaussian integer). For each integer j€[l, K], put

2042 g1 p b=20t2 4 B o.= 21 _ALB and d;i=— 2
27+1 274+1 27+1 27+1
—B. Then 0<d;<e;<b;<<a;, 1<j<K). Set @2;,:=(—a; —b,)U
(—¢; —d;)U(d;, ¢;) U (b, @) CR. Then 7,,(C) =§sin(Bc>cos(AC) cos( 2;‘51 )
and therefore JI(,)=---=Jl(Qx). A Cartesian product of such £’s yields
the domains in R™ having the same null variety.

a,-:’——-"

Thus we pose
Problem (B.1). Is the assignment
Jl:{connected bounded sets in R"}>2——Jl(Q) € {analytic sets in C"}

one to one up to parallel displacements?

When we restrict our interest on strictly convex domains, this
problem contains the following two problems:

Problem (B.2). Is the assignment
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J1: {strictly convex domains in R"} 3 2——JU(R)c {analytic sets in C"}

one to one up to parallel displacements?

Problem (B.3). Suppose the null variety J(2) for a bounded domain
be the (asymptotically) same with that of a strictly convex domain. Is
this domain 2 convex?

As for the Problem C, we know a typical example, so called Pompeiu
problem {or Schiffer conjecture) (see [20]).

Fact (1.4) (cf. [6]). The following three conditions on a bounded do-
main 2 with a connected smooth boundary in R" are equivalent:
a) There exists a nonzero function u € CHQ) and 2€ C such that

(1) Au=Au in §2; g_“_—.o and u=constant on 08.
n

b) There exists a nonzero continuous function fc C(R") such that
s flo-xz)dz =0,
Q

Sfor any element o of the Euclidean motion group.
c) JUR) contains an O(n, C) invariant set.

Clearly, these conditions are satisfied when 2 is a ball. But whether
the converse is true or not is still open even when £ is assumed to be
strictly convex in R%

If 2 is a centrally symmetric domain, %,({) is a real valued function
on R*. In this case, d2CR" and JI(2)xCR" are both codimension one.
This fact confirms us that JI(2), has enough data to determine 2 (ex.
Remark (2.3.25)). But unless 2 is centrally symmetric, J1(2); would have
more codimension and less information about 2. For instance:

Example (1.5). Let Q:={(x,y)€R* 0<y<min(l—w,1+x)} and

let  Q:={@,9)€R; 0<z<min(l—y,1+y)). Then  ¥4(¢,7)=
_2{5(c0s5~cosv)é@/——l)(vsinf—ésin77>} and J1(2) e =) e=TU — Q) n=
_772 ! R *

TU—2Ve={(mz, nz) ER* M, nE Z, m—n€2Z, and m+ +mn).

In fact, some characterization of central symmetry will be given in
terms of the codimension of JI(2)r in Corollary (2.3.11).
For a general domain, we will treat JI(2)NS instead of JI(Q)r=
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T2y NR*, where S:={(e,, «--,Lw,)ECHLEC, (o, -+, 0,) €5}, Note
that R*cSccC*, and S\[0} is an n+1-dimensional smooth manifold. Then
generalizing Example (1.1), we describe the asymptotic behaviour of
T2 NS in Theorem (2.3.6), as a partial answer to Problem A. Let us
state it briefly:

THEOREM (1.6) (see Theorem (2.3.6) for details). Suppose 2 be a strictly
convexr domain in R". Then there is a monnegative integer mo=m,(2)
such that

(2) TU2) nS:( 11 9.) II (compact set), (disjoint union),

m=mey

where each 1, is analytically diffeomorphic to S*'. More precisely, there
are analytic functions F, :S"*——C (m>m,) such that

Np={Fn(@)-0ceC"; 0e S}

and

(3) Fo(w) :%—k«/——ldg(w) +0m™),  as m—oo,

Here H, and d, are smooth functions defined on S*' which is
represented by the supporting functions and the curvature of 952 explic-
itly (Definition (2.1.14), (2.1.16)).

On the other hand, if £ is sufficiently near to a ball in a Sobolev
norm of the boundary 02 (£ needs not convex), the connected components
of J1(2)N S sufficiently near to the origin are analytically diffeomorphic
to S~ Now we propose the following conjecture:

CONJECTURE (1.7). Suppose 2 be a strictly convex domain in Euclidean
space. Then (2) in Theorem (1.6) can be replaced by

(2) TN NS= I_ZI1 N, (disjoint union),

where each Jl,. is analytically diffeomorphic to S,
Ag an application of Theorem (1.6), we obtain the following results.

CoRrOLLARY (1.8) (see Corollary (2.3.11)). We can characterize the geo-
metric properties (centrally symmetric, with constant breadth, or globular)
of a strictly convex domain Q in R" in terms of the asymptotics of JU(2).
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In particular, iof there are infinitely many eigenvalues for the overdeter-
mined Neumann problem (1), or more weakly, if J(Q)r contains infinitely
many approximating hyperspheres, 2 must be a ball.

A result similar to the last statement was first obtained by
Berenstein [1], when £ is a simply connected domain in R®. Compare
also Proposition (1.11).

The preceding Corollary (1.8) is in the line of Problem C. Moreover,
Theorem (1.6) itself almost characterize striet convexity. That is, the
converse of Theorem (1.6) is almost true:

ProPOSITION (1.9) (cf. Problem (B.3)). Let 2 be a multiply-connected
bounded domain with analytic boundaries. If JU(Q) has the expression
(2) and (3) with some continuous functions H, d on S*, then Q must be
convex.

The proof of this proposition and Proposition (1.11) below will ap-
pear in another paper. Let us remark that a null variety for a convex
polyhedron does not have even the property (2) in general (for instance,
see Example (1.2)). On the other hand, there is a bounded domain £
which is not convex but whose null variety JI(Q) satisfies (2).

Ezample (1.10). Let Q:={zx € R 7<|z|<1}. Then, ,(C)=(2c)"2*=
X{JMZ(t) __7'”/2Jn/2(/rt)}’ Where t-:(C%‘F M +C%¢)ll2 fOI‘ C:(Cly Tty Cn) c cr.
Hence, J1(Q) satisfies (2) in Theorem (1.6).

Applying Corollary (1.8) and Theorem (1.9) to a special case, we get,

PropPOSITION (1.11). Let 2 be a multiply-connected bounded domain
with Lipshitz boundary in R*. If the spectrum of (1) for 2 are asymp-
totically the same with that of B(R) (ball with radius R) then Q2=DB(R).

As another application of Theorem (1.6), we also give a positive
answer to Problem (B.2), when the dimension n=2. That is:

CorOLLARY (1.12). If two strictly convex domains in R® have the same
null variety, then these domains differ from each other by a parallel
translation.

Such injectivity of JI holds in some other cases: First, when re-
stricting to centrally symmetric convex domains in R", one sees easily
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that 71 is injective (Remark (2.3.25)). Secondly, the injectivity also holds
locally when one perturbs a ball. This idea is used in the last Chapter
of [171.

When the asymptotic data of JI(2)N S is given, Theorem (1.6) enables
us to deduce the injectivity problem (Problem (B.2)) from the positive
solution of the following problem in differential geometry:

Problem (1.13). Let two strictly eonvex domain have the same breadth
funections and the same ratio of the Gauss-Kronecker curvatures at each
point and its antipodal point as a funection of normal vectors. Then do
these domains differ from each other by a parallel translation?

This problem is equivalent to a uniqueness problem of a certain
single differential equation of the second order of the supporting func-
tion over S* ' modulo first eigenfunctions of Ag.-.. This is treated in
85 of Chapter 2 when n=2, but when n>3 it is yet unsolved.

Since Corollary (1.12) assures the injectivity of J!in R® case, we also
take an interest in its image. This seems hard, but more weakly we
can do this 4n an asymptotic semse, after giving reformulations of
Theorem (1.6) and Corollary (1.12) in terms of the coefficients Py g, Qo)
Ry -+ €C=(S*") of the asymptotic expansion of the Dirichlet series
made from JI(2). Then we obtain,

COROLLARY (1.14) (Proposition (2.3.19), Proposition (2.3.20)). The as-
signment:

Strictly convexr domain in R® -
{ up to parallel displacements} 3 Q——(Puyg), Bo) € C=(S', R?)

18 ome to one, and the image can be explicitly characterized.

On a Riemannian symmetric space X, the Fourier transform is also
defined with similar properties to those on a Euclidean space ([11]). So
the null variety J(2) is also defined for a bounded domain 2c X. In
Chapter 8 we will generalize Theorem (1.6) (Theorem (2.3.6)) to a hyperbolic
space SO,(n,1)/SO(n) case. To do this, we introduce H-convexr domain,
a notion different from geodesic convexity. Then the analogue of Gauss-
maps and supporting functions are introduced in a noncompact rank one
Riemannian symmetric space, both of which are defined in pairs accord-
ing to the order of the (little) Weyl group. After preparing basic prop-
erties of H-convex domains in §2 and §3, restricting ourselves to a
hyperbolic space, we get the following theorem by using the horospherieal
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method as in Eueclidean case.

THEOREM (1.15) (Theorem (3.6.4)). Suppose 2 be a strictly H-convex
domain in a hyperbolic space X=S80,(n,1)/SO(n). Then

37(.0):( I J1.) 11 (compact set) (disjoint union).
meEN

More precisely, the first approwimation of Jl, (m—>o0) is explicitly ex-
pressed tn terms of the curvatures and the supporting functions of 02.

In a hyperbolic space, the null variety JI(2) is not invariant in
general under an isometric transformation on X. So a hyperbolic space
version of Problem (B.2) is formulated by,

Problem (BA4). Let £,, and 2, be strictly H-convex domains with
JNR)=T1(2,). Then
1) If £, is not a ball, is 2,=0,7
2) If 2, is a ball, is 2,=¢-2, for some g SO,(n,1)?

Theorem (1.15) gives us a method to deal with the injectivity problem
of JI. In the final section of Chapter 3, we shall prepare more detailed
analysis of convex domains when the dimension n=2, and illustrate the
idea for the injectivity problem which was used in a Euclidean space.
In this special case, a uniqueness problem for a periodic solution of a
special type of the Duffing equation appears.

In this paper we will use the standard notation N, N,, Z, R, R, and
C. Here N is the set of non-negative integers and R. is the set of the
positive real numbers and N,=NNR,. For a smooth manifold M, we
denote by C(M), C,(M), C»+(M), C*(M) and &’'(M) the space of continuous
funetions, continuous functions with compaet support, funetions with %-th
derivatives satisfying Holder’s condition of order « locally, infinitely
differentiable functions and distributions with compaet support, defined
on M respectively. If M is a complex manifold (resp. a real analytic
manifold), we denote by O(M) (resp. A(M)) the space of holomorphic
(resp. real analytic) functions on M.

Parts of the results here were announced in [17]. The author ex-
presses his sincere gratitude to Professor Toshio Oshima for awaking
the author’s interest in this subject and for his constant encouragement.
Thanks are also due to Kaoru Ono and Takashi Kurose for helpful con-
versations.
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Chapter 2. Null variety for a convex domain (Euclidean case)

§1. Convex domain in R"

In this section, we shall review some standard facts about convex
domain in Euclidean space.

(2.1.1) Let 2 be a bounded domain whose boundary 9% is a connected
n—1 dimensional smooth submanifold of R".

We fix an inner product ( , ) in R”, and denote the unit sphere by
S*-1. Let the Gauss map be

(2.1.2) v=p,: 02— S,

defined by its outer normal vector field, and the Gauss-Kronecker curva-
ture be,

(2.1.3) K=K,: 92—R,

where we adopt the signature of K so that K is everywhere positive if
Q is a ball. Then the following characterization of (strict) convexity is
well known:

FACT (2.1.4) (Hadamard, Chern-Lashof). Let 2 satisfy (2.1.1). Then
the following three conditions on Q are equivalent:
1) The Gauss-Kronecker curvature K is positive valued.
9) The second fundamental form of the imbedding 9Q—R" 18 noN-
degenerate.
8) The Gauss map v gives o diffeomorphism from 02 onto St
Moreover one of (therefore all of) the conditions 1)~3) implies the
following three equivalent conditions:
4) Q is geodesically conver.
i for any x,y€Q and any t€[0,1], to+(1—-t)y€ L.
5) £ lies in one side with respect to any hyperplane tangent to 0.
6) K is nonnegative valued, and the mapping degree of v is 1.

DEFINITION (2.1.5). For a domain QCR" satisfying (2.1.1), 2 is called
strictly convex if and only if the equivalent conditions 1)~38) are satis-
fied. 9 is called convex if and only if the equivalent conditions 4)~®8)
are satisfied.

REMARK (2.1.6). In Chapter 3, the definition of convexity will be
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generalized reasonably in a rank one noncompact Riemannian symmetric
space, to two different ones, that is, horospherically convex (Definition
(3.2.18), Proposition (3.4.2)) and geodesically convex (Remark (3.2.14)).

DEFINITION (2.1.7). For a convex domain 2, the supporting SFunction
h=h,:S"*—R is given by,

(2.1.8) o) :=(w, v o))
(2.1.9) =sup(z, o), for we S".

e
Let h:R"——R be a linear extension of h, that is,

(2.1.10) filz) ;:mm(ﬁl_) for x € R™\[0},

Then the following lemma is well known, which states how a strictly
convex domain is recovered by its supporting function.

LEMMA (2.1.11) (cf. Corollary (3.4.12), Proposition (3.7.23)). Let 2 be
a strictly convexr domain and v, h and h be as defined in (2.1.2), (2.1.8)
and (2.1.10) respectively. Then for any element o of S*7,

(2.1.12) v“(w)=( Sf (“’)>i=1,...,n :

Or more directly, Q= 1{9(;61?"; (z, @) <h(w)}.

wg 8t

REMARK (2.1.13). The definition of % depends on the choice of the
origin 0. More precisely, the difference of i by parallel displacements
of £ is just linear functions on R".

The breadth function of a convex domain £ is given by,
(2.1.14) H=H,: §"'-——>R,, H(w):=h(w)+h(—w), for wc S

From the definition, H is a positive valued C= function which is invariant
under parallel displacements of 2, and clearly satisfies the following
equality:

(2.1.15) H(w)=H(~w), for any we S,

For a strictly convex domain £, we introduce a new funetion
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d=d,: S*'—R, as follows:

_ log Koy™(—w) —log Koy™{w)

(2.1.16) d(): 5170

, {(weS* .

Since @ is strictly convex, the Gauss-Kronecker curvature K and the
breadth function H are positive valued, so d is a well-defined C* func-
tion on S"!, which is also invariant under parallel displacements of .
The following formula is derived from the definition of d=d, and from
(2.1.15):

(2.1.17) d(w)+d(—w)=0, for any we S*

LEMMA (2.1.18). Let 2 be a strictly convex domain and d defined in
(2.1.16). Then the following two conditions on Q are equivalent:
1) d{w)=0, for any we S
2) Q is centrally symmetric with respect to an inner point.

Proor. 1)—2) Put QV:={xeR" —xc2}. The pullbacks of the
Gauss-Kronecker curvatures of 2 and 2V by the Gauss maps, namely,
K,ovp' and Kgvovgy coincide because of the assumption 1). Now, by
Alexandroff-Fenchel-Jessen’s theorem (uniqueness of Minkowski’s problem)
(cf. [6]), 2 and 2V differ each other only by a parallel displacement.
Therefore 2 is centrally symmetric with respect to the center of gravity.

The converse statement is clear, so the lemma is proved. Q.E.D.

§2. Asymptotic behavior of ¥,({)

We shall devote this section to the study of the asymptotic be-
haviour of 7, along some direction in C*. Using the classical Radon
transform, we reduce it to the problem of one variable. Next, we show
in Proposition (2.2.16) that any zero of a certain Fourier transform has
bounded imaginary part, generalizing the well-known fact: any zero of
the v-th Bessel function J,(t) (v>—1) is real. Finally we obtain in Prop-
osition (2.2.32) the asymptotic behaviour of 7,(w,{) with the imaginary
part of { bounded. The results in this section will play a basic role in
the proof of Theorem (2.3.6).

We denote the characteristic function of 2 by yo(x), where 2 is a
bounded measurable set in R*. Namely,
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1 if ze,
Xo() = {O otherwise.

The Fourier-Laplace transform of y, is given by,
2.21) 7o) =F1ale): =, alo)e
—_—5 ei(”1’1+”2’2+'"’Mn’n)dxldxz. . .dxm
2

for z=(z, ---,z,) € C".
Since 2 is bounded, 7,(2) € O(C*), where (O(C") denotes the totality
of entire functions on C”. Set

(2.2.2) JNQ) :={z€ C"; 7,(2)=0},
and,
(2.2.3) TNQ)r:=TNRQ)NR*={z € R*; To(2)=0}.

Then JI(R) (resp. Jl(R2)z) is an analytic set in C" (resp. R"). We call
JUR) the null variety for a given 0.

REMARK (2.24). JI(Q) and Jl(2)z are invariant under parallel dis-
placements of £, because 7,,.,(2) =¢“?%,(z), where 2+w,:={x+x,C R";
x € 2}, for any fixed element x, of R".

Next, we introduce a collection of special complex lines in C* with
‘real direction’. That is,

Lii=Co={{w=({w, {w,, -+, Lw,) €CLEC)

for each fixed element w=(w,, wy, « - -, ®,) € S** (CR").

We shall study the asymptotic behavior of %, along {,. Geometric
invariants of £ will be read from the asymptotics of the intersection
of JI(2) and [,.

Now, by a little abuse of language, we will use the same letter 7,
for its restriction to S*'xC, that is:

zQ: Su_lXC a (w’ C)Hzﬂ(wr C) EZn(Cwl; CwZ’ ty, Cwn) e C”-
From the definition, %, satisfies
(2.2.5) Folw, 2)=Ffo{—w, —2), for any we S*! and z€C.

Since yg(x) is real valued, %, also satisfies
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(2.2.6) Folw, E+19) =Fo(w, —&E+17), for any wc S** and &, 9€ER.

Here, z denotes the complex conjugation of z€C.

The classical method of decomposing a Fourier-Laplace transform
into a Radon transform and a Fourier transform of one variable gives
the following representation of #,(w,{):

h(o)

2.2.7) 2ol 0= Sto, pleidn={"" _ Stw, pleap.

—h(—w)

where S(o, p)=S,(o, p)::SRn 4o(2)3(p—(x, >)de is nothing but the

Euclidean area of sectional face of 2 by the hyperplane {x € R"; {x, @)=
p}. Here & denotes Dirac’s delta function of a single valuable.
The next lemma essentially goes back to F. John (see [15]).

LEMMA (2.2.8). Suppose 2 be strictly convex and retain notation as

above. Then, S=8,:5"'X R—R is a continuous function with compact
support V, and SplyeC=(V). Here, V:={(w,p)ES"'XR,0€ 8",
—h(—o)<p<h(w)}, and V denotes its closure.
More precisely, for a sufficiently small constant 0>0, there are two c»
funetions: S;:8**X(—4,0) 3 (0, p)——>S;(0, p) ER, (7=1,2), such that
S(w, p) is represented in the meighbourhood of 9V as follows (see Notation
(2.2.12)):

229 Slo,p)
_ (271.)("-1)12
n+1
n(*3%)
X (14-Si{o, p+h{—o))(p+h(—o)),  for |p+h(—w)|<d.

2(#7;:’1/2 (Kov™!()) A (p—h(w)) "

(Kow™(— )™ (p-+h(— @) 2"

X (1+8;(@, h(w)—p) (h{w) —p)), Jor |p—h(w)|<0.

Proor. The first statement is clear. We will first prove the smooth-
ness of S(w, p) as a function of » and (p—h(w))¥®. Since this is a local
statement, we fix a trivializing neighbourhood U (Cd%) of the tangent
bundle T(@02)——32. Fix an orthonormal frame on 92 (“—R"), which
gives the bundle isomorphism

UXR"™ = T(02)y (c>UXR—R").
] ) p
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In the above parenthesis, j is induced from 7T(02)— 92 x R* and p is the
projection to the second factor.
Define a C* map ¢:UXR*"'XR—R" by,

d(x; 9, 8) :=x+Dpojo(x, y)+s v{x), for (x.y,8)cUXR"IXR.

Here, we look upon an element z of U as in R* and v:8Q—— S R~
is the Gauss map (Definition (2.1.2)). From the definition, for each fixed
element « of U, ¢(x; , ): R"'XR—=R" gives a moving frame with z its
origin. Since 92 is locally represented by a graph, there is a C= func-
tion f:UX W——R with some open neighbourhood W (CR"™%) containing
the origin 0 such that the following conditions (2.2.10) are satisfied for
any (x,y)cUXW,

(w9, f(w, v) €092,

fo, =2 o=0 (1<j<n—1),
(2.2.10) 0y,

2
The eigenvalues of ( (o (=, 0)) are —r;(x) (1<gj<n—1).
09,09 R

Here x;(z) (1<j<m—1) are the principal curvatures of 92 at . Set f
be the composition map of
Ux(—ee) xS 23 (x;r, O)—>(x,70) cUX W,
and
UXW 3 (z, y)—>f (=, y) € R,

with a small fixed ¢>0. Then from (2.2.10), there is a C* function f:
defined on UX{—¢, &) XS % such that

S, 0)=—ri(x; 1, 0).

Since fi(x;0,0)>0, retaking U and ¢ if necessary, we may assume
Silx; r, 0)>0 for any (x,r,6) c UX (—e, ) X S* ™2
Then applying the implicit function theorem to the equation
r (fl(xa /r, 0))1/2:(1'!
we find a C* function R:U’X(—4d,0) X S"">——>(—e,¢) such that for any
(x, a,0) e U'X(—0,d) xS
R(x; a, 0) (fi(x; B(x; @, 0), 0))*=aq,
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and
R(x;0,0)=0,

with some open neighbourhood U7 U (C02R) and 6>>0. The above equal-
ities imply

Flx; R(x; a, 6), 0)=—a?,
and
Rix; a, 6) >0, if ¢>0.

On the other hand, the intersection of 2 and the hyperplane
{2€ R™; {2, ) =7} is represented by the polar coordinate as follows:

[Pl (0); 70, p—h(o)); 0<r< B} o); (h(w)—p)'™, 0), €5

The function S(w, p) is the Euclidean area of this set, which is obtained
by the integration over S*? of the radial part R('(w); (h(w)—p)'? 0)
and its derivatives with respect to 6. Therefore, S(w, p) is a C* function
of (o, (h{w)—p)"?) €v(U")X[0,4/8). This proves the smoothness of S(w, p)
ag a function of w and (p—h(w))"™

The first term of the asymptotic expansion of S(w,p) is obtained in
[15]. Let us review it. It is the volume of the ellipsoid with the radii
of curvature ((h(o)—p)/s o))" 1<i<n—1), namely, (@)D"
X I'((n+1)/2) " (Kov™w)) ™ (h(w) —p) "™

To complete the proof of the lemma, we only have to show that
any coefficient of the power (p—h(w))**** (£=0,1,2, ---) vanishes in the
expansion of S(w,p) at p=h(w). Since this claim is SO(n)-invariant, we
may assume that w=w,=(0, ---,0,1) € S*". Set f,: W—R by fily) :=
f(v—l(a)ﬂ)’ y) (ye W)’ f~0: (_5’ E) XS“—Z——')R by fo(’r’ 0) :=f~(v_1(w0)’ T, 6) =
folr-8), and R,:(—0,0) X S*——>(—¢, e} by Ri(t,0):=R( ' w),t,0). Let

Soly)~ Ezaay“, Ry(t, 0)~ f} b.(0)t™ be the Taylor expansions with coeffi-
la> m=1

cients a,, b.(6) € R respectively. Here a=(ay, -+ -, a,_,) (a; € N} is a multi-
index and the length of « is defined by |«|:= nfaj. Note that > a.y~
j=1 |a|=2

are non-degenerate quadratic form because of (2.2.10).
Set P.6):= > a,0% Formal substitution of the above Taylor ex-

lal=k

pansions into the identity y=Ffs(R(3'2 ), 8) gives,
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E

v~ Z, aaﬁ“( ’g‘,lbm(ﬁ)y"‘”ya]
=2 Pio) Zbare) .

Comparing the coefficients of the power y"? (N>2) of the both
side, we get,

N _{1 (N=2)
(2.2.11) 2, Pul0) (2 b,(60)b,(0) - - -, (0)) = {o (N>3)
Here the sum is taken over {(nl, Mgy =+, M) € NE3 ij”J:N}'

Now let us show

bi(—0)=(—1)*"b.(0)
by the induction on k.

First note that P,(

(k>1),

—0)=(—1)*P,(0) (k>1), from definition,
From (2.2.11) with N=2, we have

P,(0)b,(0)*=1.
Therefore, b,(#) =b,(—8).
Suppose b, {—8)=(—

1)%5,(6) for 1<k<N-—1.
with N replaced by N+1

2P,(0)b,(6)by(6)
=—P,(#) I:Z:—:bj(a)blv'+l—j(0)

(N>2). From (2.2.11)

— Z PO b 005,0) - -b.,6)-

Here the sum is taken over {(nl, N,

k
L ) €NE; YD n,-=N+1}. In par-
i=1
ticular, b; appears in the right hand side only when j<N—

j 1.
Replacing 8 by —#@ in the above identity and using the assumption
of the induction, we get
2P,(0)b:(0)by (— )
N+1
=_'Pz( )( )N+1 E b; 0)bN+1— ( )

i - % (~1*Pi0)
X (D=1 b, (0)- b, 6)

pr( o ”gb()bm (0)= £ Pu6) (S b.,(0):+b,,00)))
= (= 1)""2P,(0)b,(0)ba0).
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Hence by(—6)=(—1)¥""y(0) and the induction is now completed.

Since the volume {rf€ R" 4 0<r<<R,(t, 6),0cS"? is given by the
pairing of R,(t, -) and an SO(n—2)-invariant distribution F' on S*7%, we
have

S(w —t) :5 F(O)Ry(t, 0)d6

Sn—1

:?155 o FO B, 0) +Bolt, —0)de.

Here, we write the distribution F(0) as if it were a usual function for

convenience. Since the Taylor expansion of %(Ro(t, 0)+R,(t, —0)) is given

by ~ ibml(ﬁ)t””“, any coefficient of the power (p—h(w,))"** (k=
n=0

0,1,2, - --) vanishes in the expansion of S{w, p) at p=h(w).
Hence the proof of the lemma is completed. Q.E.D.

Paley-Wiener’s theorem asserts that the singularity of a function is
reflected by the growth of its Fourier transform. We shall go into
details of the asymptotic behaviour of the functions having special
singularities. To do this, it is convenient to list up some notations here
which will be used repeatedly throughout this section.

Notation (2.212). For x>0, we put

fxrif >0, . J0 if x>0,
“’i-—{o if £<0. ”""i-~{lx|ﬂ it z<0.
. [ETET if £>0,
(E“"’LO) “ 1,—{61:{;;'5[—#—1 if £<0.

(We will need this not in the case when & is near 0 but only when
|&| is very large.)
Let ¢ be a C~ function on R having the following three properties:

o(x)=¢(—x)  for any z€R,
(2.2.18) olx)=1 if xe[—d,d],
supp ¢ [ —24, 297.

Here 6 is a positive constant.

Let 2 be a real positive number. Let f(x) be a continuous function
on R with compact support contained in [0, A] and have the following
expression for some N ¢ N and for some ¢ satisfying (2.2.13) with 46<A4:
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R2)-(N)  fl)= % aatiple)+ 5 bie—A)pla—A4) +ole),

where a;, b;€C (a,#0), g(x) € C**¥YR), and suppgc[0, Al Note that
A, a; and b; are unique for a given funetion f(x) and not dependent on
the choice of ¢. Clearly, f(x)|g(0.4;€ CZ(R\]0, A]).

Finally, set

(2.2.15) p(2) :=Z’(2+1)exp<w>.

It is well known that all the zeros of the v-th Bessel function J,(t)
(v>~—1) are real. The following proposition is a generalization of this
fact (see Example (2.2.28), Example (2.2.29)). Recall that Ff stands for
the Fourier-Laplace transform of f (see (2.2.1)).

PROPOSITION (2.2.16). Let f be a continuous function on R having
an expression as in (2.2.14) with N=1. Then,

(2.2.17) sup {[Im (&) |; Ff(0) =0} <co.

PrOOF. From the assumption, f(r) has the expression as in (2.2.14).
That is,

Fl) = 2 a@i () + 3 bila—A)plo— 4) +olo)

Here gc C™*'(R). Set h(z):=f(A—=z). Then k has also the expression
(2.2.14), and Fh(C) =exp(ilA)Ff(—C). Therefore it is enough to prove

(2.2.18) sup{Im({); FF({) =0} <co,

instead of (2.2.17). Before proving (2.2.18), we shall prepare the follow-
ing three Lemmas (2.2.19), (2.2.22) and (2.2.24).

LEMMA (2.219). Let ¢ be a function satisfying (2.2.13). For any
2>0, and any integer k>2, there is a constant C>0 such that

(2.2.20) |F (#Lo(@)) (€) ~ AL K CIL| 77 exp(—dy),

Jor any {=£&+ip with »>0.
Note that if >1, the right hand side of (2.2.20) can be replaced by
Cigl
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PROOF. Set ¢(x):=xtp(x)—2%. Then ¢(x) is a smooth function on
R with its support contained in [d, o). Since k>3,

C:=sup (j‘i—)k ¢(z) l < co,

ZzER

If p=Im({)>0, using integral by parts, we get,
e Fol<[7|(~L-) ot | lexplica) d

SCS: exp(—nx)dx
—Cp™ exp(—d7).
On the other hand, the next formula holds ([9] vol. 1 p. 171) when
>0 and >0.

2.2.21) S‘” whe=EHndg =p() (€ +in)=".  (Notation (2.2.15))

o

Therefore
|G (#h () () —p R LD (L) | <CIC| ™" exp(—07).
Hence the lemma. Q.E.D,

LEMMA (2.2.22). Let ge C*"'(R) (k€ N,) whose support is contained
in [0, A] (0<<A<oo). Then,

(2:2.29) Fo@n<|(-L-Yo| 1,

for any {=E&+1in with »>0.
Note that if 9>1, the right hand side of (2.2.23) can be replaced by

(el e

This lemma is proved in the same way as in the last lemma, so we
omit the proof.

LEMMA (2.2.24). Let ¢ be a function as in (2.213). Fix any 2>0,
and any nonnegative integer N. Put L:=[A1+N+1€N. Then there is
a constant C>0 such that
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(2.2.25) Ef(wigo(sv))(ﬁ)—é (i”,) P(A+n)(—g) 1

ZCIEI {1 +97) "+ exp(497) + (L +7V)exp(—on)},

for any {=§&41ip with »>0.

Note that if n>1, the right hand side of (2.2.20) can be written
(possibly after changing the constant C>0) as C|{|~* exp(Ay), where A>0
is a constant larger than 40,

PROOF. Set h(w):=u%¢(x)exp(2y) — i (27;7')nx1+”go(x). Then hiz)=

i (Z—Wxij"go(x) € Ct~“(R), and supp h[0, 25].

a=N+1 q!
Let z€][0, 201,
oo 27? ﬂ+.N+1 R 1
h +n+N+
K dx) I »=0 (n+4+N+1)! (dx>{ '
d
L .
<2 sup{l(—«dw > go(x)J, TER, 0<k<L}
S I (] g 1) e
n=0 (’n,-|—N+1)|0sksL
Sclr]N-H 1_|_ Z_: _____(277“/.)'»>
<Cyp"* 1(1 +(x—)mexp 27790))
(2.2.26) <Cap™ 1+ 9")exp(29z).

Therefore, if 7=Im({)>0,

Fl p(a)) (6 +im) — >, ZTp(a+m) (=& +ig) i

n=

g

= |4 (@io(®)(—E—in) — é (2’7,)"10(2+n)(—5+i77)“‘“"“

= | F e pliexp(en) (¢ +in —F( £ B (—g +in)|

<|Fh(—¢-+in)| + go%ﬁ,)flff(xﬁ,*"—xi*"so(x))(—5+z’77)l.

From Lemma (2.2.19) and Lemma (2.2.22),
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<) () )| o 5 B el expl—on
SCzICl‘Lv“(v"“(l+7/m)exp(4577)+(1+77 Jexp(—a7)),
whence the lemma. Q.E.D.

Now, let us complete the proof of Proposition (2.2.16). It is sufficient
for (2.2.18) to show

(2.2.18) sup {(Im(¢); F () =0, Im(&)>0, and |{|>K} <o,

with some large constant K>0. (If the set in (2.2.18)" is empty, there
is nothing to prove!.) Now we will prove (2.2.18). From Lemma (2.2.19),
Lemma (2.2.24), and Lemma (2.2.22), there is a constant C>0 such that
the following three inequalities hold for any (=£&-+iy with >0, and
0<5<1,

Jasl | Flatpla)) @ —p(a+L o7 | <Cle o,

1b;] |9((w—A)i+igo(x—A))(C)—exp(iAC)(;;(,z “"22'—)(—5)“"’“

<Cfg|,

—2=j—2
+2mo(2+1+ 2) )

and

|FgQ) <O

Therefore,

|Ff (L) —aop (A} —exp(LAL)bp (4) (— &) ™7
<01 (2n(x— A)2) (€ )I-I-lbllff (w— A1 +29(x—AN) Q)]

+ ] |F (@) )]+ Z ;] |<F (25 (o () — 1)} Q)]
+j§0 16;1F (2 — A)H (o — A) —1—2p(x— A)) )| +1Fg(0)]
< |be2p exp(— An)p(A+1)(—8)~**| +|as] | p(2+1)C*|
+|by||exp(— A7) (p(A+1)(—&) ™2 +2pp(A+2) (—8) =) | +5C|E| 42

Since the coefficients such as npexp(—Ay) are bounded if 7>0, there is
a constant M >0 independent of » such that

2.2.27)  |FF(&) —ap(AL —exp(EAL)bip(2) (—§) 4 <ML,
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Set

~(astar)

g:=[A]—2+1 (>0).

and

Then multiplying the last inequality (2.2.27) by |{|**", we obtain

!frrf(C)C“l—anp() —exp(i AL)byp(2) ( C)

<M|E|,

for any {=&+1ip with »>1.
Suppose Ff(()=0, p=Im({)>1, and |[{|>K"*. Then we have,

la0+b exp(zAC( —) L<M|C

Transposing the first term to the other side, and then using the assump-
tion |{|=K"? we get,

_ _ Mg 1,
|bolexp(— Ap) > |a,| o) >2t ol

which implies (2.2.18)’. Proposition (2.2.16) is thus proved. Q.E.D.
Now we give the following typical examples of Proposition (2.2.6).
Erample (2.2.28). Let 1>—1 and

A=)t i e <1,
f(“’)-—{o it e >1

Then EFf(C)=«/?P(z+1)(%>_HJHW(C), and all the zeros of Ff() are

real.
This is derived from the following well-known fact: All the zeros of
the v-th Bessel function J,(() (v>—1) are real.

Example (2.2.29). Let 2>—1 and

.__feos*x if  |x|<z/2.
f(x)-—{o if |z|>z/2.
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Then Ff(Q)=rl"(3-41)2-*- lr( A+C+2 )‘1 F( A— g+2) ([G-R] 3.681) and

the set of the zeros of <f({) is given by {+x{eC;{—21—2€2N}.

In order to study the zeros of ¥,(w,{), we may assume |[Im({| is
bounded owing to Proposition (2.2.16).

LEMMA (2.2.30). Let f be a function satisfying (2.2.14) with N=1.
For any E>0, there is a constant M>0 such that

(2.281)  |FSf(C) —ap(2)(§ +i0) " —exp(1AL)byp(4) (—& +1i0) 47
<MC|A,

for any {=§&+iyp with |&|>1, and E>|y|.

PRrOOF. Put fi(z) :=f(x)exp(—2xF). Then f(x) has also the expres-
sion (2.2.14) with the same N and a,, and with b, replaced by b, exp(—2A4E). |
By (2.2.27), there is a constant M,>0 such that for any {=£&-+1iyp with |
1> K,

|FF2(0) — aop (A — exp(i AL)by exp( —2AB)p(2)(—T) 7 S MICI 2,
Suppose |£|>1 and 3E>7>E. Then we have,

1
]Ci_lEl_m[C[

|C7 71— (€ +40) 7 < MLlE| A< Mlg
and
(=)t — (=& +10) Y < ML|E| T2 < M| & 742,

with some positive constant A,>0.
Put M :=M,|p(A)|(la| +|bexp(—8AE))+M,.

|Ff1(C) — aop(R) (€ +40) " —exp(t A (L +21E))byp(2) (—& +10) 7|
<lawp()||E*— (€ +10)~*|

+ b, exp(—2AE)p(2)exp(— Ap) || (=) ~* ' — (=& +10) 77|

+|FF1(0) —awp(A)L ' —exp(iAL)b, exp(—2AE)p(2) (—C) |
< ((|@o| +1bolexp(—2AE )exp(— A7) |p(2)| M, + M) |§] 7142
< M|&|t-2 for any {=¢&-+1in with |£|>1, and 3E>7>E.

Since Y7(L)=%f,((+2¢E), the above inequality implies (2.2.30). Thus




412 Toshiyuki KOBAYASHI

we have proved this lemma. Q.E.D.

In §1, we defined a function d=d,:S*'—R by,

(2116) d(a)) = log Ko,,—l(__zg(;)log Kov—l(w)’ (Cl)e Sn—-l)-

Using this function we state the asymptotic behaviour of F0(&) in the
following proposition.

PROPOSITION (2.2.32). Suppose 2 be strictly convex and with notation
as above. Then,
1) Folo, &) € AS"XC), and Fo(w, &) is an entire function of {cC for
each fized o S*L.
2) Tolo, &+in)=Folo, —&+in) =Fo(—w, —E—ip)=To(—w,E—1y), for any
weS ! and any & ncR.
3) sup{|Im{|; Fo(w, £)=0, we S* 1} <co.
4) When |p|<C (C is any constant), ¥, has the following asymptotics:

(2.2.33) Xolo, &+in)
~(27L’) (n—l)/?eni(n-H)/l}(Kou—l(w))—llzeih(m)(5+i7;)
X(eH(tD)(ﬂ—li(w)—is)+e—zi(n+1)/2)Igl—(n-(—l)lz+O(|§I—(n+3)/2) as $—>+OO,
~(2n.)(n—l)/Zefmm'('n+1)/4(K'oD—l(w))—1/2eih(m)(5+iw
><(eH(a))(yy—d[m)—if)+e—1n'(n+1)/2)IE]-—(M,+1)/2+O(]§]—(n+3)[2) as 5_)_00_

Proor. 1) follows from the compactness of 2 and 2) is a restate-
ment of (2.2.5) and (2.2.6). 3) is obtained by applying Proposition (2.2.16)
to the formula (2.2.7) on the basis of Lemma (2.2.8).

For 4), we need only to prove the case when §—— +co, because 2)
implies that

Lo(w, £+1) (a8 é—>—co)=7,(0, & +1y) (as &'—>-+oo), where §:=—¢.

By a partition of unity and from Lemma (2.2.8), S(w, p+h{—w)) has

the expression (2.2.14) for any NcEN with ,1:%“1, = (27) 1A%

n+1\"* op=1{ — 1)) —1/2 _ etz WL\ ou=1( — )\ -12 _
P(T) (Kov=!(—w))-%, Bby=(27) r<_2 ) (Koy™(—a))-, and A=

h(®)+h(—w)=H(o) (Notation (2.1.14)). Applying Lemma (2.2.30) to (2.2.7),
we get the asymptotics as £—— +oo with |p|<C:
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+oo

zﬂ(w, E +'i7]) :K S(w, p)eiplf-!-i}])dp

—co

_ (2m) @b I (’n-l-l)((Kop_l(_w))—1/zezi(n+1)/46h(—m)(p»is)
2
+ (KOD—I(w))-ljze—ﬁi(h+l)[4eh(m)(—7;+i§)) X IE[—(n—H)ﬁ +O(l§|—(n+3)12)
— (27&') (n—l)/Z(KoD—J(w)) ~1f2gmitn+1)j4gh0) (—p+if)
X ((Koy‘l(w))llz(Koy*I( —_ w))—1I2e(h(w)+h(—w))(77*i$) +e—ni(n+1)/2>
X lEl—(n+1)/2+0(l&l-(n-f-a)/z).

In terms of the definition of H(w) and d(w) ((2.1.14) and (2.1.16)), this is
equivalent to,

:(2ﬂ>(n—-1)/2(K°u—l(w))—lizezi(n+1)14eh(m)(—y;+1'§)
X (eH(a))(p-—d(m)—ig)+e~m’(n+l)/2)X 15,—-('n+1)j2+0(|$l~(n+3)/2)'

Hence the proof of the proposition is completed. Q.E.D.

REMARK (2.2.34). It is not new thing to consider the Fourier trans-
form of a characteristic function of a domain or to obtain its asymptotic
behaviour. F. John [1937] got the asymptotic behaviour along a direction
of R* when £ is centrally symmetric strictly convex body in the study
of a certain homogeneous integral equation. Vinberg [1967] utilize 7,({)
when 2 is a convex cone in the study of complex homogeneous domains.
(In this case, the domain of convergence of %,(z) in iR” is the dual cone
of ). Berenstein [1980] used the asymptotic behaviour of #,({) when 2
is a domain in R? in the study of a certain free boundary problem
related to Pompeiu problem. His method of obtaining the asymptotics
is to reduce it to the line integral on 82 by using Green’s formula and
the direction of variables of tending to oo is rather different from our
l,, although there is no essential difference from ours. Our method is
originated in [15].

REMARK (2.2.35). The assumption of strict convexity is not important
in getting asymptotics of ¥,(w,&). This assumption is essentially used
when we state how JI(2) is. Even if 2 is not necessarily convex, we
can easily obtain the asymptotics along the direction of [, (we S*),
where o satisfies,

(2.2.36) K(q)+#0 for Yq¢c a2 such that v(¢) =+w.
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§3. Statement of results

In this section, we shall state our main theorem and corollaries in
R" case. Suppose 2 be strictly convex. Then, JI(2) are distributed along

S*'x C* (notation as below) in an asymptotically regular fashion with
Zy

bounded imaginary part. This description is stated in Theorem (2.3.6),
from which we can read some geometric properties of 2 from those of
the null variety JI(2) (Corollary (2.3.10)). Corollary (2.3.11) asserts that
the assignment 2+——JI(2) is one to one up to parallel displacements
when we assume that £ is strictly convex and that the dimension »n=2.
This gives a partial answer of our Problem B. These results are also
reformulated in terms of Dirichlet series made from JI(Q). These re-
formulations and some characterization of the injective image of the
above assignment 2+——Jl(2) are stated in Proposition (2.8.15), Proposi-
tion (2.3.19), and Proposition (2.3.20).

Theorem (2.3.6) will be proved in §4; Corollary (2.3.10) and Corollary
(2.3.11) will be in §5; Proposition (2.3.15) together with Proposition
(2.3.19) and Proposition (2.3.20) will be in §6.

Let 2 be a strictly convex domain in R" (Definition (2.1.5)). Let us
recall notations in §1.

v=y, ;02— S, the Gauss map ((2.1.2)).
K=K,: 02— R, the Gauss-Kronecker curvature ((2.1.3)).
H=H,. S"'—R,, the breadth function ((2.1.14)).

d=d,: S5 0> d(w) =18 K °”'1(‘21“§(;)1°g Kov(o) ¢ g ((2.1.16)).

Note that all these maps are invariant under parallel displacements of
0.
We defined in §2 the null variety ((2.2.2) and (2.2.3)):

(2.3.1) TR ={LeC™ 7(0)=0}, and JU(RQ)z=TUL) N R".

Now we introduce a new function which will be useful in the de-
seription of the asymptoties of J1(Q).

(282) f: SRS (0, m)—> flo, m)=fale) :="E0F2=L) i g ec.
2H (@)

Let n+41 dimensional real analytic manifold S::S”“12<C>< be the
2
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image of the following map I7.
(2.3.3) M =cor: S X C 21X C* =8 X C* |~ C™.
Zy

Here two elements (w,{) and (o, (') of S"'XC* are equivalent if and

only if

(2'3'4) (w,, Cl) :’(a), C) or (_0), _Q)'

We denote by S:=S"'XC*=8""'xC*/~ the corresponding quotient
Z

2
space of S*'xC*, and by = the corresponding quotient map. ¢ is defined
by,

(2.3.5) t{{w, {)mod~) : =Cw=({w,, s, - -+, Lw,) €CT,

for {€C and w=(w, ---,w,) €S*'. Via the injection ¢, we will regard
S=8" 1><Cx as a subset of C.

Then the following theorem is our main theorem in this chapter
which describes the asymptotic behaviour of JI(2)NS.

THEOREM (2.3.6). Let S=S8"" 1><C>< be an n+1-dimensional manifold

defined as above. Let 2 be a stmctly convex domain in R*. Then there
18 an wnteger my=m,(2) dependent only on 2 such that

JQ) ﬂS=< ﬁ Jl. ) 1T (compaet set), (disjoint union),

where for each integer m>m,, Jl,. is a regular submanifold in S (cC™),
and s analytically diffeomorphic to S,

More precisely, for each integer m>m,, there exists an analytic map
F,:8**——C such that the correspondence

IIe(idXF,): S" 30— F,(0)-0cC",

gives an analytic isomorphism from S** onto Jl,(CC". Moreover,
{F.; m>m,} satisfies the following two conditions (Notation (2.3.2)): For
any element w of S* 7%,

(2.3.7) Fo(0)=fn(@)+0m™)  as N3m—soo,

and,

(2.3.8) P (0)=F,(—w), (we S,
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In (2.3.7), the estimate is uniform with respect to we S

Evample (23.9). When © is a unit ball, 7,(2) = (27)"2 228 yhere

N
(i=(f 4284 +20)" for 2=(2,2, - -,2,)€C" and J,({) denotes the
v-th Bessel funetion. When v>—1, J—C@ is an entire function of {€C,
whose zeros are all real. Let j{v,m) (m€N,) be the enumeration of
positive zeros (increasing order). Set

3 e 2
&mmzz{z:(zl: zZy ety zn) e Cn; Z?+Z2+ e +z;:.7(_2"‘9 m) }g
for me N,. Then we have,
UL = 1L M.

On the other hand, the following asymptotic behavior of j(v, m) is well
known:

i, m):.’f_(‘l_mizi?l_)-}_O(m-l), as m— oo,

4

z(dm+n—1)
4
(2.3.6)) is precisely the m-th connected component of JI(2)NS.

In this case, flo, m)= , and d(w)=0, so J1, (in Theorem

By using the description of the asymptotics of JI(£2) in Theorem
(2.3.6), the question “Does JI(£2) determine 2?” turns out to be “yes”,
when we require that 2 be strictly convex in R

COROLLARY (2.3.10). If two strictly convex domains in R® have the
same null variety, then these domains differ from each other by a parallel
translation.

Next corollary relates the asymptotics of J1(2)NS with some geo-
metric properties of £.

COROLLARY (2.3.11). The following three conditions a)~c) (in 1), 2),
and 3), respectively) on a strictly convexr domain Q in R® are equivalent.

1) a) 2 is centrally symmetric with respect to an inner point.
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b) JUR)r (Definition (2.2.8)) contains countably many hypersurfaces
wm R™ as connected components.

e) JU)r is a disjoint union of countably many closed hypersurfaces
without boundaries in R and a compact set.

2) a) 2 s a ball.
b) Jl(Qr contains countably many hyperspheres in R" as connected
components.
c) JUQ)r consists of countably many concentric hyperspheres whose
common center is the origin.

3) a) 022 is a hypersurface with constant breadth.
b) pr(Jl)NS) (CR") contains a sequence of hypersurfaces which
approximates hyperspheres asymptotically.
¢) pr(Jl2)NS) (CR") consists of hypersurfaces which approximates
hyperspheres asymptotically.

Here the projection pr:S=8*""'XC*——R is defined by,
Zy

pr: S3(w, &+ip) mod Z;—> (Ewy, Ews, - -+, Ew,) € R?,

and precisely speaking, ‘asymptotically’ in 8)b) (it is the same with c))
8 in the following sense:

There exist hypersurfaces X,CpriJl(2)NS) (j€N), increasing sequence
RO R;} oo, and a constant C>0 such that

dist(X;, S(R;))<CR;j*,  for any jEN.

Here, a positive constant 0<e<1 4s chosen arbitrary, giwing the same
condition in b) or ¢) of 3). And we define

(2.3.12) dist(X;, S(R;)) :=max min |[x—y|+ max min [x—y|,
z€X; yES(R) yES(R) z€X;
and, S(R,) :={x € R" |z|=R;}.

Now, Corollary (2.3.10) is a kind of a uniqueness theorem. How
about ‘an existence theorem’? To our regret, it seems hard to determine
the necessary and sufficient eonditions for an analytic set in C* to coin-
cide with a null set of ¥, for some convex domain £, except when n=1.
But in much weaker sense, namely, about the conditions of the asymp-
totics of JI(£2), we can give a kind of existence theorem at least when
n=2. To do this, it is convenient to give a reformulation of Theorem
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(2.3.6) in terms of Dirichlet series made from J}(Q).
Let us recall [,:=C-w0={Co=({w,, @, - -, {w,) €C™ LEC), for each
element w=(w,, ---, w,) €S*™* (see §2).

when there are three functions P, @, B: S"'——R, such that the following
conditions hold: For each w¢ S*!, the intersection [, and 9! consists of
countably many points. Let p(w, k) (k€ N) be the enumeration of them.
(Our definition does not depend on this enumeration.) Then for each

|
|
DEFINITION (2.3.13). A subset M in C* is called annual ring-like ‘

o € 8", Dirichlet series i e~k ig absolutely convergent for any ¢>0
k=0

and,

vl 1
lim e—p(co,k)t_
140 1 k=0 4zt

(P(o) +(Q(w) +iR(w))t) | =0.

Our concern is the asymptotics of .M and we are sometimes obliged
to neglect finite subset of M N!{,. But if M satisfies the above condi-
tions, the following formula holds for any N N.

lim| 3 e=r@pt —_ L1 (P(o) +(Q(w) —4N7 +iR(w))t) | =0.

tio | k=n 4rt

So it is natural to consider @:S*'——S'=~R/4rZ, instead of Q.

_Notation (2.3.14). We use the notation P, @, and R instead of
P, ), and R respectively, when we want to emphasize these functions
are invariants of an annual ring-like set M.

Then the following proposition is a reformulation of Theorem (2.3.6).

PrROPOSITION (2.3.15). Suppose 2 be strictly convexr domain in R™
Then the null variety JI(2) (CC") is annual ring-like (Definition (2.3.13)).
Moreover, with mnotation as above and as in (2.1.2), (2.1.8) and (2.1.14),
the following three formulae hold:

(2.3.16) Piioy(@) =2H, ().
(2.3.17) Qun(®)=B—n)r  mod 4z Z.
(2.3.18) R () = —log Kava (—@)

Kgovg'(w)
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And a uniqueness theorem (Corollary (2.3.10)) is reformulated as
follows:

PrOPOSITION (2.3.19). The assignment

{Stm'ctly convex domain in R

up to parallel displacements } 32+ (Puion Bno)) € C7(S, RY)

18 one to one.

Conversely, we are ready to state a kind of existence theorem, which
describes the precise image of the assignment in the above Proposition
(2.3.19).

PROPOSITION (2.3.20). (P, R) € C=(S",R?) belongs to the injective image
of the assignment in Proposition (2.3.19) if and only if the following
Sour conditions are satisfied:

For any 0c S'=R/2rZ,

(2.3.21) P(0)=P(0+7),
(2.3.29) P(6)+P"(0)>0,
(2.3.23) R(6)+R(0+7)=0.

= P(O)+P"(0) iggy_
(2.3.24) So Tiemmay 1=
Here P”(ﬂ)::%P(@).

REMARK (2.3.25). Things would go easy, if we assume in addition
2 is centrally symmetric. Say, a uniqueness theorem (cf. Corollary
(2.3.10) or Proposition (2.3.19)) holds for any dimension »€ N,. That is,

Strictly convex domains in R™
which is centrally symmetric; 3 Q—> (P, Raw) € C*(S*, R?)
with respect to the origin

18 one to one.

And our existence theorem is formulated as follows:
(P, R) € C=(8"*, R®) belongs to the above injective image if and only if
the following four conditions are satisfied:
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For any we S, Plw)=P(—w), det(D*P+P)(w)>0, R(w)=0, and for any
linear function v(w) on R*, Ssnilv(w)det(DzP—FP)(a))da):0.

Here, the Hessian D? and det=determinant of a tensor field of (0, 2)-
type are defined by the standard Riemannian metric on S**.

REMARK (2.3.26). When £ is centrally symmetric convex domain
(not necessarily strictly convex), J(2) is also annual ring-like and @,
(Notation (2.3.14); cf. Proposition (2.3.15)) turns out to be a (erude) meas-
ure of the degeneracy of the Hessian,

§ 4. Proof of the main theorem

In this section, 2 is strictly eonvex and retain notations in § 3.
Put a nonnegative constant D by,

D :=max {|d(w)|; e S}

Lemma (2.1.18) says that D=0 if and only if £ is centrally symmetric
with respect to some inner point. By Proposition (2.2.32), Theorem (2.3.6)
is deduced from the following

THEOREM (2.3.6). Let 2 be a strictly convex domain in R". There
18 an integer my=m,(2) dependent only on 2. Let W be an open subset
m S:=8"1XC* (CC" given by,
Zy

W::H({(w, Et+in) & 7ER, wc S, Ip|<D+1, [E]>F o m—%)})

Then we have

JANw= ﬁ I.. (disjoint union of conmected components),

m:mo

where for each imteger m>m,, Jl. is a regular submanifold in C»,
satisfying the conditions in Theorem (2.3.6).

Define an open set in C by,
(24.1) U:={{=E+1ineC, >0, |p|<D+1}
and set ¢,:S"'xU—C (=1, 2) as follows.
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(242) ¢1(w’ C) :__.__(277)(n—l)/zem'(n+1)/4(K0v—1(w))*llzeo‘h(m)g
X (eH(w)(—-d(w)-ig) _*_e—xi(nﬂ)m)c—(n«f—l)/z’ ((O e Snfl’ C e U)’

(2.4.3) $o(@, C) 1 =Fo(®, ) —Gi(0, ),  {we S, L)

Here, we choose a branch of "V go that it takes positive value on
the real positive axis.
It is clear from the definition that ¢; (7=1,2) are C* function on
S* % U and holomorphic as a function of {c U for each fixed e S*.
The following lemma is an immediate corollary of Proposition (2.2.32).

LEMMA (2.4.4). There exists a constant C=C(2)>0 such that for
any {=E-+inc U satisfying Rel{=£&>1 and for any wc S"7,

(2.4.5) |6s(o0, §)| K CJE|= 12,

Now we will prepare the following three lemmas, namely Lemma
(2.4.6), (2.4.7), and (2.4.12). Lemma (2.4.4) and Lemma (2.4.7) imply that,
roughly speaking, the null set of ¥,(w,{) is approximated by that of
& (w,L). Therefore the description of the null set of é(w,{) in Lemma
(2.4.6) gives the asymptotic behaviour of the null set of #,(w,{), which
is the contents of Lemma (2.4.12).

LEMMA (2.4.6). The null set of ¢,(w,&) is given by,
{0, ful@): 0e S me Zm>T= M esrixU,

Furthermore, {=f,(o) ( Jfor any m¢E Z, m>1—1—n> s a simple root of

1w, £)=0 for each fived element w of S*' (Notation (2.3.2)).

LEMMA (2.4.7). There are constants m,>0, r,>0, and C,; >0 such
that the following statements 1)~3) hold.
1) Let meN and z€C. If m>=m, and |2| <7, then

(2.4.8) |61(w, flo, m)+2)| >Cym~ D72 2],
2) Let meN and neR. If m>m, and |p|<D+1, then

oo s i)z o D)

38) Let §cR. If £¢>Reflow, m,), then

(2.4.9)
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(2.4.10) |&s(w, E‘I"L.(D-}—l))l_}_C‘S‘(”“)/Z,
and
(2.4.11) |6y (w, £ —3(D+1))| =>C&-m¥diz,

LEMMA (2.4.12). There is an integer m,=m,(2) and there exists a
map F,: S*'——C for each integer m>m, such that the following con-
ditions are satisfied.

Define an n+1-dimensional submanifold W, in C* by,

W, ::H({(w, E+in); £, 7ER, wE S, [p|<D+1, €] >f(w, m—-é-)})

(Recall II: S"'xC*——SCC" is the natural quotient map defined in
(2.8.3)). Then

(2.413) NN W,= f[ . (disjoint union of connected components).

Moreover for any m>m,,

(2.4.14) N=Ho(id X F,) (8" = ({0, Fulw)); @€ S 1),
and

(2.4.15) | F'n(@) —fulw)| <Com ™,

Jor some constant C, depending only on 9.

Now, let us prove these three lemmas. Then the proof of Theorem
(2.3.6)" will be completed except showing the analyticity of F,.

ProoF oF LEMMA (2.4.6). For we S ' and {=&+ipe U,
¢1(w, C):O — eH(‘")(‘d(‘”)“'Uz _e—ni[n+1)/2’ and C € U

On the other hand, for we S*™* and {=¢+ipe U,
eH(m)(—d(co)—i;) — _e—ni(n-H)}Z.
— H(w)(_d(w)uic)z_Ei(%irﬁw(zm_lm

=— m‘(Zm +"i"—;*1 X for some m¢ Z.
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()
— = 12 () +1 d(w), for some m¢e Z.
(2m+"_.2 1)
Finally, (= o) +1i d{w) e U.
(U={{=E+1peC; £>0, |p|<D+1} was defined in (2.4.1))

1-n
— m>—t4
Thus the lemma is proved. Q.E.D.

ProoF OF LEMMA (2.4.7). Each assumption in 1)~3) makes the
imaginary part of each second variable in ¢,(o, *), namely, Im(f(w, m)+z)=

d(w)+Im 2, Im(f(w,m+%>+i;y>=d(w)+p, and Im(e+i(D=1)=D=1,

bounded.

When we S** and |[Im¢| is bounded and Re( is sufficiently large,
[(2r) (v Difgritit DY Koy=Y@)) H2%* @t i3 bounded from 0 and oo, and
|G- tbi2 ~|e~=+0i2|  Therefore to prove this lemma, it is enough to
estimate

(2416) ((t) C |6H(m)( —d(a)— 1C)+e—m(n+1)/2i

for wec S*Y, {€C, when { takes special values according to each case
1)~3).

Recall that the breadth function of 2 (Definition (2.1.14)) H=
H,:S"*—R is a positive valued C= function on S"', so there are
positive constants H;=H;(2)>0 (7=1,2) such that for any wec S*7},

(2.4.17) H,< H(w)< H,.

Now, let us estimate A(w,*) under each assumption 1)~3) of this
lemma.

m(Z’m-}-n 1
1) In this case, {=f(w, m)+2z. So d(w)+ic_——H—(w)——+iz. There-

fore,

A(w,f(cu, m) +z) —_ ,ewni(2m+(n—1)/2)—i}l(m)z +e—-1:i(n+l){2,
=] g tH@rp ]|,
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Choosing a positive constant 7, (>>0) so small that roe'0<-%-, and put

T
ryi= 0

, then we get, ]—e‘“"“’)‘—kllzélzll’fl, for any z € C with |z|<n,

2

because of the following inequality (2.4.18).

(2.4.18) |1——e’|2%|x|,

for any ¢ C with |x| <7, which follows from

1|2 [l ~ 1~ —a|=|z] | 5, £ | >|al—[afe > Lo,
a2 ql 2

. ﬁi(2m+"”7+1)
2) In this case, C=f<w,m+§>+w- So d(“’)+7’c=—_ﬂ(_w)—_"’7‘

Therefore,

A((O,f((l), m_l__];)_l_,]:v): |e—ui(2m+(n+1)12)+H(w)a_l_e-—m'(n-H)/z
2

= e 41|
>1, for any n<€R.

3) In this ecase, {=£+4i(D+1). So d{w)+il=d(w)+iEF(D+1). There-
fore, for any w¢ S** and any £€ER,

A(w’ ei (D+ 1)) — |eH(m)(-—i$:E(D+1)—d(ﬂ))) +e—m‘(n+1)/2|
=|1 —gH@ D~ d(m))e—i.gzzcm)+mn+n,rz|
2 |1 _eH(m)(i(D+1)—d(m))‘
>|1—e=H@)|
>|1—e=1| (>0). (Notation (2,4.17))

From the above inequalities of A(w, *}, each estimate (2.4.8)~(2.4.11)
of ¢,(w, *) is proved. Q.E.D.

ProOF OF LEMMA (2.4.12). Set

(2.4.19) C, ;=%<%>_("+3)'2,

where constants C, C;, and H, are as in Lemma (2.4.4), Lemma (2.4.7),
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and (2.4.17) respectively.
For each fixed weS*' and m&N, we define two open sets in C as
follows:

Vilo, m) :={Le C; |{—flo, m)|<Cm~'}CC,
Vilo,m):={t=¢+ine ¢ gl <D+1,
Ref(w, m——%)<$<Ref<w, m—l—é—)}cC.

Choose a positive integer m, so large that the following two condi-
tions are satisfied for any we S*! and any integer m>m,:
(2.4.20) Vilw, m)C Vi, m),
(2.4.21) |6y(@, O)|>6,y(w, Q)|; for any {€aV;(w, m) (j=1,2).

This is possible because (2.4.20) and (2.4.21) are satisfied if

mzzmax{cz(p+ 1), CHyr™, my+1, —é—(HZn:"—I—l), %(2}1200;%414-1)},

where m, is the constant in Lemma (2.4.7).
In fact, suppose we choose m, as above. We will show (2.4.20) and

(2.4.21).
First, note that V,(w, m)C V,{w, m) if and only if

—1 . T
C,m < min {D+ 1, F(aT)-}

On the other hand, the assumption m>m,>max{C,(D+1)7", C,H,x™'}
implies

(2.4.22) szm‘lgmin{D—l— 12 }_<_min{D+1,f7(rw—)}.
2

So it follows Vi(w, m)C V,(w, m), for any o€ S* .

Next, the assumption m>m,>max {m;—l—l, ——;—(Hzﬂ'—l +1)} implies

Re f(w, mi—é—)———Re fl@, m,) +7{—’(‘6—07(2(m—-ml) +1)>Re flw, my),
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and

Re flw, m——= )= Zn(Zm——l) >1.
H(w) H,

So we can apply Lemma (2.4.4) and Lemma (2.4.7). Thus if {=&+ipc
Vo, m) (1=1,2),

—{(n+3)/2

0, Q1 <0592 O(Re f(w,m~L))

As for ¢(w, £), we treat it separately according to {€ Vi (w, m) or
LeaVyw, m).
When {=&+ipedV,{w, m),

|b1(w, ) >Cim~ w2 Com~t=C,Com~»t92,
From Definition (2.4.19) of C,

Tm )“(n+3))2

By (2.4.17) and m+”73>1 1>0,

( ﬂ_(zm_l_n;?, )—(n+3){2
>2
>2C o)

- 2C(Re f(w, m—é_»‘w”z.

Thus |¢i(w, {)|>|d:(w, )| for any we S** and any {€0V,(0w, m) where
m=ms.
When {=£&+ipcoV,(w, m), from 2) and 3) in Lemma (2.4.7),

l¢1 w, ‘ >C E—(n+1)/2

The assumption m>m,> 2(2H ,CC'z™'+1) implies,

SZRef(w 'm——__>__ <2m+ 27r(27;z{—1) 22( g )
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S0 Cls—(n+1)/2>C§-—(n+8)/z fOllOWS.

Hence |¢,(w, {)|>|¢{@,&)| for any weS* ' and any (€dV, o, m) with
M > My,

So we have proved our m, is large enough for (2.4.20) and (2.4.21).

Now, for each fixed w ¢ S*! and each fixed integer m>m., owing to
(2.4.20) and (2.4.21), we can apply Rouché’s theorem to ¢,(w, ) and ¢,(w, {)
in the domain Vi(®w,m) or Vy{w, m)\V,(w, m). Then ¥, {)=d (o, )+
$:(®,C) and ¢,(w, ) have the same number of null points in V,(w, m)
(resp. in V,(w, m)\V,(w, m)). So, it follows from Lemma (2.4.6) that
Folw, &) has just one zero point in V,(w, m) and it lies in fact in Vi(w, m).
Therefore F,,: S*'——C is well defined for each integer m>m, as a map

characterized by the following equivalent property {(2.4.23) or (2.4.24):
That is,

(2.4.23) F, ()€ Viw,m), and Fo(w, F.(w))=0, for weS* .

(2.4.24) F.(0) € Vyw, m), and ¥ole, F,(0)=0, for we S .
By (2.4.24), for each we S*,

{t=e+inec: nolw,0=0, 2Res(0,m— 1), l<D+1)
= U {L=¢+in€ Vifo, m); Zolo,8)=0}
m=my
= U {Fuo)l.
Thus, {F,;m>m,} satisfies the conditions (2.4.13) and (2.4.14) in our
lemma. While (2.4.15) is clear from (2.4.23), so Lemma (2.4.12) is proved.
QE.D.

Now, in order to complete our proof of Theorem (2.3.6), we only
have to prove F,:S"'——C (defined in Lemma (2.4.12)) is analytic if
méEN is large enough. By using the implicit funetion theorem, it is
enough to prove the following Lemma (2.4.25), since ¥,(w, {) is an analytic
function on S**XC and holomorphic with respect to { € C for each fixed
) e Sn—l.

LEMMA (2.4.25). There is a constant m,=m,(2)EN such that. if
{=E&+ipeC and wc S*! satisfies

(2426)  Fo0,0)=0  and E>Ref<w,mo—%> and  |y|<D+1,
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then —d@C—Zg(w, )0, where is a holomorphic derivative.

Proor. We can prove the following asymptotic behaviour in the
same way as in Proposition (2.2.32):

dC Fol®, ) =[+°° S(w, p)ipe™dp

(2.4.27)

00

_ (2m)or xI' (’n+1>(—ih(——a)) (Kop™t{(— ) ~H2gmitrHight=a)r=ie)
r(ﬁﬂ) 2
2
—{-’ih(w) (Koy—l(w))—1/ze—m'<n+1)(4eh(a,)(_,,+,-5)) G _("H)IZ—I-O(]EI_(”"‘)/Z)
= (2ﬂ)<n—1>12(K0y~1 w)) Hgrinm D Hgh@) (=g +ig)
X (h(_Cl))(Ko))—l(g)))l{z(KOy—l(_w))~1/26(h(w)+h(~w))(77—i5) _h(w)e—ni(n+1)/2)
X IEI-(nJrD’Z‘i‘O([Sl_("+3)/2)
= (2”)(n—l)lZ(Koy—l(w))—1!2eni(n71>/4eh(m)(_.,]..HE)

X (h(__w)eH(m)(zj~—d(w)—iE)_h(w)e—ni(n-i—l)ﬂ) X ISI-—('"+1)/2_{_O(|$I—(n+3)/2)

as &——+co and [p|<D+1.

We will soon choose a suitable constant m,(>m,) in the statement
of this lemma. Then, if (o, {)€ S* ' XC satisfies (2.4.26), Lemma (2.4.12)
says that there exist an integer m and a complex number z, both uniquely
determined with the following property:

(2.4.28) {=flw,m)+z, |z|<Cm™, and m>m,,

where m,€ N and C;>0 are the constants appeared in Lemma (2.4.12).
Set B: S*'XC—C by

B(w, ) :=(2n) (”—l)lz(KoD—l(w))—IIZewi(n—l)Meih(m)g
Xl — @)@ 00 _ ] )g s,

Then from the asymptotic behaviour (2.4.27) of

dC Folw, £), there is a

constant C>0 depending only on 2, such that for any &, PE R with £>1
and |9|<D+1,

d Folw, £) | =|Blw, 0)||g|~=+vr—(|g|-mtore,

(2.4.29) e
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ddc Tol®, )0 when (o,{) satisfies (2.2.26), or

more weakly it is represented as (2.4.28). By the above inequality (2.4.29),
it is reduced to show |B(w, )] is ‘sufficiently large’. Let us show it.
Now, under the condition (2.4.2%),

(2.4.30) | B, f(w, m)+2)|
= (27) "V Koy~ ) Mg @idta) | gikl@)2]
X | I — w)gh @ =der=if @m=is _ b () g mitriire|
= (271-) (n—l)lZ(Kov—l(w))—1/2e—h(a)d(w} lemw;zl
X | B — @)eH @ —is=miCnta=bi) _p () g-sitn iz

— (277:) (n—l)/2(KDv—1(w))—I/Ze—h(a))d(m) leih(m)zl lh( __w)e-—iH(a))z+ h((ﬂ) I.

We want to show

Choose an integer m,=m,(2) such that the following two inequal-
ities hold:
For any z € C which satisfies |z|<Cym;?,

(2.4.31) Hl—( max, |h(—w)|>HzlzleHzlzl 2%}11,
@€
and
(2.4.32) min Jet@s|>L,
wcg®t 2

Put a positive constant by

(2433)  G=Gy(2) :=_{‘f (27) % min {(Kov=(w))~*g~he@),

wesn—1
If |z|<Cyms*, we have

[h(—w)e™ @ 4 h(w)| > (h{w) +h(— o)) — |h(—o) (e —1)|
>H(w)— [h(—o) || (0)||z]eF@ =

2H1—< max, [h(—w)l)HzlzleHW'.
wes"

From this inequality and the definition of C,, we obtain
(2.4.34) | B(w, f(w, m)+2)[ >C;,

for any meN, z€C, and wc S** such that m>m,, |z|<Cim™
Substitution of this inequality (2.4.34) into (2.4.29) gives
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(2.4.35) dc Zg(w,f(w, ,m) +z) ‘ 2035—(n+1)/2_C‘fs—(n+3)/z=§—(n+3)/2(03§_C’v)’
7r<2m —f—ﬁ_—l)
where &:=Re(f{w, m)+2)= 2 +Re(z).
H(w)

Now, put . ::max{m2, e, —;—(1+H27r“1(2(j'(7§1+ D+ 1))}.
Then if m>m,, |2|<Cm™" and wc S*7,
n—l)

H{w)
7(2m—1)

>zl
>2( g

IRe(f(w, m)+2)| = ll —Rez ’

v

—Cm;?!

>+D+1—sz;1.

By (2.4.22),
2C

> .
=G,

Substitution of this inequality into the right side of (2.4.35) gives

d .

—‘(EXQ((U, C) Z‘S_MHHZ(Cas—C) >0,

where £:=Re{=Re(f(w, m)+2), under the condition (2.4.28). This in-
equality is what we wanted. Q.E.D.

The proof of Theorem (2.3.6) is thus completed.

§5. Proof of corollaries

Let £ be a strictly convex domain and with notations as in §3.
When the null variety JI(2) is given, we can tell the data d=d, and H=H,
of 2 (Definition (2.1.16) and (2.1.14)) from the asymptotics of J1(2)N

(S*%C”) by Theorem (2.3.6). Since d,(o)=8 K (=) —log KevH(w)
7 2H(w)

we can also tell —5°¥ (@) trom JUQ).
Koy ' (—a)
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Proor oF COROLLARY (2.3.10). We parametrize S' by ¢¢[0, 27) via
S'=R/2rZ.
The radius of curvature is given by

(2.5.1) P=pq: S 20— (Koy™(0))'ER,.

Then p is represented by the supporting function as follows (ef. Proposi-
tion (3.7.21)).

(2.5.2) o(8) =h(6) +h"(0).

Note that the right-hand side is invariant under parallel translation of
2, although £(6) is not so.
As we remarked at the starting of this section, when J1(2) is given,

two function A, B: SI—C‘:RJr are read from the asymptotic data of
JUYN (S xC*) such that
Zy

(2.5.3) Kov0+z) . p00) _ 4p),
Ko '(6)  pl0+7)

and,

(2.5.4) H(0)=h(0)+h(6+7)=B(@).

It is clear that A4 and B also satisfy
(2.5.5) A(6)>0, B(#)>0, for any #¢ S,

as well as obvious parity conditions.
Substitution of (2.5.2) into (2.5.3) gives

h(6)+h"(0)=A(6)(h(O@+x)+h"(0+7)).
By (2.5.4),
=A(0)(B(0) —h(6)+B"(0) —h"(6)).
Then we get the following linear ordinary differential equation of k()

on Sk

(2.5.6) 1 (0)+h(6) :%(3(0) +B"(9).

The right-hand side is well-defined C* function on S' because of (2.5.5).
Therefore h(6) is uniquely solved up to
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{1(6) € C=(S"); h"(6)+ h(6) =0} = R{cos §5-+- R(sin 6.

The right-hand side is just a restriction of linear functions of R? to S
By Lemma (2.1.11) and Remark (2.1.13), the injectivity up to parallel
displacements of the correspondence: 2+——JI(2) is now proved. Q.E.D.

PrOOF OF COROLLARY (2.8.11).
1) a)—c) Let £ be centrally symmetric. Then 2 can be moved to
QV:={zx € R"; —xc 2} by parallel displacement. By Remark (2.2.4),

(2.5.7) JUR) =TV,

Let F'2 and F2’' (meN) be the functions in Theorem (2.3.6) for 2 and
respectively, Then, for any wc S,

Fi(0)=F%' (o) ((25.7))
=F2{—w) (from definition of F¢)
=F2(0) (2.3.9)).

Therefore, F2: S"'——C is real valued. With notations in Theorem
2.36), JNQNW= II o, Fao); o S"}cR. So NN W=

=my

UL NW= I I{{o, Fu()); ®cS). This implies c).

¢)—b) is trivial.

b)—a) By Theorem (2.8.6), there exists a countably many subset NCN
such that F,=F3.: S"'—C is real valued on an open set (possibly
dependent on m) for any m & N. Since F, is analytie, such F, is real
valued on a whole set of S*~'. Recall that (2.3.8) and (2.3.2) say that

Fm(w)=”_(%%£);1>+id(w)+0(m—l) as m—oco.

Therefore it follows dy(w)=0 for any wc S~
Now Lemma (2.1.18) implies a), namely, 2 is centrally symmetric.

3) The equivalence is an immediate consequence of Theorem {2.3.6) and
of the following formula.

prell(w, Fy()) =£(é%z)_—iw+0(m“), as N3 m-——»co,

Here, the estimate is uniform with respect to we S*.
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2) a)—c) is clear from Example (2.3.9).

¢)—b) ig trivial.

b)—a) 2)-b) implies 1)-b) and 3)-b) which are equivalent to 1)-a) and
3)-a), then in turn, these two conditions imply 2)-a). Hence the proof
of Corollary (2.8.11) is completed. Q.ED.

§ 6. Dirichlet series for an annual ring-like set

In this section we shall give the proof of Proposition (2.3.15), (2.3.19)
and (2.3.20) in §3, which are reformulations of our main results and a
kind of the characterization on JI(2) in Dirichlet series.

Let 2 be a strictly convex domain in R®. The first statement of
Proposition (2.3.15) asserts that the null variety JI(2) in an annual ring-
like set (Definition (2.3.16)). This is deduced from the following simple

LEMMA (2.6.1). Let f:N,——C have the asymptotic behaviour
fn)=an+b+0(n"Y)  (n—oo)

with a>0 and be C. Then %exp(—f(n)t) converges absolutely if t>0
n=1

and has the following asymptotic behaviour

% exp(—fmt =12 —(L1+ i>+0(t logt), (£} 0).
n=1 at 2 a

PrOOF. From the assumption, there is a positive constant C>0 such
that

11—exp((an+b—F(n))| <%,

for any n€ N, and te R with || <1.
Therefore for 0<i<1,

o

3 exp(—f(m)) — 3 exp(—(an+b)t)

< X exp(—(an-+b)t)|exp((an+b—f(n))t)—1]|

<Ctexp(—bt) 3° Efp_(n*_“@

n=1

=Ct exp(—bt)(at—log(exp(at) —1))
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=Oltlogt).
On the other hand, we have
i exp(-—(am,-}—b)t):_ex_p('__‘bi)_.
= exp(at)—1
1 1,0
_— | = t).
at <2 + a >+O( )
This proves the lemma. Q.E.D.

Now let us complete the proof of Proposition {2.3.15). Let p(w, m)
(mEN,, € S*) be the enumeration of JI(2)N{, (Notation (2.3.13)).
Theorem (2.3.6) asserts that

-1 ri Tog Ke22(=0) \ | o
plw, m-+m,) ST (o) dmr+ (n—1)z+1< log K ovs (o) )-l- (m™)
as m—co, where m;=m,(w) € Z is some constant.
Therefore we have

Pm(m(w)=4n><3%ﬂi‘i=2ffg(w>,

i
Quio) iR f0) =4 3 = { (n =T}z i log Lae=0)))

- , mod 4rZ.
Kyovg'(w)

=(—n—1)z—1ilog

Thus the proof of Proposition (2.3.15) is completed.

Proposition (2.3.19) is an immediate consequence of Corollary (2.3.10)
and its proof (see §5). Now let us prove Proposition (2.3.20).

PROOF OF PROPOSITION (2.3.20). We use the notation in the proof
of Corollary (2.3.10).

First let P, R be the coefficients of the asymptotic behaviour of the
null variety J1(2). Then the parity condition (2.3.21) and (2.8.23) is
clear from (2.3.16) and (2.3.18). As we saw in the proof of Corollary
(2.8.10), the radius of curvature is given by

0(6)=h(6)+1"(0)
_1 P@)+P"(0)
2 1—|—exp(R(0))’
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from (2.5.2) and (2.5.6). (In the notation there A(f)=exp(—R(f)) and

B0)=1116)) Since p(8)>0 for any A€ S, and s (h(0)+h"(6))d0=0, the

2
condition (2.3.22) and (2.8.24) follows.
Conversely, let (P, R) ¢ C=(S!, R?) satisfy the four conditions (2.3.21)
~(2.3.24). Let h{(6)c C=(8") be a solution of the following differential
equation.

(2.6.2) h7(6) +1(0) =% mlm)—u’w) +P"(6)).

The condition (2.3.24) assures the existence of % and the condition
(2.3.22) assures the strict convexity of the domain £ defined from h(6)
by using (2.1.12).

We have from (2.3.21) and (2.3.23)
1

(26.3)  h(@-t7)+h(0+7) 1

1+%me+ﬂ(Pw+ﬂ+PW$Hm

2
1 expR(6) ,,
2 l4expR(9) (P(6)+P7(0)).

Therefore H@Q(b‘)+HQ(0)=~;—(P(0)+P”(6)), where H,(0)=h{0)+h(@+x) as
usual. Thus H,;(B):%P(G)%—acosﬂ-{—bsine with some a, be R. Then
Z—%P(G-{-TE)—CL cos@—bsinf. Using the parity condition (2.1.15)
and (2.3.21) again, we have a=b=0 and HQ(G):—;—P(G).

Hy(0+7)

From (2.6.2) and (2.6.3) we have
_hWO+a)+h(@+n) _ p0+7) _ &6
(B(0) h” (@) +h(6) 0(6) £@+7m)

This formula and Proposition (2.3.15) imply that (P, R) coincides with
(Paay Bawy) (notation in Proposition (2.3.19)). Thus the proof of the
proposition is completed.

exp
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Chapter 3. Null variety for a convex domain (hyperbolic case)

§1. Notation

In this section, we shall prepare some standard notations concerning
Riemannian globally symmetric space and Radon-Fourier transform on it
which will be utilized throughout this chapter.

Let G be a noncompact connected semisimple Lie group, g the Lie
algebra of G, and B the Killing form of g. Fix a Cartan involution &
of G. We also use the same letter # for its derivative. Let g=ft-p
be the decomposition of g into +1 and —1 eigenspaces for ¢ (Cartan
decomposition), then B is positive definite on p and negative definite on
f. Fix a maximal abelian subspace a in p. Let a, :=a@C, a* :=Homg(q, R),

and af :=Homg(a, C)=Hom¢(a;, C). For each aca*, the root space of «a
is given by,

glo; ) :={Xeg [H, X]=a(H)X, for all Hca}.

A finite set Y=23(g, a) :={a € a*; g(a; &) #{O}}\{0} is called the restricted
root system of g. Fix a positive system XY*=23*(g, a) of the root system
3. Then the positive Weyl chamber is given by,

at:={He¢a* a(H)>0 for any ac 2*}.

Set a maximal nilpotent subalgebra n:= % g(a;a) (Cg). We denote by
acy

N, A, and K the analytic subgroups having u, a, and f as its Lie algebras.
Set A:G—a be a projection corresponding to the Iwasawa decomposi-
tion G=NAK. That is, for each element g of G, the element A(g) of
a is a uniquely determined by the following property:

g€ Nexp A{9)K.

Here, exp:a—>A denote an exponential mapping.

Let M:=2Z(a) (resp. M’ :=Ng(a)), the centralizer (resp. normalizer)
of o in X. Then the quotient group W :=M'/M is identified with the
Weyl group associated with the root system X, and P:=MAN is the
Langlands decomposition of a minimal parabolic subgroup of G. It follows
from the Iwasawa decomposition that the inclusion K—-G induces a
isomorphism K/M=G/P, which is diffeomorphic to a sphere if dimpa=1.

Let p be the element of a* defined by,
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o(H) ::% trace(ad(H);),  for Hea*

Let m,:=dimgg(a, «) be the multiplicity of «, then ,0:-;—- 2, M E a*,
agd

Fix a G-invariant Riemannian metric ¢ on X :=G/K (which always
exists since K is compact) and denote the volume element by dx, Levi-
Civita connection by V. Then (X,V) is called a Riemannian symmetric
space. The Iwasawa decomposition assures that the mapping:

AXN(a,n)—anKeG/K=X

is a surjective analytic diffeomorphism. Let da, dn be the measures on
A, N induced from the Riemannian metric on X via the above isomor-
phism. Then da (resp. dn) gives a Haar measure on a unimodular group
A (resp. N) (ref. [14] Ch. 1. Cor. 5.3). Let 0:=e¢K € G/K, and we denote
by T,X the tangent space of X at o. Then 7,X is identified with p by
the Cartan decomposition g=f+p. When restricted to T,X=p, the
Riemannian metric tensor g is a scalar multiple of the Killing form B
on each irreducible component of X, while V is the unique G-invariant
connection (ref. [13] Ch. 4 Cor. 4.3). The dimension of a does not depend
on the choice of a maximally abelian subspace a in p and called the split
rank of G or the rank of Riemannian symmetric space X=G[K.

Throughout this chapter, Exp:7T,X—X (p€ X) denofes an ex-
ponential mapping at p in a manifold X with affine connection V, and
exp:g—G denotes an exponential mapping for a Lie algebra (including
the case g=R).

When the rank of X is one, we define an element a, of A by,

3.1.1) log(a,)|=1, and log(a,)€a*.

Here, || | denotes the norm on p=7,X induced from the Riemannian
metric g at o, and log: A——a is the inverse of the bijective map exp:
a—A. Set ai:=exp(tlog(a,))c A, for tc R. Then A-o={af-0;tcR} is
a geodesic in (X, g) parametrized by the arc-length £. Note that da=d¢
in terms of our notation in this rank one case.

Furthermore, in the rank one case, the Weyl group W=M'|M=Z,.

Notatiorn (3.1.2). Fix an element m_, of M’ so that it represents
the non-trivial element in W=2,, and let m,:=ec M’ (CG).
Let £(X) denote the space of infinitely many differentiable functions
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on X endowed with the Fréchet topology of uniform convergence of
functions and their derivatives on compact sets. The topological dual
of £(X) is £&(X), the space of Schwartz distributions on X with compact
support.

The following definition of Radon-Fourier transform was introduced
by S. Helgason ([11]).

DEFINITION (3.1.3). The (Radon-)Fourier transform on X F : £/(X)—
AlaE X K/M) is given by,

(8.14)  FFEEM)=F{ kM) :={F(z), exp{il+p, A(k™'z)>>
:LF(x)exp L+ p, Alk'z) yda,

for Fe &'(X), (€ a¥ and ke K. Note that K/Mx X 3 (kM, 2)—> Ak ) ca
is well-defined, because A((km)'gh)=A(kg) for any mec M and any
be K.

§2. Submanifolds in X

In this section, we treat some submanifolds in a rank one noncompact
Riemannian symmetric space, which will play an important role in get-
ting the asymptotics of JI(Q). Finally we give a definition of the Gauss
maps and the supporting functions of a strictly H-convexr domain in X.

Let X=G/K be a Riemannian symmetric space of rank one and
retain notations in § 1.

DEFINITION (3.2.1). A horosphere in X is an image of the map
Non——gmng;-o€ X, for two fixed elements ¢, g, in G. It is known
that this map is diffeomorphic into X with a closed image. Denote by
& the totality of horospheres in X. Let S(TX) be the unit tangent
sphere bundle of the Riemannian manifold (X, g), and L(X) be the totality
of oriented complete geodesies in X.

LEMMA (3.2.2). Let X=G/K be a noncompact Riemannian symmetric
space of rank one and let a, be the element of A defined in (3.1.1).
Then the mappings,

KIMxA>S kM, a)—>kaMN ¢ G/MN,
G/MN 5gMN+——>gN-0€ 5,
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d 1
G/Maglwl——>W

gas-0€ S(TX),
=0

i

and
G/MA 3> gMA——{gat-0c X; —oo<t<leo} € LX),

give the following bijections respectively.

(3.2.3) KIMXA=G/MN=5,
(8.2.4) G/M=S8(TX),
and,

(3.2.5) GIMA=L(X).

REMARK (3.2.6). Since the Riemannian manifold (X, g) is complete,
Exp is everywhere defined. Then the surjective mapping:

S(TX) 5 (p, V)—>{Exp,(tV) € X; —co<i< o} € L(X),
induces the following commutative diagrams:
(8.2.7) G/M—=S(TX)
G}MA@LJ(’X )
where G/M—G/MA is the natural quotient map.

ProorF oF LEMMA (3.2.2) AND REMARK (3.2.6). It is well known that
(3.2.3) holds without the assumption rank({G/K)=1 {[12] Proposition 1.1).

For (3.2.4), first we show the transitivity of G-action on S(TX). G
acts on X transitively and the isotropy subgroup K at oc X also acts
transitively on the projective space P'(p)=P'(T,X) because of the rank
one condition ([18] Ch. 5 Lemma 6.3). Since the element m_, of M’
reverses the one dimensional subspace a (Cp), G acts transitively on
S(p)=S(TX). Next, the stabilizer of G at (o0, log(a,)) € S(TX) is Zx({log(a,)})
=Zg(a)=M. Thus (3.2.4) is proved.

Now, let us prove (3.2.5). For Yep=T,X, expY-o=Exp,(Y) (ref.
[13] Ch. 4 Thm. 3.3), so at-o=Exp,(tlog(a,)) (t€ R) is a geodesic parame-
trized by the are-length #, which shows the well-definedness of the
mapping

GIMA > gMA——{gai-0€ X; —oo<t<{oo} € L(X).
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For gc @G,

gai-o=gexp(tlog(a,)) -0
=gExp.(tlogla))  (via p=TX)

=g- Expo( t{; (a5 o})

8=0

=Exp,,.o<t—(%~

(ga3-0)>,
8=0

showing the commutativity of the diagram (3.2.7) and hence the sur-
jectivity of G/MA——L(X). Injectivity is followed by the same consid-
eration as the proof of in (3.2.4). Thus we have proved Lemma (3.2.2).
Q.E.D.

LEMMA (3.2.8). Retain notations as in Lemma (3.2.2). For each
element g of G, theve are just two horospheres orthogonal to gMec G/ M=
S(TX) at g-oc X, that is, gm,N-0o (e==+1). (Recall m,c M’ is a repre-
sentative of the Weyl group W=M'|M=Z, See (3.1.2).)

Proor. Since G acts on 5 and S(TX) both transitively and since
the Riemannian metric g on X is G-invariant, we may assume g=e¢. We
may also assume that the Riemannian metric ¢ at o is a scalar multiple
of the Killing form B when restricted to p=T,X.

Suppose a horosphere kaN-o ((kM, a) € K/ MX A=5) go through the
origin o€ X. Then kaNKDK, which implies a=e¢ because of the unique-
ness of the Iwasawa decomposition. Suppose a=e, then kaN-0=kN-o
goes through o and the tangent space at 0 is {Y—0Y; Ye Ad(k)njcp=T,X.
The necessary and sufficient condition that this subspace is orthogonal
to Me G/M=8(TX) is,

(3.2.9) B(H,Y—-0Y)=0, for any Yec Ad(k)n and any Hea.

Since B(H, Y+0Y)=B(H+6H, Y)=0, the condition (3.2.9) is equivalent
to,

B(H, Y)=B(H,0Y)=0, for any Y¢ Ad{k)n and any Heqa.

Since the Killing form B is G-invariant and 4 commutes with an element
of K, this is also equivalent to,

B(H,Y)=B(H,0Y)=0, for any Yeu and any He Ad(k)a.
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That is, Ad(k)'fac{Hep; B(H, n+0n)=0}. The right hand side is nothing
but a, because g=m-+a+n-+60n gives an orthogonal decomposition for B
and because the Lie algebra m of M is contained in £. So k normalizes
a, namely k¢ M’. Thus we have shown that when a horosphere kaN-o

go through the origin o and is orthogonal to % ai-oe T, X at this
t=0

point, then kMe M’'/M and a=e. The converse is similar and easier.
Thus we have proved our lemma in the case when g=e. Q.E.D.

In the final of this section, we give a definition of the analogue of
the Gauss map ¢, (e==+1), a horospherical convex domain and its sup-
porting functicns h, (e==+1) in a rank one Riemannian symmetric space.
In the case of X=SL(2, R)/SO(2), this is the same with the one introduced
by [2] (¢.=G, G* in the notation there).

ASSUMPTION (3.2.10). Let £ be a bounded domain in a rank one
Riemannian symmetric space X whose boundary 82 is a connected n—1
dimensional regular submanifold of X.

DEFINITION (3.2.11). Suppose £ satisfies the assumption (3.2.10). Let
ve (022, TX,,,) be the outer unit normal vector field over 82. The map
¢, 00— G[P=K/M (¢==x1) is defined by the composition of the follow-
ing three maps:

92 39— (p, »(p)) € S(TX),
S(TX)=G|M, ((3.2.4))

and
(3.2.12) .. GIM>gM——>gm MANc GIMAN=K/|M.

We call this map ¢,:02——G/P=K/M (e=+1) the Gauss map for
the embedding 82— X.

Since #,: G/ M—G/MAN=K|M does not depend on the choice of the
representative m,€ M’ of the Weyl group W=M'/|M (Notation (3.1.2)),
¢, is well-defined.

In R", one of the characterizations of a strictly convex domain
(Fact (2.1.4)) is that the Gauss map is diffeomorphic. Generalizing the
notion of convexity by this property, we give the following definition.

DEFINITION (3.2.18). A domain £ in a noncompact Riemannian sym-
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metric space of rank one satisfying (8.2.10) is called strictly horospheri-
cally convex (strictly H-convex) when both ¢,:02——G/P=K/M (e=+1)
are surjective diffeomorphisms, and called horospherically convex (H-
convex) when 92 lies in one side with respect to any two horospheres
tangent to 942 (ref. Lemma (3.2.8)).

Some other characterizations of a striet H-convexity analogous to
Fact (2.1.4) in a Euclidean space will be given in §4.

REMARK (3.2.14). In a simply connected complete Riemannian mani-
fold with nonpositive sectional curvature (e.g. a noncompact Riemannian
symmetric space), there exists a unique geodesic which goes through two
given points. Therefore geodesical converity is defined just as in R”
(Fact (2.1.6) property (4)). But in a rank one noncompact Riemannian
symmetric space, geodesical convexity does not imply horospherical con-
vexity. This is because a horosphere is not totally geodesic.

Let {fi, ---.f._i} be an orthonormal frame on 382 near 2z (€9Q).
The following definition on the principal curvatures is traditional.

DErFINITION (3.2.15). Let £ satisfy (3.2.10) (Here the assumption of
boundedness of £ is used only for the orientation of 82). For x¢af,
the prineipal curvatures at x for the imbedding 82X are the eigen-
values 2;(®)=250,;(2) (1<sj<n—1) of the second fundamental form

(""gz(vfj(z)fk’ V(2))) 1<, kxno1e

This definition does not depend on the choice of the orthonormal
frame {fi, ---,f._1}. The analogue of the Gauss-Kronecker curvature in
a space form will be defined in §4 by some symmetric polynomials of
the principal curvature (Definition (3.4.1)).

In a Euclidean space, the supporting function (Definition (2.1.7)) plays
an important role in analyzing a convex domain. Let us introduce the
analogue of the supporting funetion of a strictly H-convex domain in a
rank one noncompact Riemannian symmetric space. Its geometrical
interpretation will be given in Lemma (3.5.2) in a hyperbolic space X=
SO,(n, 1)/SO(n) and the analogue of the Gauss-Kronecker curvature (some
symmetric polynomials of the principal curvatures) will be represented
by the differential equation of the supporting function in §7 when X=
S0,(2, 1)/S0(2).

DEFINITION (3.2.16). For a strictly H-convex domain £, the support




Null variety for a convexr domain 443

g function h,=h,,:G/P—R, (e==+1) is the composition of the follow-
ing five maps:

¢t GIP=00, (Definition (3.2.13)),
082 5 p—>(p, »(p)) € S(TX),
S(TX)=>G|M, (Lemma (3.2.2)),

(3.2.17) GIM>gM—> —A(m'¢™") €q, (Notation (3.1.2)),

and
adclog ap——>c & R. (Notation (3.1.1)).
The breadth fumection of a strictly H-convex domain £ is given by,
(3.2.18) H=H,:=h,—h_,: G/P=K/M—R.

Since the Iwasawa projection A:G=NAK—q satisfies
Amg)=A(g), for any me M and g€ G,

the mapping (3.2.17) is well-defined and does not depend on the choice of
m, € M’ (Notation (3.1.2)).

The following lemma asserts that the Gauss map (resp. the support-
ing function) is G-equivariant (resp. K-equivariant).

LEMMA (3.2.19). Let 2 satisfy (3.2.10). Given any g€ @G, let g-Q:=
lg-xe X;xe Q). Then,

(8.2.20) 9%0..(®) =¢g0.(g-®),  (@EQ).

In particular, if Q is strictly H-convex, then g-82 is also strictly H-convex.
Suppose 2 be strictly H-convex. Then for any element b of K,

(3.2.21) hy-14,.(gP)=h,,.(bgP), (gPc G/P).

ProOF. The first statement is derived from the commutativity of
the diagram below:

30—S(TX)=>G/M-=+G/P
9 g- | g9 g9
69——>S(TX)2>G/M—7;——>G/P.

On the other hand, the mapping (3.2.17) is factored by G/M—




S

444 Toshiyuki KoBAYASHI

K\G/M——a because the Iwasawa projection A:G=NAK——a is right
K-invariant as well as left M-invariant. Therefore the last statement
is shown in a similar way. Q.E.D.

|
REMARK (3.2.22). In Euclidean space, the Gauss map (Definition 1
(2.1.2)) is the outer unit normal vector field via the identification
T,(R")=R" for each element p¢& R", by using parallel translations. The ’
existence of this identification is essential in defining the Gauss map.
The Gauss map is also defined by the tangent hyperplane: First
note that the equivalence class by parallel translations of oriented hy-
perplanes in R is isomorphic te¢ S*', Then the Gauss map is the cor-
respondence to the equivalence class to which the oriented tangent space
T,(082) belongs (the orientation is given by which side of 7,32) 2 lies
in).
In the case of a noncompact rank one Riemannian symmetric space
G/K, our ¢, has also analogous geometric interpretations. First recall
that a Hadamard manifeld (i.e. simply connected nonpositively curved
manifold) X has a compactification X=XU28X whose boundary 06X is
called geometric boundary, defined by certain equivalence class of oriented
geodesics ([8]). In the case of X=G/K, let L{X)—9X be the above
quotient map. Here L(X) stands for the totality of oriented complete
geodesics (Definition (3.2.1)). Let G/MA—>G/MAN be the natural quo-
tient map, and G/MAN—-0X be defined by,

(3.2.23) gMAN+—— lim gal-o,

t—+oo

where the limit is taken in X. Then together with (3.2.7), we have the
following commutative diagram:

(8.2.24) GIM = S(TX)
G/iMA = L(X)
G%MAN—?’—r 6%7(.

<«

The mapping S(TX)—0X factored by L(X) induces the following surjec-
tive isomorphism:

(3.2.25) S(T,X) =X,

for each point pc X. As we saw it, this Euclidean version is essential
in defining the Gauss map. Thus our Gauss map ¢ :0Q——G/MAN is
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nothing but the correspondence to the outer unit normal vector field
over 92 by using the identification (3.2.25) at each point. ¢_, is similar
because ¢, :02—>G/MAN is lim Exp(etv(p)) €0X (CX) via 0X=G/MAN

t—+oo
((3.2.23)). This is one interpretation of ¢. Another is by using a
horosphere. Now let us explain it.

We call two horospheres are parallel when they have the same image
of the correspondence F——9X which is defined so that the following
diagram commutes:

GIMN —= &
J }
G/MAN = 3X.

Here, G/MN—>G|MAN is the natural quotient map, G/MN—FE is in
(3.2.3) and G/MAN—9X is in (3.2.24). We call the corresponding point
in 80X the infinite point of the horosphere. Then ¢.(p) (e==x1) are also
regarded as the limit points of the horospheres which are tangent to
T,02) (From Lemma (3.2.8), there are two such horospheres.).

In short, the Gauss map ¢,:02—3X is the composition of the
following map (3.2.26) and either (3.2.24) or (3.2.27), and ¢_, is similar.

(3.2.26) 02 3 p—(p, v(p)) € S(TX),

(3.2.24) GIM —= S(TX)
l } geodesics
GIMA = L(X)
! l geometric boundary
G/MAN — X
(8.227) G/M = S(TX)
l l tangent horosphere
GIMN — F
i J infinite point
G/MAN == 38X
REMARK (3.2.28). Let us define an involutive diffeomorphism of
0X=K/M by o: KIM>3kM—km_Mec K/M. On the other hand, the
Cartan involution 8 of ( induces an involutive diffeomorphism of G/K,
and we also denote it by ¢. Then the following diagrams commute
for e==+1.

hg_;

a0 Lo KM KIM R
0 lo and cl I id.
0Q) —— KIM KM —> R

02,¢ 80,¢
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The proof is derived from the definitions, by making use of the
formula A(0(m_.g))=A(g) (9€G).

§3. A space with constant negative curvature

Now we shall deal with the case G=S0,(n, 1), the identity component
of the matrix group: SO(n,1):={geGL(n+1,R);gl,.'g=1,,}, where
I, .=diag(1, ---,1, —1)e GL(n, R).

The correspondence 6:G 2 gr——tg '€ G gives a Cartan involution of
G and the corresponding maximal compaet subgroup is K=S0(n) naturally
imbedded in G=S0,(n,1). It is well known that X=G/K is a rank one
Riemannian symmetric space with constant sectional curvature (a simply
connected negatively curved space form, hyperbolic space).

The Lie algebra of G is given by,

g=30(n, )={Y € Mn, R); Y1, ,+I,,/Y=0}

Set a:=RHcCY, H:=E, ,.,+FE,....€q, where E;; (1<t,j<n+1) is the
matrix unit. Define an element « of a* by the equation a(H)=1. Then
the set of restricted root of g is given by X={+a«} with each multi-
plicity n—1. Choose a positive root system of g so that X" :={a}, then
the corresponding maximal nilpotent Lie algebra is given by,

=1
n= Z RNJ‘,
i=1

where N;:=FE, ;+FE,..;—F; .+ E; ...
Then we define a minimal parabolic subgroup P=MAN of G and so on
as we did in §1.

We identify a¥ with C by,

(3.3.1) af 3la«—LEC.

Via this identification, we look upon the Fourier transform & (Definition
(3.1.3)) as a map from &’(X) to ACXK/M).

Fix a positive number k¥ and fix the Riemannian metriec ¢ on X so
that X has constant sectional curvature =—%*. Then a,=exp(kH)¢c A.
(notation (3.1.1))

Let us recall here briefly some standard models of the negatively
curved space form X—=G/K.

For ="z, + -+, %y, Tnyy) € R*", define a bilinear form of R* by,
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®

(3.3.2) [, 2] :=— X2 (@)"+ (@asa)”.

3

1) (Quadric model)

X, ={w="(%y, *+ +, T, Tuys) € R**Y [2, 2]>0, 2., >0} /RY
:{xzt(xly R xnr xn-)-l) 6 Rn+1; [m! x]:]-! mn+1>0}
X, i ={x="(%,, - - -, ®p, Tna) € R**Y; [, ]=0, %,,,>0} /RX.

Here, R} acts on R""! diagonally and X is the geometric boundary of
X (Remark (3.2.22)).
2)  (Unit ball model)

Xo:={u="(ty, - -+, u,) ER™ ui+ -+ Fui<l},
with the Riemannian structure

g A duit o tdul

I S R

0X, ={u="(Uy, -+, %) ER"; ul+-- - +ui=1},
with the Riemannian structure

dsz=—;—z (i - - - +dud).

Note that on 6X,, Z}l u;du;=0.
3) (Upper half-space model)

Xy:={y="(yy, - -, ¥s) ER" ¥.>0},
with the Riemannian structure

dg=1 dyit+---+dy,
K K

0Xy :={y="(y, - - -, ¥») ER" Y=0}U{o0},
with the Riemannian structure

dszzi ayi+ - +dyh )
B (1+yi+- - +yi)’

The natural action of G=80,(n,1) on R"*!' preserves the bilinear
form [, ], so X; and 0X, are stable under this action. The G-action on
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X; and 0X; (7=2,3) is defined through the following isomorphisms
0;;: Xi—X,, (1<4,7<3) which are defined by,

@jj:idlfj, Qi;y‘o@jk:@ik
and,

(33.3) (U -+ o) ) =By, - -+, ) =k

= (X, X)),
[x: a';]1/2-|_xm-]-1( y ’ ”)

(3.3.4) (yly Tty yn) :@Sz(ul’ Tty u’n)
_ 1
it i (U —1)°

(zuli Tty 2,M’n—lt 1_ i u;l>'
i=1

Then,

(3.35)(a) (s, + -+, Un) =Dss(Ys, - - -, Yn)

_ 1 / g )
= 2 ,"',2 n—1r i »
Vit o\ B U]

(3.3.5)(b) (yls ety y'n) z@sl(xb ttty xn):$(xh ey Ty 1)’
xn+1_mn

(3.3.5) (c) (xly tt sr;n+1) :¢13(y1) Tty yn)

1 (2%, 2 Y Y—1, DY 1).
2'_1/,, j=1 i=1

Here z=(x,, - - -, %.,;) i3 normalized such that [z, z]=1.

Let 0,:=%0,---,0,1)€e X,CR"™, 0,:=%0,---,0)€ X,CR", o0,:=
“0,---,0,1)¢ X,CR" and v,:=*(0, ---,0,1,1) €0X,CR*™, v,:=*(0, ---,0,1)
€0X,CR", v:={o0}€0X,. Then @;(0;)=o0, @;(v;)=v; and the isotropy
subgroup of G at o0,€ X; (7=1,2,8) is K, and at v;€8X; (7=1,2,3) is
P=MAN.

In models 2) and 3), we have defined a G-invariant (resp. K-invariant)
Riemannian metric on X (resp. on 8X), which is conformal to the stand-
ard metric in R* in each model. Moreover it is easy to see that the
above isomorphism @,:X,~=X, and 0X,—8X, give isometries. The
following fact on geodesics and horospheres is classical.

FAcTt (3.3.6). In a model 2), any geodesic is the intersection of X,
and either a circle or a line (diameter) orthogonal to 82X, in R™, while
any horosphere is the intersection of X, and a hypersphere tangent to
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X, im R*. In a model 3), any geodesic is either a half-circle or a half-
line orthogonal to X, in R*, while any horosphere is either a hypersphere
tangent to 0X; in R* removed by the point of tangency or a hyperplane
parallel to 80X, in R

In a model 8), let us calculate the principal curvatures of 82 locally
represented as a graph. Recall that in a model 3), (v, ---,%.) is a
(global) coordinate on X,=X. Let 9 e X(X) (1<j<n), and g,;:=

7
o5 5o )€ C7(X) (L<0G<N). Let (g%)ictsen € O(X, GL(n, R)) be the

Il,; 7
inverse matrix of (g.)i<i ;<. € C*(X, GL(n, R)). The Christoffel symbols
are given by,

i 1 2 im agm agm 6g1> « .
ri.=1 <_~ 9w _ 090\ 1<q 1<),
n=g B oy, Y;  0Yn = )

Then simple calculation yields,

(8.3.7) Y A TR (1<, 9<n)
(3.3.8) 99 =Ky.)%0,, (1<1,5<n)
and
(8.3.9) I'i=
when i+#mn, =—y;! if (7,0)=(m,1) or (¢,n),
=0 otherwise,
when 1=mn, = —y;! if j=Il=mn,
=y,* if =l+#n,
=0 if j=#l1.

LEMMA (3.3.10). Retain notations as above. Let 2C X, satisfy (3.2.10).
Given  zcd (CX=X,CR"), let o' :=@®), -, Yo(x) ER (C
R U {0} =d8X;) be its orthogonal projection from R* to R*'. Let V be
an open neighbourhood in 80X, containing x. Suppose x o2 be a critical
POint of Yuag. Then 02 is represented locally as a graph:

{(2,fl2) ER™ 2=(2), -+, 2._,) €V},

where f: V—R is a C* function satisfying

(3.3.11) aaf @)=0, (1<j<n—1).

7
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Define a sign e=—1 or +1 according as Q lies where f(2)<z, or f(2) >z,
in the neighbourhood of x. Denote by

(3.3.12) B=Bz) (1<l<n—1),

2
the eigenvalues of the Hessia,n< of (a:’)) . Then the principal
aziazj 1<i,j<n~1

curvature of 92 at x is given by,
(3.3.13) Alw)=—ek(l+y.(x)Bi(x)), (I<I<n—1).

0

0y;
local extension of the outer unit normal vector field over 69 (TR,
where v; is a smooth function defined near . Then from the assumption
(3.3.11) and our definition of ¢, we have,

(3.3.14) v;(x) =ekd; Y. (%), (1<5<n).

Proor. By a little abuse of language, denote by v:= Eu

a

Define vector fields over X by,

6+6f 0

) (1 gjéln - 1) .
0y;  0Y; Y.

€; .=

Then each ¢; is a local extension of a tangent vector field of 82 (Z-R"),
and at x

(3.3.15)  lesll.=(gle;(x), e;(@))) =k yu(@))",  (A<j<n—1).

Now, from our definition of e,

PRGN AT PN
v, ay, Y 8% 0Y;  ou, 6’1/, y:

Using (3.3.11) and (3.3.9), we see,

2
(3.3.16) V=V 0 7f ()2
oy;lw I ay: 6ytay; 6’!]”

x

—<?17(07) 6%62/, 6%

Normalize ¢; by putting f;:= B "”. Then from (3.8.14), (3.3.15) and
J

(8.3.16), we get,
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(3.3.17) —9:(V s f5v) = —sk%(w(yaz;) + a;zy (“)>

(5. *f
= —¢k{ d;;+ Y. (%) 00, (m)).

The principal curvatures are the eigenvalues of the matrix of the left
side (Definition (3.2.15)), while the eigenvalues of the right side one are
—ek(1+y.(x)Bi(x)), (1<I<n—1). This completes the proof of the equa-
tion (3.3.13). Q.E.D.

LEMMA (3.3.18). With notations as above,

(3.3.19) O = k) 0L ), (< j<n—1).
0Y; 0Y:0Y;

PROOF. Differentiating v:= 3 y,—°
i=1

Y;

with respect to y;, we have,

- 0
g ( ayz aym + l;u ayl

61/,;

By substituting (3.3.11), (3.3.9), and (3.3.14), this equation evaluated at
x is

(3.3.20) Vo=V _2_ e

oy;lz

=E (G gg | et~ T e )
— E(ZZZ () asm , ek a; )

Substituting (3.3.14), (3.3.16), and (3.3.20) into
gz (Vaiva 6,‘) +gz(ur Vaiej) :ei(w) " g(”i ei)

ZO, (1£i'ngn_1)’
we obtain
Oy, s o f
0y x)—sk&,-,-)] o2+ ek, x( iy )H —_—0,
By.-( al (@) Yul2)  OYDy, oY

for 1<i, j<n—1. Since ||ej[[,=|'ai‘
Yn

=k~ (y,(x))* by (3.3.15), this is
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equivalent to

2
() = —ehy () =0T (x),  (1<d,j<n—1),
oY, ayiayj

proving the lemma. Q.E.D.

Making use of Lemma (3.3.10), we can easily calculate the principal
curvatures of a hypersphere and a horosphere.

Example (3.3.21). Let Q2=B(R) ::{ue R™; Xj) ui< 7""’}CX2 (unit ball

model) for 0<r<1. Then B(R) is a ball with radius E: _%log 1+r in

_r
the Riemannian manifold (X, ds*). In the neighbourhood of x:=
50, ---,0,7)cof2, 02 is represented as a graph:

a—1 n—1 32
Uy=1— =, u?+0<(2 u?) )
2ri=1 i=1

Then by transforming from X, to X, by @, 082 is represented near
t
Ly =0y (%) = (0, e, 0, 1+r)€Xa as a graph:

1-
n—1 2—1 372
yn=%—ﬂ 1 7,2 Uit ((Ezf) )
—7r i=1
With notation as in Lemma (3.3.10), B,(xs)z—%i, y,,(xﬁ:%”, and
7‘ —

hence the principal curvatures 2,(x )_—k/l i+: 12:2 tanl’f(kR)
(1<li<mn—1). So all the principal curvatures of a sphere with radius E
e ?aT}iC(IEE)—' We also find that the supporting function hge, =c¢R
E(1+er)2\1 _/2ek exp(ZekR))”‘1 .
fter L 5.2 ( :( Y after Defini-
after Lemma (3.5.2), K 5 ) oxp(2<hR) after Defini

tion (3.4.1), and that czgz(43)—1(10g<lc_"11_:4_ﬂ)2(r~1)>_10g (kn 1 _|_7.2(r 1))

(2r)
—km—=1) after Definition (3.5.12).

As for a horosphere, by taking a limit R—oo in the above formula
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or by applying Lemma (3.3.10) directly with B;(x)=0 (1<lI<n—1), we see
that all the principal curvatures of a horosphere are % everywhere. (If
we choose the opposite orientation of a horosphere, all the principal
curvatures would be —%.)

§4. Convex domain in X

We shall devote this section to some characterizations of (strict)
horospherical convexity, generalizing Fact (2.1.4) in Euclidean space. In
a hyperbolic space, geodesical convexity is weaker than horospherical
convexity, and either or sometimes both of them share the property
analogous to each one in Fact (2.1.4) with a suitable formulation. But
here we treat only the properties which enable us to use the same method
as in Euclidean space when obtaining the asymptotic behaviour of
%0(C, bM) in §5.

Throughout this seetion, X=S80,(n,1)/SO(n) has constant sectional
curvature —Fk%

DEFINITION (3.4.1). Let £ satisfy (3.2.10). Define K,=K,;,,: 02— R,
(e==+1), by K.(&)="TI (4;(z)+¢k), for © a2, where 4,(z)=2;.,(¢) are the
j=1

principal curvatures of 92. (Definition (8.2.15)). We sometimes call
K, (e==1) the Gauss curvature.

ProPOSITION (3.4.2). Let £ satisfy (3.2.10).
1) The following three conditions on 2 are equivalent:
a) £ s sirictly horospherical convex (strictly H-convex) (Definition
(8.2.18)). (te. ¢, (e==x1) give a diffeomorphism from 882 onto K/M).
a) ¢_:00——KIM s locally diffeomorphic.
b) K,=K,,:02—R, (e==*1) are positive valued.
2) Strict H-convexity implies H-convexity. (Definition (3.2.13)).
3) H-convexity implies

Ao @)=k, (1<i<n—1),  for any zcof.

The proof of this result rests on the following Lemma (3.4.4). Before
stating it, let us prepare some notations.
Put a positive valued smooth functions P: X——R by,

(3.4.3) —<k<1+ S il )>—“+1yn(ac)"”, for z€ X=X,
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(a upper half space model X,; notation in §3).

Induce a Riemannian metric on 82 from X and recall that we have
defined a K-invariant metric on dX=G/P=K/M in §3. So we can define
the Jacobian det(J¢,):02——R, of the Gauss map ¢,:02—G/P~=0X,
(e==1). Then the following Lemma (3.4.4) is due to [2] (when the dimen-
gsion n=2), which asserts that the Jacobian of the ‘Gauss map is a
multiple of the Gaussian curvature.

LEMMA (3.4.4). Suppose 2 satisfy Assumption (3.2.10), and retain
notations as above. Then,

(3.4.5) det(J¢,)(z)=e"""P(x)K,(x), for e=+1 and xcdf.

PROOF. ¢,:02——>G/P is a G-equivariant map and both X and G/P
have K-invariant Riemannian structures. Hence, shifting by an element
of K, we may assume that 02 satisfies the conditions in Lemma (3.3.10)
at x# and that gb_a(x):zliin Exp(—tev{q)) =cc in the upper half space

model X,=X,UdX,=~G/KUG/P. We will use the notations in Lemma
(3.3.10) and in its proof. Let v= f)uj aa
i=1

outer unit normal vector field of d2cC X, We want to find ¢,(¢)=
lim Exp(tev(q)) explicitly for an element ¢ in a small neighbourhood of

be a local extension of the

98 containing z. First recall that in a half-space model, a geodesic is
a half-circle in R* with its center on y,=0. (Fact (3.3.6)).

Let the equation of the hypersphere containing the half-cirele
{Exp(tev(q)); t € R} (CX;)CR" and orthogonal to R*~'x{0} be

|
-

n

Yi—a;)' +ya="",

il
A

7

where a,€ R, and r>0 are constants determined by g€0f2. Then we
have

(3.46) T wid—a) el =,
and
(8.4.7) 5 (4,(0) — a5)25(0) + (@) (9) =O.

f=1

.,

The limit points lim Exp(tev(q)) € R* can be written (y,(q)+ecwiq), «--,

t—too
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Ya_1(q) +cva_i(q), 0) with some constant c=c(q) € R. Let us find the constant
n 1/2
cla). Put pig):=( L la)) =ku.(a)

(C(q) gvﬁ(q) —Ya(Q)va(q) +-e¥a(q) lvl(Q)>

x(elg :i:»?<q>~yn<q>»< i@l ))
=<C(q) éf 7valg ) — (@) X
=(clar rta) —2elawalainia)) 5 z oo~ £ 4a)
=(el0 £ 0 —2e(@ualam(a —vi(a) ) £ 5l0)
From (3.4.7),
=(ola) S 8l0) +26(0) T (@) —agvi(a) —vila) "i‘»f()
=(E wia) +elamia —ar—(T wio—a)f +vi0)) 5
From (3.4.6),
=(r*—r%) T8l
=0.
Therefore
c@)=(E540) wala)4la) el @)
= (Iv[*(g) ~»3()) a(a) (n(a) el
={—vala)£elvl (@) "vn(a)
=(=vu(q) £eky.(a)) " ¥a(q)
Thus we obtain
lim Exp(tes(q)
— yn ) e yn(q)vn—l(q)
<y1 —v,(q isky,,( )’ Yuald) + —v.(q) Eeky.{q) ’0>

€ R X {0}CoX,.

Taking care of the signature, we get
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(3‘4 8 <y vl(q) L, yn— (q) _|_ yn(q)vn—l(q) , 0)
R +eky"( ) ' —,(q) +¢ky.(q)
€8X; (=R 'U{co}).
Put f;:= = 0 + af 9 (1<7<n—1), where 92 is rep-
H ll dy;  Oy; OY.

regented as a graph of f(y, -+, ¥._.). (Notations here are the same as
in the proof of Lemma (3.3.10)). Then for 1<j, I<n—1, e€{£1}, and
T €08,

, fil®) (the I-th component of ¢,)
o (2)

. ynul
%(z)f,(m)(y;+ —vn—i-elcy,,)

2
n—1
K1+ mz:ly;(w))
From (3.3.14) and Lemma (3.3.18),

o

“ 9y,

ynvl )
—v,+eky.

=2, @)1+ Ea@) (52 ehy )2 o)

2¢eky.(x) 0y 0,
=2y, (% <1+ "Zliyi, )—1(5;z+ ERTRE a;jz;“ (w)>-
Thus,
det(J¢,) ()
=(20@(1+ Evitw) )" det(a,+ Ly >a;j2’yl(w>)1sm_l

:(yn(m)(1+ mz;)ly,,, ) )n “ﬁ (24 y.(x)B,(x)) (notation (8.3.12))
=( (w)<1+ "Z_)lym(x)> 1)” ‘ﬁl @+ek~ (@) —1) (by (3.3.13))

-1\n—1n-1

oyl (1+ Evaie)) ) T (e +2)

From our Definition (3.4.1) and (3.4.3),
=e" 'P(x) K, (x).

Hence the lemma is proved.
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Now, we are ready to finish the proof of Proposition (3.4.2).

PROOF OF PROPOSITION (3.4.2). 1) a)—a)’ is clear.
a)’—b) In a upper half space model, let = be the point of 80X realizing
the minimum of {y,(q);q€d2}. Then applying Lemma (3.3.10) (¢=—1,
B;(x)>0), we obtain that any principal curvature of 02 satisfies 2;(x)>F,
(I<ij<m-—1).

On the other hand, since ¢_, is locally diffeomorphic from the assump-
tion a)’, the Jacobian det(J¢_,)(x)#0. From Lemma (3.4.4), this implies

K_l(oc)znl:[ (A;(x) —k)#0. Therefore 2;(x)>k, (1<j<n—1), which also

implies 2;(q) >k, (1<j<n—1) for any g€ 9L, because 92 is connected and

because eigenvalues are continuous with respect to matrix elements.
n—1

Therefore K.(g)= II (4{q)+¢k)>0, (e==1) for any g€ of.

b)—a)’ Let £ satisfy b). Then from Lemma (3.4.4), det(J¢,)(x)=
e 1P(x)K,(x)£0. Therefore ¢,:0Q2——K/M gives a local diffeomorphism.
For b)—a), it is enough to prove ¢, is injective, because a local diffeo-
morphism ¢, from a compact set 92 is a covering map. The injectivity
will be shown in the next proof 2). (When n>3, the injectivity is
derived also from =,(S**)=1.)

2) Let 2 satisfy a)’ and b). Then

(3.4.9) Q) >k (1<j<m—1)  for any g€aQ.

So 92 lies locally in one side with respect to any pair of horospheres
tangent to 2. For a global statement, we use Morse theory. In a half
space model, the n-th coordinate function

Y.: 02— R,

is a Morse function (i.e. has no degenerate critical points). Indeed, sup-

pose x €02 be a degenerate critical points. Then from Lemma (3.3.10)

there must be at least one principal curvature 2; whose absolute value

is k, which contradicts to A;>k ((3.4.9)).

The index at the critical point x is defined to be the number of

2

negative eigenvalues (with multiplicity) of the matrix (%%)1 ey
h 5 <i,i<n—

where {2;}icican i any local coordinate near ». We denote by C; the

number of critical points of index 7 on d2. Then from Lemma (3.3.10)

and (3.4.9),




458 Toshiyuki KOBAYASHI

(8.4.10) C,=0 it 720, n—1.
C,=the number of points on 92 where ¥,,, is maximal
=#{¢r"({oo}) C0L2}
>1.
C,._,=the number of points on 82 where ¥, ,, is minimal
=#{¢7i({oo}) C02}
>1.
We denote by R; the j-th Betti number of 92. Since 92 is orient-
able closed »—1 manifold,

(8.4.11) Ry=R,_,=1.
From the Morse inequalities (see [18] p. 30), we have
R,< Co = Co,
R1—Ro£C1—Co -’—‘—Co,

Rz“‘R1+Ro£Cz_Cl+Co =Co,
Rw—Z_Rn—3+ KRR o (—1)”R0£Cn,2—cn43+ R (*“1)”CO=(_1)nCO,
Rn—l_Rn—2+ M _(_1)nRO=Cn—1_C'n—2+ D (—l)nCo:Cn—l‘“(“‘l)"Co-
Then by (3.4.10) and (8.4.11), we obtain

R1:R2= tt =Rn—2:0!
C(]:RO:].,

and
Cn—l.:Rn—lz‘l-

In particular, the last formula implies that the minimum of ., is
attained at only one point (say, x,) on 8. Since the horosphere tangent
to a2 at z, is either the hyperplane (in a half space model):

yn_——yn(xo)’
or the hypersphere (removed by the point on 9.X):
2

5 = v+ (1 — 020 ) = (G v

these two horospheres lie in one side with respect to 8.
For any point ¢ of 92, we can find an element b of K so that
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Yaiscp 18 minimal at b-q. Applying the above argument to b-80, it follows
H-convexity of 2. From the second equality in (3.4.10), this also im-
plies the injectivity of ¢, (e==1). Thus the proof of 1) is completed
and 2) is proved.

3) From Lemma (3.3.10) and Example (3.3.21), if 2 is H-convex, then the
principal curvatures of 94 satisfies either

oo ild) =k, (1<j<n—1), for any q€af.
or
Aioil@)<—k, (1<j<n—1), for any g€aQ.

Using the same argument as in the proof of a)—b) in 1), only the
possible case is the first one. Q.ED.

COROLLARY (3.4.12) (cf. Lemma (2.1.1) and Proposition (3.7.23)). Given
a strictly conver domain £ m X=2S0,(n, 1)/SO(r), 2 is recovered by one
of the supporting functions hg, as follows:

Q:bﬂg{bam-o X, —co<t<hg,(b), n€ N},
€

or

Q:bga{bazn-oeX; hg, 1 (b)<t<<+o0, n€ N}

ProOF. From the next Lemma (3.5.2), one sees that the horosphere
a,' """ N0 is tangent to (b)) at ¢y-1,,(e) (b€ K). Since k-1 ,.(e)=
ho..(b) and ¢ .(e)=b""¢zL(b) (Lemma (3.2.19)), one sees that a;®*“N.o
is tangent to 92 at ¢,,.(b). In the preceding proof of the Proposition
(3.4.2), we considered the maximum (or minimum) of the coordinate
funetion ¥,;0-1, in a half space model. Owing to Lemma (3.5.2), we see
that

chpg{baﬁn-oeX; —oo<Llt<hg,(b), nE N},
and

QCan{ba,‘,n-oeX; hg,_1(B)<t< +00, nE NJ.
€

For the converse inclusion, we make a simple observation: For a
fixed element x¢c X\42, let q.€022 be the nearest (farthest) point from
98 when e=1 (resp. e=—1). Then
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T € {Poa(d)ain-0€ X; hon(fon(gn)) <t<+o0, n€ N},
and
® € {Pg, (g r)ain-0€ X; —co<t<hg (o, 1(q4), nEN}
Hence the corollary. Q.E.D.

§5. Asymptotic behaviour of 7,(C)

Using the basic properties of a strictly H-convex domain £ in
SO,(n, 1)/SO(n) which we have prepared, we find that the zeros of 7,(C, bM)
are distributed with bounded imaginary parts and we obtain the asymp-
totic behaviour of §,(,bM) as Re{——> oo just as we did in Euclidian
case. The main result in this section is Proposition (3.5.13).

Throughout this section, X=80,(n, 1)/S0O(rn) with constant sectional
curvature —%* (£>0), and £ is a strietly H-convex domain (Definition
(3.2.18)) in X.

In a half space model X, the following formula holds:

(3.5.1) Y. (nas-0,) =", for tc R and nc N.

Here, y,: X=X,—R is the n-th coordinate function, o; : =0, --+,0,1) € X,
(CR"), and a,=exp(kH) € A is the positive unit vector defined in (3.1.1).

In fact, with notations in §3 of this Chapter freely (for instance,
{N;hcjcn_y 18 @ basis of the Lie algebra n over R as a vector space), let

n: =exp(2z, )eN (2;E€R),
and

1
Z == R.
5 Eee

Then, ¥,(nai-05) =¥ (PsoDs(n0a5-05))
=Y,0P5(nas D13(0s))

1 —2 2z |1, S0
.0 : : .0 0 {l .
= y"°@31 0 ’ 1 —Z,,_l zn_l O ) 1 0
22y 1—7 Z 0 ch(kt) shikt) 0
2z, —4 0 147 )| sh(kt) eh(kt) || 1 _
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2 exp_(—kt) - - a T
_’:yn"@a] Z Znot exi)(_kt) =Y, z: :eXp(kt),
exp(—kt)+sh(kt) n—1
_Z exp(—kt)+ch(kt) _ _exp(kt) _

proving (3.5.1).
The formula (3.5.1) says that the horosphere:
atN-o=Nai-0 (CX)
is realized as a hyperplane:
Y.=exp(kt),

in a upper half space model X;CR".
The next Lemma (8.5.2) helps us to understand the supporting func-
tion which we defined in §2. As usual we sometimes regard a function

defined on a homogeneous space G/H as a right H-invariant function on
G.

LEMMA (3.5.2). With notation as above, suppose 2 be a strictly H-
convexr domain in X=80,n,1)/SOn). Let h,=h,,.:G/P—R, (e==x1)
be the supporting function (Definition (3.2.16)) and ¢,=¢,,.:02—>G|P be
the Gauss map {Definition (83.2.11)). Then the horosphere aiN-o is tangent
to 82 if and only if t=h,(e), (e==x1). In this case, the point of tangency
is ¢3le), where the upper or lower sign is according as e=1 or e=—1.

PRrROOF. Suppose that the horosphere ai{N-0 be tangent to the bound-
ary 02 at z for some tc R. Then in a half space model, the outer unit
normal vector of 92 is given by,

v{e)=ck.(m) 5|
with ¢e=1 or —1,
Then,
(8.5.8) ¢ (x)=co=P, (via R"'U{co}=G/P).

Let gMecG/M be the corresponding element of (2, v(z))=
(P74 (o0), v(gii (o)) € S(TX), by the isomorphism
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G/M=S(TX) (tangent sphere bundle) ((3.2.4)).

From Lemma (3.2.8), gm,N-o (§==+1) are all the horospheres that
are tangent to 92 at x. In order that aiN-o and gm;N-o are coincident,
it is necessary from (3.5.3) and Remark (3.2.22) that

e=0
and from (3.2.8) it is also necessary that
atMN=gm,MN.

Thus NMayt=NMm; g™
Since the Iwasawa projection A:G=NAK—q is left NM invariant, we
get

Alay)=A(mg™).

Hence we have tlog(a,)=—A(m:'g7Y). In terms of our definition of the
supporting function h, (Definition (3.2.16)), this is equivalent to t=h.(P).
The converse statement is similar. Q.E.D.

Identifying a} with C by
ag 2 fa—CEC, ((3.3.1))
we regard the Fourier transform (Definition (3.1.4)) on X as a map
F: 8X)—ACXKIM).
For € C=a¥ and be K,
Frole, BM) = ollexn(Cil+p, AD0))da
2ao(b2)exp((il+p, Alx)))dx
L 1olban-0)exp(<i+p, Alan)>)dnda
- Nz,,(baén-o)exp((i&—l—p, Al(atnagad)d)dndt
, Lelbain-olexp({il+p, Alai)))dndt
+ —
(3.5.4) ={ " soo1, 1) exp ke ic+2= D).

Here, S=S,: K/MXR——R is given by,
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(3.5.5) So(bM, 1) ;:SN 2o(batn -0)dn
=§N L-llain-o)dn,  (bEK,tER).
The following lemma corresponds to Lemma (2.2.8) in R" case.

LEMMA (3.5.6). Suppose 2 be strictly H-convex and retain notations
as above. Then, S=Sy: K/MXR—R 1is a continuous function with
compact support V, and Sp|y € C°(V). Here, V is an open set in K/M X R
given by,

V:={(bM,p) e K/MXR; bMc K/M, h_,(bM)<p<h,(bM)},

and V denotes its closure. More precisely, for a sufficiently small >0,
there are two C” functions: S,=8,,,: K/M X (-0, 6) 3 (bM, t)——S,(bM, t) € R,
(e=1), such that S(bM,t) are represented in the meighbourhood of 0V
as follows:

(35.7)  S(bM, 1)
(@) g oum i (B) (= By ()R 4 S_y (b, E—Fia(B)) (E— Ty (D)),

F’L‘ztl_>

for It=h_.{B)| <o,
_———-—(27?)(”—1)/2 oyl ~12(¢ (n—1)/2 _ —
) (w7 b))t (D) 5 H(L+-53(b, =) (1= n(B),
2
for |t—h(b)| <a.

Proor. Smoothness of S, can be proved in the same way as in Lemma
(2.2.8) (Euclidean case). Let us obtain the first approximation of S(bM,t)
as t——h, (DM).

Fix bMec K/M and € {x1}. Let {y,, - - -, ¥.} be the (global) coordinate
in a half space model X, as usual (notation §3). Then from (3.3.8), the
volume element in X is given hy,

(det(g:,)) ' *dy, - - - dy,=(ky.)"dy, - - - dY..

The Haar measure dn of the unipotent Lie group N induced from the
Riemannian metric on X (§1) is given by,

dn=(ky,) " "'dy,* + - dY ..
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Therefore from (3.5.5), we have

dy,- - -dy,,
(3.5.8) Sa(bM, t)= gL el
o ! Lﬂ.:f}-(?;:?erla (k)
Set

(3.5.9) D, 1 =bT"pL (D) = -1, (€) € b7H(2R2),

where we regard ¢;.: G/P——9f as a map from G to 9Q.
From Lemma (3.2.19), we have

Pi10,.(p) =b'g . (b-p.) =P € G/P,
and
hy-1g, (e} =hyg,.(b).

From Lemma (3.5.2), the horosphere a{***N-.o (i.e. the hyperplane
y.=expl(khy (b)) in a half space model X;) is tangent to 67}(882) at p..
Let f be a function which represents »7'(82) (C X,CR") as a graph
near p,. Then the function f satisfies the assumption (3.3.11) in Lemma
(3.3.10). Let B,=Bi(p,) (1<l<n—1) be the eigenvalues of <i?f;(pe)> .
oY 0Y; 1<i,j<n~1
Then by applying Lemma (3.8.10), the principal curvatures 2, of 9Q
satisfies:

(3.5.10) Ap)=—ck(1+y.(p)B), (1<I<n-1).

By an orthogonal transformation on R*!, we may assume that
Yi, -+, Yu_ are in the principal directions at p,. Then,

f(yl, ) y'ufl)
=exp(ih,(6) + 1 £ Bt~ 0w+ O(E lvi— (o)1)

=exp(kh, (6)(1+2 exp(—kh,(6)S Biyi—v:(p) +0( T lvi—wilp)I*
2 i-1 i=1

n~1

=exp(kh, (b)) exp( - exp(—kh.(b) & By~ e +0(Z lui—uiw)l'))

=exp(kh, (0)+1- exp(—kh,6) T Bulvi—uip))+ (S lvi—uip)l))

1=1
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n—1
—exp(kh,(6) — - exp(—2kh, (b)) T (1-+ k) (v~ p.)*

+O(§ |y — (pe)la))

By changing the coordinate (v, - -+, a1, ¥o)— (Y1, ++*, Yur, t) (here, y,=
exp(kt)), b7'(082) is represented as a graph:

8511 t=h) =5 (—2kh(6)) T, (2i+ek) 01— i (2"

+0(E ln—u(wP).
Therefore from (3.5.8), the first approximation of

o dyay
So(bM, t) = _g =exp(kt —%—y):gL ((3.5.8))
g ebT o n

(7,
is obtained just the same as in Lemma (2.2.8) of Chapter 2 as follows:

-2

(k exp(ich, (b)) ~*+(2z) -1 [ ”“)“(n k™ exp(—2ih, (b)) (s + ok)
X (t—h, (b))
=(2r)" 1/2F<’n+1)"1("— Zl—{—sk)) (t— h( ))i-vr

= (@n) e L () (Kicsa, ot o) R —h, ()07
= (2a) (D) (Ko o) =B,

proving the lemma. Q.E.D.

Let 2 be a strietly convex domain. Introduce a function d=d,: K/M=
G/P—R (cf. (2.1.16)) by,

_ —log K1°¢f1(b) +log K—x"ﬂ[’:}(b)
(3.5.12) d(bM)= 2 () , (bMe K/M).

PROPOSITION (3.5.13). Suppose 2 be strictly convex and retain mota-
tions as above. Then,
1) 7%, bM) e ACXKIM), and %, bM) is an entire function of {€C
for each fixed bMec K/M.
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2) For any bMc K/M and any &, 7€ R,
(3.5.14) Tol6+1in, M) =Fo(—& 417, bM),

3) sup{|Im| € R; %,(C, bM)=0, {cC, bMe K/M}<co.
4) When |9 <C (C is any constant), ¥, has the following asymptotics:

(3.5.15)  Xolé+1n, bM)

~(27r) ("*l)lzk—(n+1)[26m'(ﬂ+1)14( o¢,+1(bM)) 112gkh 1M (L +(n~1)/2)

% exp(—H(bM)( (zc+” 1 +d(bM)>)+exp(Jf______i(”;l)))m i

O(|g| =+, as E— -+ oo,
The estimate is uniform with respect to bM ¢ K/M.

ProoF. 1) and 2) are followed immediately from that y,(z) is a real
valued function with compact support.
To prove 3) and 4), first let us recall (3.5.4):
+co
o(C, b30) = |~ So(b3, tjexp ke(ic+ " Lat.

Then 3) is derived from Proposition (2.2.16) and Lemma (3.5.6). For 4),

we obtain the asymptotic behaviour (8.5.15) from Lemma (3.5.6) in the .

same way as we obtained Proposition (2.2.32) from Lemma (2.2.8) in R"
case. (h_,(bM) in place of —h(—w), h,.(bM) in place of h{w), (c szl

in place of ¢, etc.) Q.E.D.

§6. Main theorem

In this section, we shall state our main theorem for SO,(n,1)/SO(n)
case.

Let £ be a strictly H-convex domain (Definition (3.2.13)) in
SO,(n, 1)/SO(n), which has constant sectional curvature —#%* (k>0). Let
us recall some notations.

O =¢y,.: 02— G/P=K|M, (¢==+1) the ‘Gauss map’ ((3.2.11)).
K.=K,,.: 02— R, (¢==+1), the ‘Gauss curvature’ ((3.4.1)).
H.=H,.: G/P—R,, (e==+1), the breadth function ((3.2.18)).

d=d,: G/P=k/M>bM—s —108 Kiody lg’}{“;;fg K_1o¢i(b) ¢ p, ((3.5.12))
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Set a C~ function f=f,: K/M x R—C by,

(86.1)  f(bM, m)=F.(bM) 12%(%5ﬂ ‘)_1).-+i cl(bM))—i— z“_;l

Let {a}=2%"(g,a) and identify o} with C by,
(3.6.2) at 3Ca+—LEC.
Using this identification, the Fourier transform is regarded as
G: &"X)— ACXKIM).
For a bounded measurable set 2 in X, we put
(3.6.3) JUQ) :={({, bM) € CX K|M; Fyo(C, M) =0}.

Then the following theorem is our main theorem in this chapter
which describes the asymptotic behaviour of JU(2) when 2 is strictly
H-convex domain in X,

THEOREM (3.6.4). Suppose Q be a strictly H-convex domain in X=
SO,(n,1)/SO(n), and retain motations as above. There is an integer
my=my({2) dependent only on Q. Then

TN = ﬁ (32;1132;)) II (compact set), (disjoint union),
]
where for each integer m>m,, Jli is a regular submanifold in CxK/M,
and is analytically diffeomorphic to K/M (=S"*).
More precisely, for each integer m=>m,, there exist analytic maps
F;:S"'—C, (e==*1) such that the following three conditions are satis-
fied for m>m,:

JE={(F:(bM),bM)c Cx K/M; bMc K/M).
And for any element bM of K|M,

(8.6.5) FLOM)=f.(bM)+0O(m™) as Ndm——co,
and,
(3.6.6) FibM)=—F,{bM).

In (8.6.5), the estimate is uniform with respect to bMe K/M.
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Ezample (3.6.7). Let Q2=B(R) a ball with radius B (0<R<1),

. _exp(kR)+1
7 wexp(kR)—-l (cleary we have 0<<r<1).
First note that
(3.6.8) Jlg-B(R))=J(B(R)), for any g€ G=S80,(n, 1).

Indeed, fix g€ G, and bc K. Let b-lg=n'a’k’ (W' €N, a’€ A, and k' ¢ K)
be the Iwasawa decomposition of b'g. From [14] Ch. 1 Theorem 5.8
we have,

To-nem (C, BM) =\2y-pm (x)exp 2L+ o, A(b7'x)dd2

I

L Ysr (x)exp {Tl+p, Ab7'gx)>dx
j L Azr, (K -0)exp (i +p, A(b~*gka)>Q(a)dkda
= LL Asem (Ka-0)exp (i +p, Ala’)+ A(k'ka))Q(a)dkda.

K

Since B(R) is K-stable,
:S IJ | Xuw(ka-0)exp (il+p, Ala’)+ Alka))Q(a)dkda
=exp £+ p, A(a/))LL Yo (ka-0)exp (Gl +p, Alka)>Q(a)dkda.

This implies (3.6.8).

The Fourier transform of the characteristic function yzx, of a ball
with radius R is obtained in [3] in a rank one symmetric space. After
reviewing it for the reader’s convenience, the asymptotics of the zeros
of ¥z (C, bM) is found on the basis of the classical result of the asymp-
totic behaviour of the hypergeometric function F(a,b,c;z) as |a—b|
tends to infinity with |a4b| bounded.

s (C, bM)

n 271.(%—1)]2 gr Sm Sn—l / 1_82 >i§+(n—1)/2dsd0
I'((n—1)/2) (1—s%" \ 1—230050+s"’

)
R

n p ks = (n l)le( 1 n-— 1 n 2)
)——“{n/2+1) r*(1—1r?) 'LC—l— W+ —— 5 2,7‘
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T'm2+1 2 2" "2

=(2) oy R g it 1 P —1))
=(_2;z_)’_ (sinh kR)**P=3., (cosh kR).

On the other hand, we have the following asymptotics (ef. [7]).

. 1 n l1—coshkR
F("’H’" Tl g __2__">
(21r)"21“(1+n/2)(zC)‘"“”z(l e—lcll) (n+1)/2(1+e—kR)(n—1)/2
IEC+1/2)0{—iC+12) (4 (n+1)/2) (=18 + (n+1)/2)
X {exp(—(i€+1/2)kR +exp(*(n+1)/2) +(— L+ 1/2)kE)H1+O(IC| 7).
Here the upper or lower sign is according as —z+4o<argl{<—dJ or
d<<arg {<n—a, with ¢>0.

Thus the zeros of 7,4(¢, bM) have the following asymptotiec behaviour:

§=—-————4mzl§z—1)rc+0(m‘l) (me Z, m>0).
_A4Am—(n—1) -1
{= i z+O0{m™) (me z, mgO).
Of course this coincides with what is obtained by applying Theorem
(3.6.4). In fact, one sees that H,(bM)=2R and dg(bM);_—-"(lz:& from

Example (3.3.21), which implies f,(bM)= %n modulo Z/kR,

(Definition (3.6.1)).

§7. Special case

Throughout this section, X=G/K=S0,(2, 1)/SO(2), which has constant
sectional curvature —k* (k>0).
We identify K=S0(2) with S'=R/2zZ by,

cosfd —singd O
(8.7.1) S'36—>b(8) :=|sind cosf® 0)cK
0 0 1

Now that M=Z;(a)={1}, we also identify G/P=K/M with S' via
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(8.7.1). In this section we use a global coordinate (x,y) instead of usual
(1, %) in a half space model X, (notation in §3). The S' (=G) action
on X; is given by,

b(8) - (x, y) =Du(b(0) - Dus(z, ¥))

1 cosf —sind 0 2x

=@, -——(sind cos@ O 2®*+9*—1
2y

2z cos 08— (2°+-y*—1) sind

2% sin 0+ (2*+y*—1) cos 9

(3.7.2) - 2y .
(@*+y*)(1—cos8)+1+cosf—2xsin b

0 0 1/ \x*+9*+1
2931( 1
2y oA +1
(Zx cos — (2*+y*—1) sin 0)
1 )

X

Fix ec{*1}. Let a strictly convex domain £ be realized in a half
space model X, and put
p=¢(e) €02,

where ¢,:02—G/P is a Gauss map defined in (3.2.11). Then 82 is
locally represented as a graph:

y=f(x),

where f(z) is defined in a neighbourhood U (CR) containing z(p) € R.
Since p€aR is a ecritical point of the second coordinate function #,;,,
we have the following equations from Lemma (3.3.10) and from our defi-
nition of K.,

(3.73) K.(p) = —eky(p) f{ ().
X
as well as
df o
(3.74) 4 (o(p)) =0,

Set a new function A:UXR——R by,
(3.7.5) Az, 0)=(x*+f(z)*)(1—cos§) +1+4cos §—2x sin 4.

Then simple calculation yields:




Null variety for a convex domain 471

A
Alz,0)=2, 22(2,0)=0,
04 PA
3.7.6 0 =2,
876 | 22@0=0, (5,0)
94 A
0 oAa — 2 2__
20 —— (%, 0) =2z, o5 (z, 0) =2*+f(x)

From (3.7.2) and (3.7.5), the function ¥, -1, equals

(8.7.7) —_2fle)
Alz, 8)

Let wus find the critical point of the function ¥,-1,0. Put
0 2f(x)

—_ =0. Th
o Az, 0) en we have

af 0A
(3.7.8) @) A, 0) (&) 22~ (x, 0)=0.

From the implicit function theorem, (3.7.8) is locally solved by a
smooth function x=¢(6): that is,

0(0)=a(p),
and
3.7.9) U 10(0) Al(0), 6) ~(010) 2A-(010), 0)=0.
T ox
Put
(3.7.10) F:=f(0(0)) =exp kh,..(0) € R,
oK)
(8.7.11) G:= s ((0))= — R € R,
and
(8.7.12) X:=0(0)c R

Differentiating the identity (3.7.9) with respect to 6, we have,

99 16)A(p(6), 6)+-%(o(0)) 24

&
(9 (0)-5 o

dax?

(p(8), 0)
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0°A

5ag0 P10 ) =0.

—Flp0)-2(6) %A

g 05 (0(0), ) —f(e(0))

By substituting (3.7.4) and (3.7.6) into the above equation,

2G-%¢_10)—2F=0.

de
Hence,
do -1
. —(0)= .
(8.7.13) 70 (0)=FG

Set a(8) :=A(p(8), 0), and ¢(@) :=f(¢(0)). Then by simple calculations,
we get

a(0)=2,

da

(3.7.14) de
d*a
de?

(0)=4FG'+X*4F?—1,

and
c(0)=F,
e g)—o,

(8.7.15) do
d%

O =FG

Now, using the K-equivarianee of the supporting function (Lemma
(3.2.19)), we have,

exp kh, (0)=exp khg . (b(6)) =exp khys)-10,.(0).
From Lemma (3.4.2) and (3.7.7),

27(p(0))__ 2(6)
Alpl6),0)  alo)

exp Khy-1p,.(0) =

Hence,
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20(0)
a(d)

Differentiating (3.7.16) with respect to 6, and then evaluating at =0,
we have,

(3.7.16) exp kh, .(6) =

d Y, e de(0) da(6)
@117 | expkho,(9)=2a (e)(_dg_a(a) o(0)-228 )

=0
=2H—-2FX)=—FX.
Since the left hand side is equal to

dh dh
Q¢ k — 2.6
k—_dﬁ (0) exp khg (0) kF—_dH {0),

we have obtained

th,s

(3.7.18) =

(0)= —k X,

Differentiating (3.7.16) by two times with respect to 4, and then evaluat-
ing at 6=0, we have,

cidﬁz exp khy(0)50
_sf dPe d*a de
_2 3 2 2
¢ d6* a—ea de? ¢ de dG T

=4"Y4F*G'—2F(4FG~ 1+X2—|-F2—1)—I—SFX2
(3.7.19) =2"Y(—2F*G'+3FX*—F*+F).
Since the left hand side equals

(k ddf;gs _l_kz(ﬂ%(o))z)expkhg,,(m

(s Sty ose( )

the equation (3.7.19) is equivalent to

(87.20) 2k d;};g-s (0) +2k2(d_dhgf_(0)>2 = —2FG 43X —F 1.
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Substituting (8.7.18) into the right hand side of (3.7.20),
dhg

- -2FG‘1+3k2( ) P41

Therefore,

dh, . dho,e e opG
2 Pha (0) k( )+F —1=—2FG-

From (3.7.3),

G =( 0L i) ==k, (01

Hence we have obtained the following formula.

d*h dh :
210 Q,¢ % Q,¢ —
L e 0 k(e (0)] exp b, (0) -1

K, .o¢7%(e) 2¢k exp 2khg,, (0)

Noting that for any b€ K,
Ki-1g,000571, (P)=Kq 045 (bP),
and
hy=19,.(P)=hyg .(bP), (Lemma (3.2.19)),

we have proved the next proposition.

ProposIiTION (3.7.21) (cf. (2.5.2)). Let 2 be a strictly H-convex domain
i X=80,8, 1)/S0O2). Identifying G/P=K/M with R/2zZ by (3.7.1), we
regard the supporting function h,. as a map from R[2rZ to R and the
generalized Gauss-Kronecker curvature K, .¢zl, as a map from R/2zZ
to R (e==x1). Then h,. and K, ofz% are related by the following dif-
ferential equations (¢f. (2.6.2)):

Thos gy _pof Po i) 0
L 20 0)) exp2kho (0) -1

Kp .o¢pL(0) ¢k exp 2khg . (0)

(3.7.22)

for 6 R2xZ (e==+1).
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In Euclidean space, a strictly convex domain 2 is recovered by its
supporting function k in two ways (Lemma (2.1.11)). That is,

Q= 0 {ecR; (v 0)<hlo),
or
i) =(2fa) | (@eST.

Here, vy:9Q2——S"" is the Gauss map and &:R"——R be a linear exten-
sion of h.

In X=80,(n,1)/SO(n), the analogy of the first formula is obtained
in Corollary (3.4.12). Now we give the analogy of the second formula:

PRrOPOSITION (3.7.23). Retatn notations in Proposition (3.7.21). Then
2 1s recovered by ome of its supporting functions h,, as follows:

3 1
3.7.24 SL0)=
( ) ) k*(h5,.(0))*+ (1+exp(kh,,.(6)))
—2kh,(0)c0s 0 — (K(15,(0))"+ exp(2kho,(0)) —1jsin g _
(—Zkhg—,ﬁ(ﬁ)smﬁ—l-(kz( L) +eXp(2khQ,s(o))—1)cosa> :

Note that 6=0 corresponds to v,=(0,1)c9X, (CR? in a unit disk
model. If you prefer the usual angle in 8X,~S", you should replace @

b -+,
y ¢ +2

Proor. From (3.7.10), (3.7.12) and (3.7.18), we have

X B —kh; .(0)
Q,z(o) - (F>— (exp(khg,e(o))> € Xs.

1 —2khl, ,(0)
k*(h5,.(0))*+ (1+exp(khy, . (0)))* <k2(hg,s(0))2+exp(2kh9,‘(0))-—1

Jex.

Now, this yields (3.7.24) in view of Lemma (3.2.19). Q.E.D.

Suppose JI(2) be given. Then applying Theorem (3.6.4), we can read
two functions A(f)=A4,,,(0) and B(6)=By,(0) € C=(SY) from the asymp-
totic data of JI(2), such that

(8.7.25) ?&iﬁ‘ﬁ%ﬁxm,w),
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and
(3.7.26) Hy(60) =By o)(0).

Using the differential equations (8.7.22), we can obtain a single differential
equation of hy _,(8). We will illustrate how this differential equation
determines £ in the proof of Proposition (3.7.30). Before doing this, we
give an example:

Example (3.7.27). Let @=B(R) (a ball with radius R with its center
the origin) and set r :=M. Then as we saw in Example (3.3.21)
exp(kR)—1

and Example (3.6.7), ho.(0)=cR, Ho(0)=2R, Kg,s(a)z’%:”f, and d,(0) =

k
— k. Hence,
5 ence
_ _(1+7Y _
(3.7.28) A(o)_Kl/K_1_<1_T) —expkB(6),
and
(3.7.29) B(6)=2R.

Finally as an illustration of the use of the differential equation of
the supporting functions (Definition (3.2.16)) for the injectivity problem
of J! (Problem (B.4)), we prove the following proposition.

PROPOSITION (3.7.30) (Berenstein-Yang [2]). Let 2 be a strictly H-
convex domain in X=50,(2,1)/SO(2). If JU2)=Tl(B(R)), then 2=g-B(R)
with some g€ S0,(2,1).

ProOF. Put hA(0):=h, _4(0). From (3.7.26), we have hy,@)=
ho,1(0)+Hy(0) =h(0) + By o, (0). The assumption JI(2)=J!(B(R)) and
Example (3.7.27) imply

(3.7.81) Ay0)(0)=Aqse) (0) =exp(2kR),
and
(3.7.32) By10)(0) =By sx), (0) =2R.

Therefore by Lemma (3.7.21), we have the following differential equation
for h(0):
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exp(—2kR) = Azl (0)= _KKa_lzé’ﬂi().)_)ﬂ
2k(h+ B)” —K*((h+B))*—1+exp 2k(h+ B) 3
2" — k(1) —1+exp(2ich) X exp Zk(hs—h).

From (3.7.19) and (3.7.25),

_ exp(2kh)(exp(+4kR) — k
(H 2hch” — k(1) — 1+ exp(2kh) )Xexp —4kE).

Hence,
(exp(2kR) +1)(2kh” —k*(h'):—1+exp(2kh)) = —exp(2kR) (exp (4kR)—1)

Therefore h(f) satisfies

(8.7.33) 2kh” —k*(h')*—1+exp(2k(h+ R)).
Set

(3.7.84) f(0) :=exp(—k(h(8)+ R)/2) € C=(S").
Then f(6) satisfies the following differential equation:
(3.7.35) £1(0)=—FF0)=1(0).

This nonlinear differential equation is solved by,
(3.7.36) f(6)=(C—+/C*—1 cos(0+6,))"",

with constants C>1 and 6,€[0,2x). (From (8.7.35), we have

4(f)+f2+ft=2C with some constant C>1. Then df is represented by

af
algebraic functions of f, whose indefinite integral is given by elementary
functions and (3.7.36) follows.)

From (3.7.34), we get

hg,_,(0)=h(0)——R—%log(C VT 1 cos(0+6,)).

Now £ is uniquely determined by hg _,(0) by using Proposition
(3.7.28). It is shown by simple calculations that the constants C and 6,
correspond to the translation of B(R) by an element of A and K respec-
tively. Thus the proposition is proved. QE.D.
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