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Introduction

The study of (an asymptotic behavior of) the Fourier transform Fxqa(¢) of a
characteristic function xq for a (convex) domain €2 is very old and has played
an important role in various contexts:

F.John (1934) homogeneous integral equation.
C.S.Herz (1962) spectral theory of bounded functions.
E.B.Vinberg (1963) complex homogeneous domains.
C.A.Berenstein (1976) the Pompeiu problem.

The purpose of this note is to give an exposition of the study of the relations
between the geometry of a given domain € and the zero set N'(£2) of the Fourier
transform Fxgq. In a special case, these are closely related to the Pompeiu prob-
lem which has originated in integral geometry (/22], [23]) or a free boundary
problem of the Laplace operator called Schiffer’s conjecture (/28/, Problem 80).
We treat in a more general setting the assignment (1.4) from a bounded domain
2 in R™ to a complex analytic set A'(Q) in C*, which is defined in (i) below. A
detailed account is to appear in [19].

Suppose 2 is a bounded domain in R™ whose boundary 89 is C? diffeo-
morphic to S*~1. We associate the following three objects to §:
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i) The null variety N'(Q) := {¢ € C* : Fxq(() =0} (C C*). Here

Fxa(() = / e/ THebb ) gy dzy,
Q

is the Fourier transform of the characteristic function xgq, which
is a holomorphic function of the n variables ¢ = (¢1,...,¢n) €
c.

ii) An integral transform Ty : C(R") — C(M(n)) defined by
(Taf)(g) = [, flgr)dz. Here M(n) = O(n)xR” is the Eu-
clidean motion group.

i11) An overdetermined problem:

- Autdu=0 in &,
A %4 =0, u= constant on 992

Here aa—y stands for the outward normal vector field on 892.

In a special case, it is a well known result based on an argument of spectral
synthesis of L.Schwartz that these three objects are related with one another:

Fact 1.1: ([7], [26]) In the above setting, the following three conditions on €2 are
equivalent:
(a) There exists r > 0 such that N () D Sc(0 : r).
(b) Ker Tq # {0}.
(¢) There exist A > 0 and a nontrivial solution u of (N)x.
Here, we define a complex quadric by

Scla:r):={¢eC": Z(Cj —a;)? = r?}, (1.2)
=1
fora=(ai,...,a,) ER™ and r € R. In (a) and (c}, we have a relation A = r2.

A ball in R” satisfies the three equivalent conditions in Fact (1.1). In fact,
denote by J, (z) the v-th Bessel function which is a solution to ((z )2 + 2% — v?) u =
0. We fix a positive zero r of J= (r) (there exist countably many positive zeros).

We define a holomorphic function of z € C by f,(2) := (2#)%%}1. If Q is the
unit ball in R”, then we have a formula

fm(g)=f%( 412+.-.+Cn2>, for ¢ = (C1,...,(n) €. (1.3)

Then it is not hard to check (cf. [7]):

N() D Sc(0:7), (1.3.1)
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Ker Tn 3 f3-1 (r\/azlz +...+ mn2) , (1.3.2)
fa (r\/ T2+ ..+ :cnz) is a solution to (N),z. (1.3.3)

Conversely, it has been a long standing conjecture (the Pompeiu problem,
Schiffer’s conjecture) that a ball is conjecturally the only domain satisfying one
of (therefore, any of) (a) - (c) in Fact (1.1). On the other hand, each of them
has its own interesting generalizations and developments, which are not neces-
sarily related to other problems. As for (i), there have been a lot of extensive
research on the symmetric property of solutions to a partial differential equa-
tion with some symmetry (e.g. {24],/2]). As for (ii), the integral transform T
is defined for arbitrary homogeneous space G/H as a G-intertwining operator
Ta: C(G/H) — C(G), f — [, f(gz)dz where Q is a fixed, relatively compact
subset of G/H (we regard R” ~ M(n)/O(n) in (ii)). The study of the image or
the kernel of T is closely related to non-commutative harmonic analysis on a
homogeneous space G/H (e.g. [8], see also [19], Theorem 1.2.17 for a collection
of various results in this direction). A survey of another interesting direction
of research on T can be found in [29] whose concern is mainly with minimal
determining subsets such as a generalization of two-circles theorem of Delsarte.
On the other hand, in this paper, we concentrate on the object (iii), that is, we
investigate the assignment

N : {Bounded measurable sets in R"™} {Analytic sets in C*}.
w w (1.4)

Many of the basic questions concerning the assignment (1.4) have not found
a final answer. In this note we give an exposition of some partial results of the
following naive questions:
Question 1.5
1) Describe N () in terms of geomelric quantities of 2.
2) Study the injectivity of the assignment Q — N(Q). That is, does
the null variety N(Q) determine the original domain Q ?
3) How a perturbation of Q affects the null variety N(Q) when §
satisfies the properties in Fact (1.1) 2
For visualization of A/(§2) in the case n = 2, we define the real points of
N(R) by
N(Q)g = N(Q) NR™
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Here are examples of the null variety A(Q)g C R? for typical bounded
domains  C R? (later, we shall look at A (£2) NS (see (2.1.1)), however, if Q
is centrally symmetric then A (Q)g plays the same role as N'(Q2) N S):

(1.6)(a) (1.6)(d) (1.6)(c)

Q: unit disk in R? Q: square in R? Q: regular hexagon in R?

©)4©

Figure 1.6
In the figures above, the black parts mean {({1,{2) € R?: Fxq((1,¢2) > 0} and
the white ones mean {(¢1,(2) € R?: Fxa((1,¢2) < 0}. The null variety N (Q)x
is the boundary of the black parts and white ones. We remark that the ‘first’
zero point set of Fya((1,¢2) in {1.6)(c) looks like a circle, but is not actually a
circle thanks to /7], Theorem 5.7.
Observation 1.7 Let us give some very elementary observations of the Figure
(1.6), which lead us to suitable formulations for Question (1.5) on the study of
the null variety N'(Q2).
a) All of the domains Q in (1.6} are centrally symmetric.
b) All of the domains €2 in (1.6) are convex and only the domain in
(1.6)(a) (a ball) is strictly convez.
¢) The null variety N(Q)r for a ball (1.6)(a) consists of infinitely
many connected components, any of which is compact.
d) The null variety N(Q)r for a cubic domain (1.6)(b) is noncom-
pact and connected.

Another interesting observation due to B.@rsted is that it looks much easier
to distinguish the shapes of three null varieties N'(Q)g in Figure (1.6) than to
distinguish those of the original domains Q. From the viewpoint of computer
science (as another aspect of Question (1.5)(2)), we might expect a new method
of ‘recognition of shape’ (‘shape’ could involve some quantities in differential
geometry) in some family of domains by using the null varieties A'(Q).



Bounded domains and the zero sets of Fourier transforms 227

2 Description of A'(Q) in terms of Q

In this section, as a simplest case, we shall generalize the feature (1.7)(c) about
the real points N'(2)g for a ball to general strictly convex domains © in R™.
The results here can be generalized to horospherically convex domains in a
hyperbolic space SOg(n,1)/SO(n) by using Radon-Fourier transforms for Rie-
mannian symmetric spaces introduced by Helgason (ref. [14]). We define an
n + 1 dimensional manifold |

S :S”_I;XCX:{C-w:CE(CX,wGS”"l}C(C”. (2.1.1)

Then S contains R"~1\ {0} as a hypersurface and so N(Q)g C N () NS C
N(Q).

Suppose Q is a convex domain in R”. We equip R™ with the standard inner
product (, ) and denote the unit sphere by S”~1. The supporting function

and the breadth function of Q are given by

h=hg: S" ! — R, wr— sup(z,w), (2.1.2)
€N
H=Hq: "' — Ry, wr hw)+h(-w). (2.1.3)

We define the Gauss map v = v : 3Q — S™~! by its outer normal vector
field, and define the Gauss-Kronecker curvature K = Kq : Q@ — R by the
Jacobian of dv with respect to the induced metric from R™. Here we choose
an orientation of 9% so that v preserves an orientation. In particular, K is
everywhere positive if Q is a ball. If Q is strictly convex, we put

m=3n: 5" SRy, wr— Kgovgl(w), (2.1.4)

log seq(—w) — log sen(w)
2Hq(w) ’

d=dg: """ >R, (2.1.5) \
Theorem 2.2: ([18]). Let Q be a strictly convez domain in R™. Retain notation

as above. Then there exists an integer mo = mo(Q2) depending only on Q such

that we have a disjoint union

N(EQ)NS = ( ]_[ Nm> ]_l (compact set). (2.2.1)

M=Mo

Here for each integer m > mg, Ny, is a regular submanifold in S(C C),
and is analytically diffeomorphic to S*~1. More precisely, Ny has the follow-
ing asymptotic behavior: There is a family of analytic maps F,, : S*~ ! —
C (m €N, m > mg) such that

F(w) = ;’EZ*) + (“2(2(“”;) + \/—-_ld(w)) +O(m™Y), asm — co. (2.2.2)(a)
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Fn(w) = Frp(—w). (2.2.2)(b)
Ny = {Fn(w) -w:we S} (CcSCC). (2.2.2)(c)

In (2.2.2)(a) the estimate of the error terms is uniform with respect to
w e St

Conjecture 2.3: In the setting of Theorem (2.2), we have conjecturally a disjoint
union of countably many reqular submanifolds:

N@ NS ] N (2.3.1)
m=1
This conjecture involves:
‘compact set’ in (2.2.1) would be removed, (2.3.2)(a)
mo(Q) =1 (the phase principle). (2.3.2)(b)

As we have seen at the beginning of Introduction, Theorem (2.2) (at least
except for a formulation) has been essentially obtained in various contexts of
classical works. Here we only give two comments on the proof:

It is a classical geometric point of view that a Fourier transform of n vari-
ables can be factorized by the Radon transform and a Fourier transform of one
variable. This is the method of F.John /76] in his calculation of the asymp-
totic behavior of Fxa(¢) (( € R™) where € is centrally symmetric and strictly
convex domains. In Herz’s paper [15] (see also [3]) he obtained the asymptotic
behavior of Fxa(¢) (¢ € R") by using the saddle point method. If we apply
the method of F.John to our more general case for ( € S(C C*), then it gives
an alternative and simple proof of Theorem 3(ii) in [15] with an error estimate,
where the ‘most difficult part’ was to improve error terms (see page 83, line 1
in [15]).

The above consideration reduces the problem to the zero set of a holo-
morphic function of certain type. As a function of z, it is well known that
the triangular function sin z, W’ the Bessel function Jj(z), the as-
sociated Legendre function of the first kind P#(z) and so on have countably
many zeros which are distributed in a regular fashion with bounded imaginary
parts. This can be explained by the fact that these functions are essentially the
Fourier transform of compactly supported functions ¢ with two singularities at
T = o, &1 such that (z) ~ co(z — z0)}, c1(z — £1)2 . As an appendix, we give
a short explanation of it in §6.

Corollary 2.4: Suppose that Q is sirictly convex domain in R™. Then the following
conditions are equivalent:
(a) Q is centrally symmetric with respect to the center of gravity.
() N(Q)g contains countably many hypersurfaces in R"™ as con-
nected components.
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The non-trivial implication (b) => (a) is followed by Theorem (2.2) and the
uniqueness of the Minkowski problem (e.g. [9]).

Corollary 2.5: (see [3], [4], [17], [5], [18]) Suppose that Q is a strictly conver

domain n R™. Then the following conditions on Q are equivalent:
(a) Q s a ball in R™.
(b) N(Q)r contains countably many hypersurfaces which approzi-
mate hyperspheres asymptotically.
(c) There exist countably many eigenvalues for the overdelermined
Neumann problem (N),.

We write S(a : ) := Sg(a : ) NR™ (see (1.2) for the definition). In (b),
‘asymptotically’ means that there exist a sequence of a(j) € R™ (j € Ny), an
increasing sequence R 3 r(j) T oo (as j — o0), a constant C' > 0, a constant
0 < € < 1 and a sequence of hypersurfaces X; C N(Q)r such that

dist(Xj, S(a(j) : v(4))) < Cr(5)™",
for any j € N,. Here for closed subsets S,T C R”, a distance between S and
T (introduced by D.Pompeiu, 1905) is given by dist(S,T’) := max melqr} |z —y| +
z€S y

maxmin |z — y|.
y€T z€S

The first contribution in the direction of Corollary (2.5) is due to [3]. We
remark that the centers of hyperspheres in (2.5)(b) are not necessarily the
origin. If we replace the condition (2.5)(b) by that A/(Q)g contains infinitely
many hyperspheres, then we can drop the assumption of convexity of 2 and
only assume that 89 is connected. This is obtained in /5].

Injectivity of Q — N (Q)

In this section we deal with the injectivity problem of the assignment 2 —
N () given in (1.4). We begin with some remarks about a formulation of the
injectivity:
Remark 3.1:
(1) The injectivity should be interpreted up to parallel displace-
ments. That is, if Q and Q' differs only by a parallel displacement
then the Fourier transform of xq differs from that of xq/ only by
the multiplication by a non-zero function and so N (Q2) = M (Q').
(2) The injectivity of A does not hold if we allow Q to be discon-
nected. That is, we can find two non-connected domains £2; and
Qs in R™ (n > 1) such that N(Q1) = N () (see [18] Example
(1.3)).
(3) The injectivity of Q@ — N(Q)g does not hold if Q is not nec-
essarily centrally symmetric domain (that is, the real points of
N () are too small to determine €2 in general) (see [18] Example

(1.5)).

229
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However, we have an obvious affirmative example in the case n = 1. That is, if
is an interval in R* with a length A, then A(Q) = {247 !nr:n € Z,n # 0} (C
C!). Thus, the period of A(Q2) determines the length A of a given interval .
For a higher dimension, we have the following affirmative results:

Corollary 3.2: (see [16]) The correspondence 2 — N (Q)g is injective from {strictly
conver and centrally symmetric domains in R"™} to {real analytic varieties} up
to parallel translations.

Corollary 3.3: The correspondence Q — N(Q) is injective from {strictly convez
domains in R%} to {compler analytic varieties} up to parallel translations.

The idea of injectivity of Corollary (3.3) is based on the following:

Problem 3.4: Recover a convex domain © from the null variety A'(Q) in the
following procedure by showing the uniqueness of the solution to (3.4.1) (the

step (e) = (f)):

(a) Q: astrictly convex domain in R".
J,> <= Definition in §1

(b) N(R): the null variety in C".

f

(c) An asymptotic behavior of N(Q)N S.
f <= Theorem (2.2)

(d) Hq:5"!'—>Randdg:S" ! -R.
f <= A curvature formula in terms of hg

(e) The supporting function hg, satisfies a single differential equation (3.4.1) on S*~1.

l>

(f) The uniqueness of a solution hq satisfying (3.4.1) up to linear functions on S™~!.
Here hg in (e) satisfies the following differential equation of second order:
det(D*hg + ho)(w) = A(w) det(D*(B — hq) + B — ha)(w), (3.4.1)

where D? denotes the Hessian on the unit sphere S"~! and A, B € C®°(S"~1)
are determined by A(9).

In the case n = 2, the differential equation (3.4.1) is linear. We have an
explicit formula of the inverse of the assignment Q — N(Q), which proves
Corollary (3.3).
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On the other hand, in the hyperbolic space SOq(n,1)/SO(n), the simplest
case (n = 2) involves a non-linear ordinary differential equation, which we can
reduce to the Duffing equation:

fr==g(f = 179, (35)

after a change of variables (see [18], §3.7).

Remark 3.6: We are interested not only in the injectivity of  — N(2) but
also in a characterization of the image A/(Q2) in a suitable sense. In an asymp-
totic sense, this problem corresponds to the existence part of the Minkowski
problem in our formulation of (3.4) (see (3.4.1)) in a special case where Q is
centrally symmetric and strictly convex. In the case n = 2, a characterization
of the image A(£2) (in an asymptotic sense) is given in terms of a Dirichlet
series determined by the null variety A'(Q) (see [18] Proposition (2.3.20)).

Characterization of convexity of 2 by means of N ()

So far we have treated convex domains. Conversely, in this section, we treat a

characterization of convexity in terms of an asymptotic behavior of N'(£2) in the

case of n = 2. Recall that § = §! — xBbbC™ = {¢-w:(eCuweS CRYC
2

C? (see (2.1.1)). Then the asymptotic behavior of N'(§2) in Theorem (2.2) char-
acterizes the convexity of €:

Theorem 4.1: (see [19]) Suppose that @ is a bounded multiply-connected domain

in R? with finitely many analytic boundaries. If N'(Q) has the following asymp-
totic behavior (4.1.1), then Q is a sirictly conver domain (in particular, 8Q is
connected). (4.1.1) There exist mg € N, continuous functions H : S SRy,

d:S' - R and Fy, : S' — C (N> m > mg) such that

2m1r

H() 2H( +\/—d(w Y+O(m™?) asm—oo0, (4.1.1)(a)

Fp(w) =

NENS = ( ]_[ /\fm) ]_[ (compact set) (disjoint union). (4.1.1)(b)

m>mo

Here we put
Nm = {Fn(w) w:we S} CcC.

Moreover, we have H(w) = Ha(w) (see (2.1.3)) and d(w) = da(w) (see (2.1.5)).

Remark 4.2: In the condition (4.1.1)(a), we can replace O(m™!) by o(1).

231
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Perturbation of  and N (Q)

If © is a ball in R™, then every connected component of A(f) is of the form
Sc(0 : @) for some a > 0 (see (1.3)). If Q is a convex domain in R? and N (£2)
contains S¢(0 : «) for some @ € C, then § is close to a ball in the following
sense:

Theorem 5.1: ([6]). Suppose Q is a convez domain in R If N(2) D Sc(0: o)

for some o € C, then a breadth function must satisfy
2 min H H .
s Hal) > papy flal)

Loosely speaking, the result (5.1) of Brown and Kahane asserts that a long
thin convex domain in R? (‘far from’ being a ball) never satisfies the conditions
(1) - (3) in Fact (1.1). Conversely, we shall treat the case where 2 is sufficiently
‘close to’ a ball in this section.

In order to define the ‘closeness’ and to give a precise (quantitative) estimate
on how perturbations of a ball affect the null variety A'(£2), we consider the
following deformation of domains: Given 0 < T and a continuous map g: [0, T]x
S57-1 — R, we define a family of star-shaped domains {Q(g(%,-))}o<i<r =
{Qt}ogth in R™ by

Qot, )= :={p-neR:neS",0<p<g(t,n)}.
From definition,
Qp is the unit ball < ¢(0,n) =1.

In view of the fact that parallel translations and similarity transformations
of © do not affect the properties in Fact (1.1), we introduce a notion of unessen-
tial perturbation as follows. We call {Q;} unessential if there exist ¢ € R and
b € R™ such that ¢;(0,7) = a+ (b,n) (g: := %‘f). This means that the deforma-
tion {2} is degenerate at ¢ = 0 up to similarity transformations and parallel
translations.

We introduce a family of seminorms | - |- on L%(S"~!) parameterized by
r >0 by
ad 3
|h|’r = {z“hk”f;z(an)c]k-{-g—l(7')2}
k=1

o0
if h = 3 hy € L%(S""1) is a decomposition of h into spherical harmonics

k=0
hi of degree k. Let j(v,k)(k € N;) be the positive zeros of J,(z) arranged
in ascending order. For R > j(%,1) we denote by kg € N, the integer such
that 0 < j(2,1) < j(%,2) < ... < j(%3kr) < R < j(%,kr+1). For
h € L2(S™~1), we define

|h|r = lﬁTiﬁI}cnlhlg(%’k)‘ (5.3.1)
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Given 0 < T and a C? function g : [0,7] x S*~! — Ry, we define

[Q]R — |gt(0’)|R
llgllca(o,7)x s7-1)

(> 0), (5.3.2)

Then [g]k is a non-increasing function of R with the following property:
[gle=0 < {Q(g(t,-))} is unessential. (5.3.3)

Theorem 5.4: ([17], [20]) Let R>> 0. There exzists a constant C(n, R) > 0 with
the following property: Suppose 0 < T and that 2, = Q(g(t,")) (0<t<T) s
a family of domains in R™ given by a C? map g : [0,T]x S"~! — Ry satisfying
9(0,n) = 1 and |g:(0,n)] < 1 (n € S*~1). If there exist to € R,z € R" and
r > 0 such that

llz]i + 7 < R,
0 <ty < min (T, C(n, R){g]r),
N gk N B(0: R)D S(z:r),

then to = 0 and so §;, ts a ball.

Corollary 5.5: Let R > 0 and C(n,R) > 0 the constant in Theorem (5.4).
Suppose 0 < T and that Q; = Q(g(¢,")) (0 <t < T) 1s a family of domains
in R™ given by a C? map g : [0,T] x S*~! — Ry satisfying ¢(0,7) = 1 |
and |g:(0,n)] < 1 (n € S*1). Assume that there exist Ao,to € R and u €
C2(Qtu) ﬂCl(Qto) such that

0< A < R?,
0 < tp < min (T, C(n, R)[g]r),
u # 0 15 a solution of (N)»,.

Then to = 0 and Sy, is the unit ball.

Remark 5.6: The above results hold for a C1** map g: [0,7] x S"~! — Ry
with some 0 < o < 1 (see [20]). Recently, Agranovsky (1] obtained a similar
result to Corollary (5.5) assuming that the dimension n = 2 and and assuming
the existence of a solution to (N),, for all t with the condition that both the
boundary 8§; and the eigenvalues A; depend analytically on the parameter ¢.
His approach is quite different from ours and uses Riemann’s mapping theorem
for C ~ R2

6 Asymptotic behavior of the zeros of a certain class of entire functions

As a function of 2, it is a classical result that some of special functions have
countably many zeros which are distributed in a regular fashion with bounded
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imaginary parts:

F(z) {zeC:F(z)=0}

sin z 27n (n € Z)

m‘z—)l'f\m —a—n,b+n (nEN)

Ia(z) :EM-P-O( 1) asn — oo
PH(z) :i:g?CT—Q_"ld)E O(n™') asn — oo

In this section we give an explanation based on the fact that these functions are
essentially the Fourier transforms of compactly supported functions f € C*(X)
(see (6.3) for definition).

For a non-zero, bounded mpactly supported function f on R, the Fourier
transform F f({) = _“’C dz is a holomorphic function of (e C We
define a discrete subset of C by

N(f):={¢CeC:Ff()=0}. (6.1)

Given § > 0, we define a class of functions:
U(8) :={ ¢ € C®(R): o(z) € R, p(z) = p(—z),
(6.2) supp ¢ C [—26,26], p(z) = 1if ¢ € [-6,6]}.

For A € C and N € N such that Re A+ N > 0, we introduce a class of functions
CN()). Here a complex valued function f: R — C belongs to CcN () if and
only if: (6.3) there exist —co < @ < f < o0, a;,b; € C (j = 0,1,...,N),

0 <6< 3B — ), € ¥(6) such that the following three conditions hold.

ag £ 0, bo#0, (6.3.1)
flz) =0 if z<a or A<z, (6.3.2)
FN(fa (,0)(1‘) =
N
7@) =3 (a3 — e} ole — o) + bi(z — O p(a - B)
j=0

is in CBATNI(R).

From definition, we have a natural inclusion - -- > ¢V (X) D CNFL(A) D -+ .
The complex numbers aj, b; (0 < j < N) are obviously independent of the
choice of ¢ € ¥(6) and determined by f. So we write a; = a;(f), b; = b;(f)
if we want to emphasize the dependence on f. Similarly we write o = a(f),

B = B(f). Put A= A(f) := B(f) — a(f). Then the maps

aj,bj: CN(A)“—*(C; (OSJSN)’
Ao, B: CVN(A) —R.
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are clearly compatible with the inclusion map C¥+1(}) — CM()). We fix a
¥ € ¥(1) (Notation (6.2)) once and for all. We introduce a norm || - [|¢xv(a) on
CN () as follows: For f € CV()),

N
(64D flleweay =D AN (laj (H] + 185(H))

7=0
d [Re A]l+N+1
(%) Fn(£,9))

where we put ¢(z) := (fé—)—) (see also (6.3.3) for Fn(f,¢)). The point here
is that the definition (6.4.1) is invariant under the affine transform of R. That
is, |[flle~ () = fp.qllen(a for any p >0, ¢ € Rif we put f; o(2) = f(pz + 9).

For f € C?()), we fix a branch of log :J{c;(%l denoted by r(f) and we define

(f) = (L+Ir(HB3) (| flle= ()
T A(H)RA min(|ao(£)], |bo(£)I

We set B(a :r) :={(€C:|(—a|<r} fora € C,r >0 and recall N(f) =
{¢eC:Ff() =0}

+A(f)[Re Al+N+1 sup
ageLf

7 (22, (6.4.2)

Theorem 6.5: (see [19]). Suppose A € C satisfies ReA > —1. Then there ezist

constants B(A) > 0 and D(X) > 0 with the following properties:
We put n; = ny(A, f) = [Ml] — [B&] for f € C2(}),

27
and Bn,s -— B (e(2n+)\);(—f\)/rl-ﬂf) . f)Z(;\()ff)) fOT'E =+41,n¢€ N+

Then there exists a finite set S(f) C C such that the following three conditions
are satisfied:

N =SNU T 1 (Baen (),

n=n; e=%1

—v/—1r X VaD(x
S(f)c B ( R AEf%(I)) )

#S(f) <exp(BA)S)), #(BnNN(f)) =1, -counted with multiplicity.

Next, let f € CV(X) and we put
fY(z) = f(—z + a(f) + B(f)), (6.6.1)

f(@) := f(=). (6.6.2)
Then it is clear from the definition (6.3) that f¥ € CV¥()) and f € CV(X). We
say f is symmetricif f¥ = f and f is realif f = f. It follows from the definition
that if f is symmetric then a;(f) = b;(f) for 0 < j < N with the notation (6.3)
and that if f is real then A is also real.
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Corollary 6.7:  Suppose A € C satisfies ReX > —1. Assume f € C2()) is sym-

metric and real. Then we have

#N(f) =00, #WNV(H\R)< oo

More precisely, we have an estimate of the number of exceptional zeros:

#WV () \R) < exp(B(A)(S)),

where B(}) is the constant in Theorem (6.5) and (f) is defined in (6.4.2).

Remark 6.8: Corollary (6.7) is a kind of generalization of classical results that
assert some ‘special functions’ with real parameter (e.g. Bessel function J5(¢)
with A € R, X > —1) have countably many real zeros, and have no non-real
zeros. However, there may exist finite number of non-real zeros in our general
setting. In fact, for any A € C such that ReA > —1, we can find a sequence
of functions f; € C2(A) (k= 1,2,...) such that klim #WN(fe) \R) = co. The

following example is suggested by H.Ochiai. Let fix f € C2(}) which is real and
symmetric and choose a sequence of positive integers r; > 0 (j = 1,2,...). For
each integer k € N we define

k dz
5@ =TI (434 7) (@)e - ath)h - 8.

j=1

Then fi € C2(}) is real and symmetric and #(N(fi) \ R) > 2k. In particular,
lim #(V(fe) \R) = .
Example 6.9: For Re) > —1, we set

_fa—-2Hrif|z| < 1.
M) = {0 if || > 1.

Then we have

neccy:= ] ¥
NeN
N>—ReA

a(fa) = =1, B8(H) =L A(H) =2,a0(fr) = bo(fr) = 2*.

Then Theorem (6.5) says that up to a finite number of zeros (this is in fact
empty: the phase principle) the zeros of Ffy are parameterized by n € N
with the asymptotic behavior

:l:(n+%>7r+0(n*1) as n — 00.
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—a-1
From the formula Ff3(¢) = AT(A + 1) (g) * 7,41(C), this gives a well
known asymptotic behavior of the zeros of the Bessel function.
Example 6.10: For ReA > —1 and 0 < ¢ < 7, we set

cos ¢ — cos ) if |z
frele) = {(() #) é M ; Zj (6.10.1)

Then fip € C*(X) and a(fap) = —¢, B(fae) =9, Alfre) =20, aolfae) =
bo(fx,o) = (sinp)*. Then Theorem (6.5) says that the zeros of Ff, , have the
asymptotic behavior

(2n+ A)m

x 2%

+0(rn7Y) asn— 0.
From the formula (8.714)(1) in [13], we have
Fhrp(0) = VIRT(A + D(sin ) P73 (cos ),

where PF(z) denote the associated Legendre function of the first kind, which

is a solution to the differential equation (1 — 22)‘527'2‘ - 228 4 (T—‘Lﬁ) u = 0.
We note that it i1s elementary to write all zeros down in some special cases

such as Ffy z({) = 2N CES) . Ffoo(l) = 2sin(¢®) Tt is known that
1z P ¢

F( Aigiz )P( X—2§i2) 3

A=l . . s
P(_/\% 2 (cos ), considered as a function ¢, has infinitely many zeros for A > —%.

These are all simple and real. They are symmetric with respect to the origin
{see [13], (8.781)).
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