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Abstract: We give a geometric criterion for the bounded multiplicity property of ‘‘small’’

infinite-dimensional representations of real reductive Lie groups in both induction and

restrictions.

In particular, for a reductive symmetric pair ðG;HÞ, we determine the reductive subgroups

G0 having the property that any irreducible H-distinguished admissible representations of G are

of bounded multiplicity when restricted to G0.
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1. Introduction. By branching problems in

representation theory, we mean the broad problem

of understanding how irreducible representations of

a group behave when restricted to a subgroup. As

viewed in [12], we may divide the branching

problems into the following three stages:

Stage A. Abstract features of the restriction;

Stage B. Branching law;

Stage C. Construction of symmetry breaking op-

erators.

The role of Stage A is to develop a theory on

the restriction of representations as generally as

possible. In turn, we may expect a detailed study

of the restriction in Stages B (decomposition of

representations) and C (decomposition of vectors)

in the ‘‘promising’’ settings that are suggested by

the general theory in Stage A.

This article concerns a question in Stage A

about ‘‘multiplicity’’ in branching problems.

Let G be a real reductive Lie group, MðGÞ the

category of finitely generated, smooth admissible

representations of G of moderate growth [31,

Chap. 11], and IrrðGÞ the set of irreducible objects

in MðGÞ. We shall use the uppercase letter � for

representations of the group G, and the lowercase

letter � for those of a reductive subgroup G0.
For Stage A, we may formulate an abstract

feature of the restrictions as a property for

. the pair ðG;G0Þ,

. the triple ðG;G0;�Þ, or

. the quadruple ðG;G0;�; �Þ.
The formulation for the triple ðG;G0;�Þ was

adopted in the study of G0-admissible restriction of

�, namely, the restriction �jG0 of � 2 IrrðGÞ being

discretely decomposable with finite multiplicity,

see [5–7] for the general theory, and [17] for some

classification theory of the triples ðG;G0;�Þ.
On the other hand, Fact 2.1 below is formu-

lated as a property for the pair ðG;G0Þ. This is

the study of ‘‘multiplicity’’ of the restrictions, see

[11,16] for the general theory, and [15] for the

classification of the pairs ðG;G0Þ. In this article, we

discuss its refinement in a formulation for the triple

ðG;G0;�Þ or for the quadruple ðG;G0;�;�0Þ where

� �MðGÞ and �0 �MðG0Þ are families of ‘‘small’’

infinite-dimensional representations, see Problems

2.3 and 4.1. This refinement reveals the underlying

geometric structures of some concrete examples,

e.g., [1,13,24], and yields much broader settings

that seem to be promising for analysis of branching

problems in Stage C.

Detail proofs of the theorems in this article will

appear in [14].

2. Bounded multiplicity in restriction.

Throughout this article, we shall assume that G �
G0 are real forms of complex reductive algebraic Lie

groups GC � G0C, respectively. Their compact real

forms will be denoted by GU � G0U . The Lie algebras

will be denoted by the corresponding lowercase

German letters g, gC, gU , g0, etc.

For � 2MðGÞ and � 2MðG0Þ, we define the

multiplicity of the restriction �jG0 in the category
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½�jG0 : �� :¼ dimC HomG0 ð�jG0 ; �Þ 2 N [ f1g;

where HomG0 ð ; Þ denotes the space of continuous

G0-homomorphisms between the Fréchet represen-

tations.

In [16, Thms. C and D] we proved the following

geometric criteria:

Fact 2.1. Let G � G0 be a pair of algebraic

real reductive Lie groups.

(1) Bounded multiplicity for a pair ðG;G0Þ:

sup
�2IrrðGÞ

sup
�2IrrðG0Þ

½�jG0 : �� <1ð2:1Þ

if and only if ðGC �G0CÞ=diagG0C is spherical.

(2) Finite multiplicity for a pair ðG;G0Þ:

½�jG0 : �� <1; 8� 2 IrrðGÞ, 8� 2 IrrðG0Þð2:2Þ

if and only if ðG�G0Þ=diagG0 is real spherical.

Here we recall that a complex GC-manifold X

is called spherical if a Borel subgroup of GC has an

open orbit in X, and that a G-manifold Y is called

real spherical if a minimal parabolic subgroup of G

has an open orbit in Y .

A remarkable feature of Fact 2.1 (1) is that the

bounded multiplicity property (2.1) is determined

only by the complexifications of G and G0, hence the

classification of such pairs ðG;G0Þ is reduced to a

classical result [20]: the pair ðgC; g
0
CÞ is the direct

sum of the following ones up to abelian ideals:

ðsln; gln�1Þ; ðson; son�1Þ; or ðso8; spin7Þ:ð2:3Þ

On the other hand, the finite multiplicity

property (2.2) depends on real forms. It is fulfilled

for any Riemannian symmetric pair by Harish-

Chandra’s admissibility theorem, whereas it is not

the case for some reductive symmetric pairs such

as ðG;G0Þ ¼ ðSLðpþ q;RÞ; SOðp; qÞÞ. A complete

classification of the symmetric pairs ðG;G0Þ satisfy-

ing the finite multiplicity property (2.2) was

accomplished in [15].

Example 2.2. Let p1 þ p2 ¼ p, q1 þ q2 ¼ q,
and ðG;G0Þ ¼ ðOðp; qÞ; Oðp1; q1Þ �Oðp2; q2ÞÞ. Sup-

pose pþ q � 5. The criteria in Fact 2.1 give the

equivalences:

ð2:1Þ () p1 þ q1 ¼ 1 or p2 þ q2 ¼ 1:

ð2:2Þ () p1 þ q1 ¼ 1; p2 þ q2 ¼ 1; p ¼ 1; or q ¼ 1:

This means that for general p1, q1, p2, q2, there exist

� 2 IrrðGÞ and � 2 IrrðG0Þ such that ½�jG0 : �� ¼ 1.

Nevertheless, a multiplicity-free theorem holds for

the restriction �jG0 for any p1, p2, q1, q2, and for any

discrete series representation � for the symmetric

space G=H with H ¼ Oðp� 1; qÞ, see [13] for a

precise statement.

This example suggests us to work with the

triple ðG;G0;�Þ rather than the pair ðG;G0Þ for the

finer study of multiplicity estimates as mentioned in

Introduction.

Take � 2MðGÞ. We say the restriction �jG0
has the finite multiplicity property if ½�jG0 : �� <1
for all � 2 IrrðG0Þ, and has the bounded multiplicity

property if mð�jG0 Þ <1, where we set

mð�jG0 Þ :¼ sup
�2IrrðG0Þ

½�jG0 : �� 2 N [ f1g:ð2:4Þ

In search for broader settings in which we could

expect a detailed study of the restriction �jG0 in

Stages B and C, we address the following

Problem 2.3. Given a pair G � G0, find a

subset � of MðGÞ such that sup
�2�

mð�jG0 Þ <1.

We bear in mind that branching problems often

arise for a family of representations �. For a better

understanding of Problem 2.3, we first examine

two opposite extremal choices of �. When � is a

singleton, Problem 2.3 concerns the triple ðG;G0;�Þ
having the bounded multiplicity property. When �

is the whole set IrrðGÞ, Problem 2.3 asks the

condition (2.1), and is solved by the geometric

criterion for the pair ðG;G0Þ, as seen in Fact 2.1 (1).

Second, we note that Problem 2.3 is nontrivial

even when G is a compact Lie group where mð�jG0 Þ
is individually finite. In this article we discuss

Problem 2.3 with focus on the following two cases:

(1) � ¼ IrrðGÞH , the set of H-distinguished irre-

ducible representations of G (Theorem 3.2);

(2) � ¼ �P ;�P;q: families of degenerate principal

series representations (Theorems 4.2 and 4.3).

Remark 2.4. One may wonder why we did

not use ½� : �jG0 � :¼ dimC HomG0 ð�;�jG0 Þ instead

of ½�jG0 : ��. The reason is that the space

HomG0 ð�;�jG0 Þ may be too small to capture the

whole picture of the restriction �jG0 in the category

M. This feature is akin to the fact in the category of

Harish-Chandra modules that Homg0;K0 ð�K0 ;�K jg0 Þ
vanishes unless �K is ‘‘discretely decomposable’’ as

a ðg0; K0Þ-module [7].

3. H-distinguished representations of G.

For � 2 IrrðGÞ, we denote by ��1 the representa-

tion on the space of distribution vectors, that is, the
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topological dual of �. For a closed subgroup H of G,

we set

IrrðGÞH :¼ f� 2 IrrðGÞ : ð��1ÞH 6¼ f0gg:ð3:1Þ

The Frobenius reciprocity tells � 2 IrrðGÞH if

and only if HomGð�_; C1ðG=HÞÞ 6¼ f0g, where �_

is the contragredient representation in the category

MðGÞ. Elements � in IrrðGÞH (or �_) are some-

times referred to as H-distinguished, or having

nonzero H-periods.

For a reductive symmetric pair ðG;HÞ, the set

IrrðGÞH is described by the Cartan–Helgason the-

orem when H is compact, whereas the full classi-

fication is far from being achieved in the general

setting where H is not compact, although one has

still some useful information about IrrðGÞH , see

e.g., Theorem 6.2 below.

The following notions are a key in answering

Problem 2.3 for � ¼ IrrðGÞH .

Definition 3.1. Let G=H be a reductive

symmetric space defined by an involution � of G.

We take GU ð� GCÞ such that GU \H is a maximal

compact subgroup of H.

(1) We say a complex parabolic subalgebra q of gC

is a Borel subalgebra for G=H if q is defined by

a generic element in
ffiffiffiffiffiffiffi
�1
p

g��U .

(2) We say a real parabolic subalgebra p of g is a

minimal parabolic subalgebra for G=H if p is

defined by a generic element in g \
ffiffiffiffiffiffiffi
�1
p

g��U .

Borel subalgebras for the symmetric space

G=H are unique up to inner automorphisms of gC.

Likewise, minimal parabolic subalgebras for G=H

are unique up to inner automorphisms of g. We

shall write BG=H (� GC) and PG=H (� G) for the

corresponding parabolic subgroups, referred to as

a Borel subgroup and a minimal parabolic subgroup

for the symmetric space G=H, respectively. We

note that the Borel subalgebra bG=H for G=H is not

necessarily solvable, and that it is determined only

by the complexification ðgC; hCÞ.
Here is an answer to Problem 2.3 for � ¼

IrrðGÞH when ðG;HÞ is a reductive symmetric pair.

Theorem 3.2. Let BG=H be a Borel subgroup

for G=H. Suppose G0 is an algebraic reductive

subgroup of G. Then the following three conditions

on the triple ðG;H;G0Þ are equivalent:

(i) sup
�2IrrðGÞH

mð�jG0 Þ <1.

(ii) GC=BG=H is G0U -strongly visible.

(iii) GC=BG=H is G0C-spherical.

See [8, Def. 3.3.1] for the definition of strongly

visible actions on complex manifolds, and [29] for

the equivalence (ii) () (iii).

The list of the triples ðG;H;G0Þ is given in

Theorem 5.1 below in the setting that ðG;G0Þ is a

symmetric pair and that gC is simple.

We also discuss the following finite multiplicity

property (FM) for the restriction �jG0 , weaker

than the bounded multiplicity property (i) in

Theorem 3.2:

½�jG0 ;�� <1; 8� 2 IrrðGÞH; 8� 2 IrrðG0Þ:ðFMÞ

Proposition 3.3. Let PG=H be a minimal

parabolic subgroup for a reductive symmetric space

G=H. Let G0 be an algebraic reductive subgroup of

G, and P 0 a minimal parabolic subgroup of G0.
(1) If #ðP 0CnGC=ðPG=HÞCÞ <1, then ðFMÞ holds.

(2) If ðFMÞ holds, G=PG=H is G0-real spherical.

Proposition 3.3 (2) was proved in [11]. The

converse statement of Proposition 3.3 (2) holds in

the group manifold case, namely, if G=H is of the

form ð8G� 8GÞ= diag 8G and if G0 is of the form G01 �
G02, see Fact 2.1 (2).

4. Degenerate principal series represen-

tations. Let P be a parabolic subgroup of G. We

write IrrðP Þf for the set of equivalence classes of

irreducible finite-dimensional representations of P .

Let IndGP ð�Þ be the degenerate principal series

representation of G obtained as a smooth induction

from � 2 IrrðP Þf . Then IndGP ð�Þ 2MðGÞ.
Suppose that P 0 is a parabolic subgroup of a

real reductive algebraic subgroup G0 of G. Degen-

erate principal series representations IndG
0

P 0 ð�Þ of

G0 are defined similarly for � 2 IrrðP 0Þf . This

section studies the multiplicity ½IndGP ð�ÞjG0 :

IndG
0

P 0 ð�Þ�, namely, the dimension of the space

HomG0 ðIndGP ð�ÞjG0 ; IndG
0

P 0 ð�ÞÞ of ‘‘symmetry breaking

operators’’.

In the case ðG;G0Þ ¼ ðOðnþ 1; 1Þ; Oðn; 1ÞÞ, this

is the space of conformally covariant symmetry

breaking operators for the totally geodesic embed-

ding Sn�1 ,! Sn. All such operators have been

constructed and classified recently, see [18] for the

scalar case, and [19] for differential forms. In this

case, the multiplicity takes the values in f0; 1; 2g.
For a finer estimate of the multiplicity

½IndGP ð�ÞjG0 : IndG
0

P 0 ð�Þ� in the general setting, we

implement yet other parabolic subgroups Q � PC

and Q0 � P 0C. What we call a ‘‘QP estimate’’ of

the multiplicity will play a key role in the proof
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of Theorem 3.2 for H-distinguished representa-

tions.

Let Q be a complex parabolic subgroup of GC

with q � pC. We do not require q to be defined over

R. For � 2 IrrðP Þf , we define dqð�Þ to be the

minimum of the dimensions of non-zero q-submod-

ules in �, and denote by IrrðP ; qÞf the subset of

IrrðP Þf with dqð�Þ ¼ 1.

We define subsets of MðGÞ by

�P :¼ fIndGP ð�Þ : � is a character of Pg;ð4:1Þ
�P;q :¼ fIndGP ð�Þ : � 2 IrrðP ; qÞfg:ð4:2Þ

Obviously, one has �P � �P;q. Moreover, �P;q is the

whole set fIndGP ð�Þ : � 2 IrrðP Þfg if q is a Borel

subalgebra of gC.

We consider the following refinement of Prob-

lem 2.3:

Problem 4.1. Given a pair G � G0, find

subsets � �MðGÞ and �0 �MðG0Þ such that

sup
�2�

sup
�2�0
½�jG0 : �� <1:

One observes that Problem 2.3 corresponds to

the case where �0 ¼ IrrðG0Þ.
Theorem 4.2 (‘‘QP estimate’’ for restric-

tion). Suppose that Q and Q0 are complex para-

bolic subgroups of GC and G0C, respectively, such

that q � pC, q0 � p0C, and #ðQ0oppnGC=QÞ <1.

Here Q0opp stands for the opposite parabolic subgroup

of Q0 in P 0C. Then there exists C > 0 such that

½IndGP ð�ÞjG0 : IndG
0

P 0 ð�Þ� 	 Cdqð�Þdq0 ð�Þð4:3Þ

for any � 2 IrrðP Þf and any � 2 IrrðP 0Þf . In partic-

ular, one has

sup
�2IrrðP ;qÞf

sup
�2IrrðP 0;q0Þf

½IndGP ð�ÞjG0 : IndG
0

P 0 ð�Þ� 	 C:

When Q0 is a Borel subgroup of G0C, one obtains

the converse statement of Theorem 4.2 as follows:

Theorem 4.3. Let G � G0 be a pair of real

reductive algebraic Lie groups, P a parabolic

subgroup of G, and Q a complex parabolic subgroup

of GC such that q � pC. Then the following four

conditions on ðG;G0;P;QÞ are equivalent:

(i) sup
�2�P;q

mð�jG0 Þ <1.

(ii) There exists C > 0 such that

mðIndGP ð�ÞjG0 Þ 	 Cdqð�Þ for all � 2 IrrðP Þf :
(iii) GC=Q is G0U -strongly visible.

(iv) GC=Q is G0C-spherical.

The parabolic subgroups Q in (iv) are classified

in [2] in the setting where ðGC; G
0
CÞ is a symmetric

pair. Theorem 4.3 with Q ¼ PC shows:

Corollary 4.4. Let P be a parabolic sub-

group of G, and G0 an algebraic subgroup of G. Then

one has the equivalence on the triple ðG;G0;P Þ:

GC=PC is G0C-spherical() sup
�2�P

mð�jG0 Þ <1:

Example 4.5. If the unipotent radical of P

is abelian, then Corollary 4.4 applies for any

symmetric pair ðG;G0Þ by [8, Cor. 15].

Theorem 4.2 also implies the following

Theorem 4.6 (Invariant trilinear forms).

Let G be a real reductive algebraic Lie group, and

Pj ðj ¼ 1; 2; 3Þ parabolic subgroups of G. Suppose

that Qj ðj ¼ 1; 2; 3Þ are complex parabolic subgroups

of GC such that Qj � ðPjÞC ð1 	 j 	 3Þ and

#ðdiagðGCÞnðGC �GC �GCÞ=ðQ1 �Q2 �Q3 ÞÞ <
1. Then there exists C > 0 such that

dimC HomG 

3

j¼1
IndGPjð�jÞ;C

� �
	 C �

3

j¼1
dqj
ð�jÞ

for all �j 2 IrrðPjÞf ðj ¼ 1; 2; 3Þ.
See [22,23] for a classification of ðQ1; Q2; Q3Þ

with the above geometric property for some classi-

cal groups GC.

For �1;�2 2MðGÞ, we consider the tensor

product representation �1 
 �2, and set

mð�1 
�2Þ :¼ sup
�2IrrðGÞ

dimC HomGð�1 
 �2;�Þ:

A special case of Theorem 4.6 implies (v) ) (i)

of the theorem below.

Theorem 4.7. Let G be a real reductive

algebraic Lie group, and Pj ðj ¼ 1; 2Þ parabolic

subgroups. Then the following five conditions on

the triple ðG;P1; P2Þ are equivalent:

(i) There exists C > 0 such that

mðIndGP1
ð�1Þ 
 IndGP2

ð�2ÞÞ 	 C dim �1 dim �2

for all �j 2 IrrðPjÞf ðj ¼ 1; 2Þ.
(ii) There exists C > 0 such that

mðIndGP1
ð�1Þ 
 IndGP2

ð�2ÞÞ 	 C

for all characters �j of Pj ðj ¼ 1; 2Þ.
(iii) OðGC=P1C;L1Þ 
OðGC=P2C;L2Þ is a multiplic-

ity free GC-module for any GC-equivariant holo-

morphic line bundles Lj on GC=PjC ðj ¼ 1; 2Þ.
(iv) GC=P1C �GC=P2C is diagðGUÞ-strongly visible.

22 T. KOBAYASHI [Vol. 98(A),



(v) GC=P1C �GC=P2C is diagðGCÞ-spherical.

The classification of such pairs ðP1C; P2CÞ
appeared in different contexts. For instance, one

may read from [26] for the multiplicity-free results

on finite-dimensional representations (iii). The

classification theory of visible actions also gives a

complete list of the pairs ðP1C; P2CÞ satisfying (iv),

see [10] for type A, and [28] for the other cases. See

also [21] for the list satisfying (v) when PjC are

maximal.

Example 4.8. Let G be a real reductive

Lie group, and P1, P2 parabolic subgroups with

abelian unipotent radical. The double flag variety

GC=P1C �GC=P2C is strongly visible via the diag-

onal GU -action [9, Thm. 1.7], hence Theorem 4.7

applies. In particular, by taking P2 to be the

opposite parabolic subgroup of P1, one sees from

Theorem 4.7 the uniform bounded multiplicity

property in the Plancherel formula for any para-

Hermitian symmetric space.

5. Classification of triples ðG;H;G0Þ. In

this section, we present the classification of the

triples ðG;H;G0Þ satisfying

sup
�2IrrðGÞH

mð�jG0 Þ <1ð5:1Þ

on the level of Lie algebras up to outer auto-

morphisms in the following setting:

. both ðG;HÞ and ðG;G0Þ are symmetric pairs,

. gC is simple.

Theorem 5.1. Suppose that gC is simple and

that ðG;HÞ and ðG;G0Þ are symmetric pairs. Then

the triple ðG;H;G0Þ satisfies the bounded multi-

plicity property (5.1) if and only if the triple

ðgC; hC; g
0
CÞ of the complexified Lie algebras is in

Table 5.1 or the pair ðgC; g
0
CÞ is in (2.3). In the table,

p, q are arbitrary subject to n ¼ pþ q.
Example 5.2. The triple ðG;H;G0Þ in Ex-

ample 2.2 is a real form of the triple ðgC; hC; g
0
CÞ in

the fourth row of Table 5.1, hence Theorem 5.1

guarantees the bounded multiplicity property of

the restriction �jG0 for all � 2 IrrðGÞH , see [13,24].

Remark 5.3. When the pair ðgC; g
0
CÞ is in

the list (2.3), the supremum of the multiplicity (2.1)

is equal to one for many of the real forms such as

ðSOðp; qÞ; SOðp� 1; qÞÞ, see [27].

6. Sketch of the proof for our main re-

sults. We give two ingredients that are used in

the proof of out main results.

In the classical harmonic analysis on the

Riemannian symmetric space G=K, building blocks

of representations in C1ðG=KÞ are constructed by

the twisted Poisson transform, an integral G-inter-

twining operator from the spherical principal series

representation to C1ðG=KÞ. More generally, for a

closed subgroup H in G, we consider the space

HomGðIndGP ð�Þ; IndGHð�ÞÞ of generalized Poisson

transforms, where P is a parabolic subgroup of

G, � 2 IrrðP Þf , and � 2 IrrðHÞf . We give a ‘‘QP

estimate’’ of the dimension of this space. Along the

same line as in [11,16], the ‘‘QP estimate’’ for

restriction (e.g., the implication (iv) ) (i) in

Theorem 4.3) is deduced from the following ‘‘QP

estimates for induction’’ applied to ðG�G0Þ=
diagG0. Theorem 6.1 (1) below is a generalization

of some results in [16] relying on the ‘‘boundary

valued maps’’ and in Tauchi [30] relying on the

theory of holonomic D-modules [3,4].

Theorem 6.1 (‘‘QP estimate’’ for induction).

Let G be a real reductive algebraic Lie group, H an

algebraic subgroup, P a parabolic subgroup of G, and

Q a complex parabolic subgroup of GC with Q � PC.

(1) If #ðQnGC=HCÞ <1, then there exists C > 0
such that for all � 2 IrrðP Þf and all � 2 IrrðHÞf
dimC HomGðIndGP ð�Þ; IndGHð�ÞÞ 	 Cdqð�Þ dim �:

(2) Conversely, if the conclusion in (1) holds, then

Q has an open orbit in GC=HC.

For the proof of Theorem 3.2, we also use the

following reformulation [14] of Casselman–Oshima’s

subrepresentation theorem [25,31].

Theorem 6.2 (Quotient representation theo-

rem). Let G=H be a reductive symmetric space,

and PG=H and bG=H a minimal parabolic subgroup

and a Borel subalgebra for G=H, respectively, with

bG=H � ðpG=HÞC. Then for any � 2 IrrðGÞH , there

Table 5.1. Triples ðgC; hC; g
0
CÞ with gC simple in Theorem 5.1

gC hC g0C

sln gln�1 slp � slq �C

sl2m gl2m�1 spm

sl6 sp3 sl4 � sl2 �C

son son�1 sop � soq

so2m so2m�1 glm

so2m so2m�2 �C glm

spn spn�1 � sp1 spp � spq

spn spn�2 � sp2 spn�1 � sp1

e6 f4 so10 �C

f4 so9 so9
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exists � 2 IrrðPG=H ; bG=HÞf such that � is a quotient

of the degenerate principal series representation

IndGPG=H ð�Þ.
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